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Abstract
We devise the first constant-factor approximation algorithm for finding an integral multi-commodity
flow of maximum total value for instances where the supply graph together with the demand edges
can be embedded on an orientable surface of bounded genus. This extends recent results for planar
instances. Our techniques include an uncrossing algorithm, which is significantly more difficult than
in the planar case, a partition of the cycles in the support of an LP solution into free homotopy
classes, and a new rounding procedure for freely homotopic non-separating cycles.
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1 Introduction

Multi-commodity flows, or multiflows for short, are well-studied objects in combinatorial
optimization; see, e.g., Part VII of [34]. A multiflow of maximum total value can be found
in polynomial time by linear programming. Often, a multiflow must be integral, and then
the problem is much harder; the well-known edge-disjoint paths problem is a special case.
Recently, constant-factor approximation algorithms have been found for maximum edge-
disjoint paths and integral multiflows in fully planar instances, i.e., when G + H, the supply
graph together with the demand edges, can be embedded in the plane [21, 16]. We generalize
these results to surfaces of bounded genus and devise the first constant-factor approximation
algorithm for that case.

Beyond using some ideas of [16, 21], we need several new ingredients. Like [16], we start
by computing an optimal (fractional) multiflow and “uncross” the cycles in its support as
much as possible, but uncrossing is significantly more complicated on general surfaces than
in the plane. Next, we need to deal with two cases separately: depending on whether most
of the fractional multiflow is on separating cycles (that case is similar to the planar case)
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or on non-separating cycles. In the latter case we partition the cycles into free homotopy
classes and define a cyclic order in each free homotopy class, which is possible due to the
uncrossing and allows for a simple greedy algorithm.

1.1 Our results
The (fractional) maximum multiflow problem can be described as follows. An instance
consists of an undirected graph (V, D ∪̇E) whose edge set is partitioned into demand edges,
in D, and supply edges, in E. We write G = (V, E), H = (V, D), and G + H = (V, D ∪̇E).
Moreover we have a function u : D ∪̇E → Z>0 which defines a capacity u(e) for each supply
edge e ∈ E and a demand u(d) for each demand edge d ∈ D. The goal is to satisfy as much
of the demand as possible by routing flow on supply edges. More precisely, we ask for an
s-t-flow fd of value at most u(d) for every demand edge d = {t, s} such that the total flow
on each supply edge is at most its capacity and the total value of all those flows is maximum.

It is well known that every s-t-flow can be decomposed into flow on s-t-paths and on cycles,
and for integral flows there is an integral decomposition. The cycles in such a decomposition
do not contribute to the value of the s-t-flow and can be ignored. An s-t-path in (V, E)
together with the demand edge d = {t, s} forms a D-cycle: a cycle in G + H that contains
exactly one demand edge. If we let C denote the set of all D-cycles in G + H, we can write
the maximum multiflow problem equivalently as

max
∑
C∈C

fC s.t.
{ ∑

C∈C:C∋e fC ⩽ u(e) for all e ∈ D ∪̇E

fC ⩾ 0 for all C ∈ C (1)

In some previous works, the problem has been defined with u(d) = ∞ for d ∈ D, and
this variant is easily seen to be equivalent. We call the linear program (1) the maximum
multiflow LP. The maximum integral multiflow problem is identical, except that the flow
must be integral:

max
∑
C∈C

fC s.t.
{ ∑

C∈C:C∋e fC ⩽ u(e) for all e ∈ D ∪̇E

fC ∈ Z⩾0 for all C ∈ C (2)

The special case where u(e) = 1 for every edge e ∈ D ∪̇E is known as the maximum
edge-disjoint paths problem. Even that special case is unlikely to have a constant-factor
approximation algorithm for general graphs (see Section 1.2). Our main result is a constant-
factor approximation algorithm in the case when G + H can be embedded on an orientable
surface of bounded genus.

▶ Theorem 1. There is a polynomial-time algorithm which takes as input an instance
(G, H, u) of the maximum integral multiflow problem such that G + H is embedded on an
orientable surface of genus g, and which outputs an integral multiflow whose value is at most
a factor O(g2 log g) smaller than the value of any fractional multiflow.

See Section 3 for an outline of the algorithm and the proof. In the full version of the
paper, we explain how to improve the approximation ratio of the algorithm to O(g2). It is
worth pointing out that almost all known hardness results for the maximum edge-disjoint
paths problem hold even when G is planar (see Section 1.2). Theorem 1, along with the two
recent papers [16, 21], highlight that for tractability one needs more than the planarity of G

alone. The topology of G + H together plays an important role.
The dual LP of (1) is:

min
∑

e∈D∪̇E

u(e)ye s.t.
{ ∑

e∈C ye ⩾ 1 for all C ∈ C
ye ⩾ 0 for all e ∈ D ∪̇E

(3)
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and this may be called the minimum fractional multicut problem. The minimum multicut
problem results from replacing the inequality ye ⩾ 0 in (3) by ye ∈ {0, 1} for all edges
e ∈ D ∪̇E. Again, many previous works considered the equivalent special case where
u(d) =∞ for d ∈ D, in which case no dual variables for demand edges are needed. By weak
duality, the value of any multiflow is at most the capacity of any multicut. Using Theorem 1
and a previous result of [36], we obtain (in Section 9):

▶ Corollary 2. For any instance (G, H, u) of the maximum integral multiflow problem such
that G + H is embedded on an orientable surface of genus g, the minimum capacity of a
multicut is at most O(g3.5 log g) times the maximum value of an integral multiflow.

In general the integral multiflow-multicut gap1, and even the integrality gap of (1), can
be as large as Θ(|D|), even when G is planar and G + H is embedded in the projective
plane [18]. In this paper we consider orientable surfaces only. Corollary 2 states that the gap
becomes constant when G + H has bounded genus. So far very few such constant integral
multiflow-multicut gaps are known, for example when G is a tree [18], or when G + H is
planar, as recently shown in [16, 21].

1.2 Related Work
Approximation algorithms and hardness for integral multiflows. Most of the hardness
results for the maximum integral multiflow problem follow from the special case of the
maximum edge-disjoint paths problem (EDP). The decision version of EDP is one of Karp’s
original NP-complete problems [22], and remains NP-complete even in many special cases [30],
including the case of interest in this paper, namely even when G + H is planar [28]. In
terms of approximation, EDP is APX-hard [2]. Assuming that NP ̸⊆DetTIME(nO(log n)),
where n = |V |, there is no no(1/

√
log n) approximation for EDP, even when G is planar

and sub-cubic [6]. Assuming that for some positive δ, NP ̸⊆RandTIME(2nδ ), there is no
nO(1/(log log n)2) approximation for EDP, even when G is planar and sub-cubic [7]. As far as
we know, no stronger hardness result is known for integral mutliflows.

On the positive side, EDP can be solved in polynomial time when the number of demand
edges is bounded by a constant [33]. The same holds for integral multiflows when G + H is
planar [35]. For exact algorithms in various special cases, see the survey [30]. In general,
the best known approximation guarantee for EDP and maximum integral multiflows is
O(
√

n) [4]. Approximation algorithms with better approximation ratios for various special
cases have been designed. We refer the readers to the survey [10] and to [18, 23, 30] and the
references therein.

Recent work on the planar case. Recently, [16] and [21] gave constant-factor approximation
algorithms for maximum integer multiflows when G + H is planar. Both papers proceed
by first obtaining a half-integral multiflow and then using the four color theorem to round
it to an integral solution (similar to Section 6). The main difference of the two works is
the way such half-integral multiflows are obtained. In [16], it is constructed by uncrossing a
fractional multiflow (see Section 5 for a definition) to construct a certain network matrix,
which is known to be totally unimodular; in [21], such a half-integral multiflow is obtained

1 There is a closely related, but different, notion of integral flow-cut gap introduced in [5]: they study the
smallest constant c such that whenever u(C ∩ E) ⩾ u(C ∩ D) for every cut C (the cut condition), there
is an integral multiflow satisfying all demands and violating capacities by at most a factor c.

ICALP 2021
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by rounding a feasible solution of a related problem in the planar dual graph of G + H. Both
approaches do not extend to higher genus graphs in a straightforward way, because the dual
of a cycle is no longer a cut in general and cycles cannot always be uncrossed.

Minimum multicut problem. The minimum multicut problem is NP-hard even when there
are only three demand edges [11]. In general, assuming that the Unique Games conjecture
holds, there is no O(1)-approximation [3], but a O(log |D|)-approximation algorithm [17].
Better approximations also have been shown for special cases; see [18, 36] and the references
therein. In particular, when G+H is planar, [25] gave an approximation scheme. When G has
genus g, an FPT-approximation scheme with parameters of g and |D| has been proposed [8].

Tools from topology. The design of multiflows on surfaces is closely related to the properties
of sets of curves on a surface. In a recent breakthrough, Przytycki [31] proved that the
maximum number of essential curves on a closed surface of genus g such that no two of
them are freely homotopic or intersect more than once is O(g3), improving on the previous
exponential upper bound by [27]. Very recently, this number was shown to be O(g2 log g)
by [19], which almost matches the lower bound Ω(g2) on the size of such sets [27]. We will
use this result in Section 7.

2 Preliminaries

Consider an instance (G, H, u) of the maximum integral multiflow problem, and let G + H =
(V, E ∪̇D) be the graph whose edge set is the disjoint union of the edge sets of the supply
graph G = (V, E) and the demand graph H = (V, D). Throughout the paper, we assume that
the graph G + H is connected, otherwise we can run the algorithm on each of its connected
components.

Graphs on surfaces. Surfaces are either orientable or non-orientable; in this paper we only
consider closed orientable surfaces. A closed orientable surface of genus g can be seen as a
connected sum of g tori, or equivalently a sphere with g handles attached on it, where g

is called the genus of the surface. Given an integer g ⩾ 0, all closed surfaces with genus g

are mutually homeomorphic, and we refer to any one of them as Sg. For instance, S0 is the
sphere and S1 is the torus.

A (multi)graph has genus g or is a genus-g graph, if it can be drawn on Sg without edge
crossings, but not on Sg−1. A genus-g graph may have several non-equivalent embeddings
on Sg, but all of them satisfy the same invariant, called the Euler characteristic: #Faces−
#Edges + #Vertices = 2− 2g.

A simple application of Euler’s formula gives the following upper bound on the coloring
number of genus-g graphs, when g ⩾ 1.

▶ Theorem 3 (Map color theorem). A genus-g graph can be colored in polynomial time with
at most χg ⩽ ⌊ 7+

√
1+48g
2 ⌋ colors.

For g = 0, this is an algorithmic version of the 4-color theorem [32]. For g ⩾ 1, the
coloring is obtained in polynomial time by a simple recursive algorithm that removes a vertex
of minimum degree and colors the remaining graph [20]. For additional details and results
about graphs on surfaces see e.g. [29, 9].
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Combinatorial embeddings. Given a graph, let δ(v) denote the set of edges incident to
a vertex v, and δ(U) the set of edges with exactly one endpoint in vertex set U . Given
an embedding of a graph on an orientable surface, and an arbitrary orientation of this
surface, for each vertex v, a clockwise cyclic order can be defined on the edges of δ(v). Note
that contracting an edge e = {u, v} results in removing e from δ(u) and from δ(v) and
concatenating the orders to obtain the clockwise cyclic order of the edges around the vertex
created by the contraction. Using these orders together with the incidence relation between
edges and faces, embeddings become purely combinatorial objects. For additional details see,
e.g., [29], Chapter 4.

Graph duality. Given an embedding of a genus-g graph G on Sg, there exists a uniquely
defined dual graph, denoted as G∗. This graph can be embedded on the same surface as G.
There exists a bijection between the faces of G and the vertices of G∗, a bijection between
the vertices of G and the faces of G∗, and a bijection between the edge sets of G and of G∗.
Moreover, the embeddings of G and G∗ are consistent: with this bijection, every edge only
crosses its dual edge, every face only contains its corresponding dual vertex and reciprocally.
For notational simplicity, the latter bijection is implicit.

Cycles and cuts. A path in a graph G is a sequence (v0, e1, v1, . . . , ek, vk) for some k ⩾ 0,
where v0, . . . , vk are distinct vertices and ei = {vi−1, vi} is an edge for all i = 1, . . . , k. A cycle
in a graph G is a sequence (v0, e1, v1, . . . , ek, vk) such that v1, . . . , vk are distinct vertices,
{vi−1, vi} is an edge for all i = 1, . . . , k, and v0 = vk. Sometimes we view cycles as edge sets
or as graphs. A cut is an edge set δ(U) for some proper subset ∅ ̸= U ⊂ V . A cut δ(U) is
simple if both U and V \ U are connected.

We say that an edge set F in a graph is a (simple) dual cut if the corresponding set of
edges F ∗ in the dual is a (simple) cut. A cycle C in G is called separating if it is a dual cut,
and non-separating otherwise. Note that every separating cycle is a simple dual cut.

Homotopy. Given a surface S, a (simple) topological cycle is a continuous injective map γ

from the unit cycle S1 := {z ∈ C, ||z|| = 1} to S. Two topological cycles γ1 and γ2 are freely
homotopic if there exists a continuous function φ : [0, 1]× S1 → S such that φ(0, ·) = γ1 and
φ(1, ·) = γ2. Intuitively, cycle γ1 is transformed into cycle γ2 by continuously moving it on
the surface. Free homotopy is an equivalence relation.

Given an embedding of the graph G + H on S, we say that a cycle C in G + H is
represented2 by a topological cycle γ of S if the image of γ is the embedding of C on S. Two
cycles in G + H are freely homotopic if and only if they can be represented by two freely
homotopic topological cycles. In the sequel, we use the following well-known fact.

▶ Fact 4. If two cycles C and C ′ are freely homotopic, then their symmetric difference is
a dual cut. If C and C ′ are additionally disjoint and non-separating, then their union is a
simple dual cut.

Intuitively, the image of the continuous homotopy function from C to C ′ on the surface
forms an annulus [12]. See Figure 1 for an illustration.

2 Topological cycles are considered up to orientation-preserving reparameterization. Therefore, a cycle in
G + H may be represented by a topological cycle from two classes, one for each orientation: the class of
γ and the class of γ′ where γ′(eiθ) = γ(e−iθ).

ICALP 2021
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Figure 1 Some cycles on an orientable surface of genus 2. On the left, two separating cycles. On
the right, three non-separating cycles. C and C′ are freely homotopic and their union disconnects
the surface.

3 Overview

In this section, we give an overview of our constant-factor approximation algorithm for the
maximum integral multiflow problem when G + H is embedded on an orientable surface Sg of
genus g, where g is bounded by a constant (Theorem 1). Again, without loss of generality, we
assume that G + H is connected. Here is the main algorithm. Steps 1,2,3,4 will be described
in detail in Sections 4,5,6,7, respectively.
1. Solve the linear program (1) to obtain a (fractional) multiflow f∗.
2. Construct another multiflow f such that any two cycles in the support of f cross at most

once (Lemma 7). See Definition 6 for the definition of “crossing.”
3. If at least half of the total value of f is contributed by separating cycles, these cycles

now form a laminar family. Construct a half-integral multiflow fhalf (Theorem 10), and
from there, using the map color theorem (Theorem 3), compute an integral multiflow f ′

(Lemma 11), which is the output.
4. Otherwise, partition the non-separating cycles in the support of f into free homotopy

classes. Pick the class H with largest total flow value. Remove the flow on all other cycles
and greedily construct an integral multiflow (Lemmas 20 and 17), which is the output.

It can be proved that we only lose a constant factor at every step of the algorithm: see
Section 8 for the analysis of the above algorithm, proving Theorem 1.

4 Finding a fractional multiflow (Step 1)

A feasible solution f to the maximum multiflow LP (1) will be simply called a multiflow.
Recall that C denotes the set of all D-cycles, i.e., all cycles in G+H that contain precisely one
demand edge. We denote by |f | =

∑
C∈C fC the value of f , and by C(f) := {C ∈ C | fC > 0}

the support of f . Although formulation (1) has an exponential number of variables, it is well
known that it can be reformulated by polynomially many flow variables and constraints (see,
e.g., [15, 1]) and thereby solved in polynomial time:

▶ Proposition 5. There is an algorithm that finds an optimal solution f∗ to the maximum
multiflow LP (1) such that |C(f∗)| ⩽ |D||E|. Its running time is polynomial in the size of
the input graph.

Proof. By introducing flow variables xd
e :=

∑
C∈C:d,e∈C fC for all d ∈ D and e ∈ D ∪̇E

we can maximize the total value
∑

d∈D xd
d subject to nonnegativity and flow conservation

constraints (for each d ∈ D and for each vertex). This is a linear program of polynomial size.
By flow decomposition, one can then construct a feasible solution to (1) of the same value
and with support at most |D||E|. ◀

Later we will restrict a multiflow to subsets of D-cycles. For C′ ⊆ C we define a multiflow
f ′ by f ′

C := fC for C ∈ C′ and f ′
C := 0 for C ∈ C \ C′, and write f(C′) := f ′.
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5 Making a fractional flow minimally crossing (Step 2)

In this section we show that for a given embedding, we can “uncross” a multiflow in such a
way that any two D-cycles in the support cross at most once. While doing this we will lose
only an arbitrarily small fraction of the multiflow value.

Uncrossing is a well-known technique in combinatorial optimization, but in most cases
it is applied to families of subsets of a ground set U . Such a family is said to be cross-free
if, for any two of its sets, A and B, at least one of the four sets A \ B, B \ A, A ∩ B, and
U \ (A ∪B) is empty. Here we want to uncross D-cycles in the topological sense, and this
can be reduced to the above (with some extra care) only if all these cycles are separating
(which, for example, is always the case if G + H is planar; cf. [16]).

▶ Definition 6. We say that two D-cycles C1 and C2 cross if there exists a path P (possibly
a single vertex), which is a subpath of both C1 and C2, and such that in the embedding, after
contracting the edges of P , the vertex v thus obtained is incident to two edges of C1 and to
two edges of C2, all distinct, and in the embedding the restriction of the cyclic order of δ(v)
to those four edges alternates between an edge of C1 and an edge of C2.

d1=d2

d1

d2

d1

d2

Figure 2 Each of the two figures on the left show two D-cycles, C1 (red, dotted) and C2 (blue,
solid). The edges belonging to D are marked as d1 and d2. Edges are arranged at every vertex in the
order of their embedding. Crossings are marked by yellow shade. The two D-cycles on the left cross
three times. The two D-cycles in the middle cross four times. The figure on the right shows two
D-cycles C1 and C2 that cross twice, and a third D-cycle C3 (green, dashed) that crosses neither C1

nor C2. Uncrossing C1 and C2 here generates a crossing of C3 with a new D-cycle (namely with the
triangle containing d2).

Two cycles may cross multiple times. We denote by cr(C, C ′) the number of times that
C and C ′ cross. See Figure 2 for three examples. In contrast to the planar case, it is possible
that two cycles cross exactly once and cannot be uncrossed. The third example in Figure 2
shows another difficulty: when uncrossing two D-cycles it might be necessary to generate
new crossings with other cycles.

▶ Lemma 7. Let ϵ > 0 be fixed. Given a multiflow f whose support has size at most |E||D|,
there is a polynomial-time algorithm to construct another multiflow f , of value at least
|f | ⩾ (1− ϵ)|f |, and such that any two cycles in the support of f cross at most once.

Proof. First we discretize the multiflow, losing an ϵ fraction in value; then we iteratively
modify it, without changing its value, to reduce the number of crossings or the total amount
of flow on all edges; finally, we analyze the process and argue that the number of iterations
is polynomially bounded.

ICALP 2021
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Discretization. The statement is trivial if |f | = 0. Otherwise, before uncrossing, we round
down the flow on every D-cycle to integer multiples of ϵ|f |

|E||D| . That is, we define f ′
C :=

ϵ|f |
|E||D|

⌊
|E||D|fC

ϵ|f |

⌋
for all C ∈ C. Note that f ′ is a multiflow. We claim that |f ′| ⩾ (1− ϵ)|f |.

Indeed,

|f ′| =
∑
C∈C

f ′
C ⩾

∑
C∈C(f)

(
fC −

ϵ|f |
|E||D|

)
= |f | − |C(f)| ϵ|f |

|E||D|
⩾ |f | − ϵ|f |.

The discretized multiflow f ′ can be represented by a multi-set S of unweighted D-cycles:
if f ′

C = k ϵ|f |
|E||D| , then k identical copies of cycle C are added to S. The number of cycles in S

(counting multiplicities) is at most |E||D|
ϵ because |S| =

∑
C∈C f ′

C
|E||D|

ϵ|f | ⩽
∑

C∈C fC
|E||D|

ϵ|f | =
|E||D|

ϵ .

Uncrossing. To construct f , we perform a sequence of transformations of the multiflow.
We will modify S while maintaining the following invariants:
(a) The number of elements of S (counting multiplicities) remains constant.
(b) For every e ∈ D ∪̇E, the number of elements of S (counting multiplicities) that contain

e never increases.
Thanks to (b), at any stage, f is a multiflow, where f is defined by fC = k ϵ|f |

|E||D| for C ∈ C,
where k is the multiplicity of C in S. Initially f = f ′. Thanks to (a), the value of the
multiflow is preserved. In the following we work only with S.

While there exist two cycles C1 and C2 in S that cross at least twice, do the following
uncrossing operation (on one copy of C1 and one copy of C2). Let d1 be the edge in C1 ∩D,
and let d2 be the edge in C2∩D. Let P and Q be two of the paths where C1 and C2 cross (cf.
Definition 6), such that Q contains only edges of E. Orient C1 so that in that orientation,
when traversing the entirety of P and then walking towards Q, edge d1 is traversed before
reaching Q. Let C⃗1 denote the resulting directed cycle. Let a be the first vertex on P in the
orientation of C⃗1, and let b be an arbitrary vertex on Q. Vertices a and b partition C⃗1 into a
path C+

1 from a to b that contains d1 and a path C−
1 from b to a that does not contain d1.

Case 1: P contains an edge of D. Then this edge is d1 = d2. We orient C2 so that the
orientation on P agrees with the orientation of C⃗1 on P . Let C⃗2 denote the resulting
directed cycle. Then the vertices a and b also partition C⃗2 into a path C+

2 from a to b

that contains d2 and a path C−
2 from b to a that does not contain d2.

Case 2: P contains edges of E only. Then we orient C2 so that in that orientation, when
traversing the entirety of P and then walking towards Q, edge d2 is traversed before
reaching Q. Let C⃗2 denote the directed cycle. With that orientation, vertices a and b

also partition C⃗2 into a path C+
2 from a to b that contains d2 and a path C−

2 from b to a

that does not contain d2.

To obtain C ′
1, we concatenate C+

1 and C−
2 , remove any cycle that does not contain d1,

and remove the orientation. To obtain C ′
2, we concatenate C+

2 and C−
1 , remove any cycle

that does not contain d2, and remove the orientation. Note that C ′
1 and C ′

2 are D-cycles
because each of C+

1 and C+
2 contains exactly one demand edge, and C−

1 and C−
2 contain no

demand edge.

See Figure 3 for two examples, one for each case.
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(a)

P

Q

a

b

d1=d2

(b) d1=d2

(c)

Q

P

bad1

d2

(d)

d1

d2

Figure 3 Uncrossing the pairs of D-cycles from Figure 2. (a) and (b) show an example for Case
1, (c) and (d) an example for Case 2. The initial situation (C1 red, dotted, and C2 blue, solid) and
a possible choice of P, Q, a, b and the resulting orientation is shown in (a) and (c). As the result of
the uncrossing operation, shown in (b) and (d), we have the new D-cycles C′

1 (red, dotted) and C′
2

(blue, solid) with fewer crossings among each other.

Analysis. From the construction it follows that C ′
1 and C ′

2 are D-cycles and C ′
1 ∪̇C ′

2 ⊆
C1 ∪̇C2. Hence removing one copy of C1 and C2 from S and adding one copy of C ′

1 and C ′
2

to S maintains the invariants (a) and (b).
To show that the after a polynomial number of uncrossing operations any pair of cycles

in S crosses at most once, we consider the total number of edges Φ1 =
∑

C∈S |C| (counting
multiplicities) and the total number of crossings Φ2 =

∑
C,C′∈S cr(C, C ′) (where we again

count multiplicities). Note that |S| remains constant by invariant (a), and Φ1 never increases
by invariant (b). Moreover 0 ⩽ Φ1 ⩽ |V ||S| and 0 ⩽ |Φ2| ⩽ |V ||S|2.

▷ Claim 8. Each uncrossing operation either decreases Φ1 or leaves Φ1 unchanged and
decreases Φ2.

To prove Claim 8, consider an uncrossing operation that replaces C1 and C2 by C ′
1 and

C ′
2, and suppose that Φ1 remains the same, so C ′

1 consists of C+
1 plus C−

2 , and C ′
2 consists

of C+
2 plus C−

1 . We first observe that cr(C ′
1, C ′

2) < cr(C1, C2). Indeed, the crossings at P

and at Q go away, and no new crossing arises.
Finally we need to show that for any cycle C ∈ C,

cr(C, C ′
1) + cr(C, C ′

2) ⩽ cr(C, C1) + cr(C, C2). (4)

To show (4), consider a crossing of C and C ′ ∈ {C ′
1, C ′

2} at a path R. Let e′
1 =

{v0, v1}, . . . , e′
k = {vk−1, vk} be the edges of R (k ⩾ 0), and let e0, ek+1, e′

0, e′
k+1 be edges

such that e0, e′
1, . . . , e′

k, ek+1 are subsequent on C and e′
0, e′

1, . . . , e′
k, e′

k+1 are subsequent on
C ′. After contracting R, the incident edges e0, e′

0, ek+1, e′
k+1 are embedded in this cyclic

order. (Note that e0 = ek+1 or e′
0 = e′

k+1 is possible if k ⩾ 1, then contracting R yields a
loop.) See Figure 4 (a).

Now e′
0 belongs to C1 or C2, say C1. If R contains neither a nor b, then e′

0, . . . , e′
k+1 all

belong to C1, and C1 crosses C at R. If R contains either a or b, say at vi, then e′
0, . . . , e′

i

belong to C1 and e′
i+1, . . . , e′

k+1 belong to C2. Moreover C1 and C2 cross at a path containing
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(a)

v0 v1 v2 v3 v4

e′
0 C′ e′

1 e′
2 e′

3 e′
4

e′
k+1e0

ek+1C
(b)

C1

C2

C

(c)
C1 C2 C

(d)
C1 C2 C

Figure 4 For each crossing of C with a new cycle C′ ∈ {C′
1, C′

2} at a path R there is a crossing
of C with one of the old cycles C1 and C2 at a subpath of R. This crossing is marked with yellow
shade in the three examples.

vi, so either C1 crosses C at a subpath of R (Figure 4(b)) or C2 crosses C at a subpath of R

(Figure 4(c)). Finally, if R contains a and b, say at vi and vj for 0 ⩽ i < j ⩽ k, then e′
0, . . . , e′

i

and e′
j+1, . . . , e′

k+1 belong to C1 and e′
i+1, . . . , e′

j belong to C2 (Figure 4(d)). Again, C1 or
C2 crosses C at a subpath of R. This concludes the proof of Claim 8.

We can now conclude the proof of Lemma 7 because Φ1 decreases at most |V ||S| times, and
while Φ1 is constant, Φ2 decreases at most |V ||S|2 times, so the total number of uncrossing
operations is at most |V |2|S|3 ⩽ |V |2|E|3|D|3

ϵ3 . ◀

6 Separating cycles: routing an integral flow (Step 3)

Let f result from Lemma 7, and let Csep denote the set of separating cycles in the support of
f . We now consider the case when the separating cycles contribute at least half to the total
flow value, i.e., |f(Csep)| ⩾ 1

2 |f |.
This branch of our algorithm consists of two steps:

1. Given f(Csep), construct a half-integral multiflow fhalf of value at least |f |/2;
2. Given fhalf, construct an integral multiflow of value at least |fhalf|/Θ(√g).

6.1 Obtaining a half-integral multiflow
To obtain a half-integral multiflow, we follow the technique used by [16] for the case where
G + H is planar. By the Jordan curve theorem, any cycle in a planar graph is separating.
As for the plane, the following property is easy to check for higher genus surfaces.

▶ Proposition 9. If C and C ′ are two cycles embedded on a surface, and C ′ is a separating
cycle, then C and C ′ must cross an even number of times.

Proof. C ′ is separating the surface into two sides. While walking along C from a vertex v,
we go from one side to the other each time we cross C ′. When we return at v, we are on the
same side where we started so the number of crossing is even. ◀

Since any pair of cycles in the support of f crosses at most once, Csep must be a non-
crossing family by Proposition 9. In particular, we can show that Csep have a laminar
structure.

We say that a family of subsets of the dual vertex set V ∗ is laminar if any two members
either are disjoint or one contains the other. Let us take any face of G + H that we call ∞.
For any cycle C ∈ Csep we define in(C) and out(C) to be the two connected components of
(G + H)∗ \ C∗, such that ∞ ∈ out(C). We claim that the family L := {in(C) : C ∈ Csep} is
laminar.
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Indeed, take any two cycles C and C ′ in Csep. Since they do not cross, either (i)
(C ′ \ C)∗ ⊆ in(C) or, (ii) (C ′ \ C)∗ ⊆ out(C). In case (i) we must have in(C ′) ⊆ in(C). In
case (ii), we have either (ii.a) in(C) ⊆ in(C ′) or (ii.b) in(C) ∩ in(C ′) = ∅, hence laminarity.

Using the terminology in [16], we say that a multiflow f is laminar if {C∗ : C ∈ C, fC >

0} = {δ(U) : U ∈ L} where L is a laminar family (of subsets of V ∗). Thus, f(Csep) is laminar
and we can apply the following result to get fhalf.

▶ Theorem 10 ([16]). If f is a laminar multiflow, then there exists a laminar half-integral
multiflow f ′ such that C(f ′) ⊆ C(f) of value |f ′| ⩾ 1

2 |f |. Such a multiflow can be computed
in polynomial time.

6.2 Obtaining an integral multiflow
In this section we show the following result, which is an extension of a result from [21, 16],
who proved it for planar graphs.

▶ Lemma 11. Let (G, H, u) be an instance of the maximum multiflow problem such that G+H

has genus g, and let fhalf be a laminar half-integral multiflow whose support C(fhalf) contains
only separating cycles. Then there exists an integral multiflow f ′ of value |f ′| ⩾ 2|fhalf|/χg

(such that C(f ′) ⊆ C(fhalf)). Such a multiflow can be found in polynomial time.

Our proof follows the same outline as the proof of Theorem 1 of Fiorini et al. [14]. Let
Chalf := C(fhalf) be the set of D-cycles C such that fhalf

C > 0. We first reduce the problem to
the case where all cycles in Chalf have flow value 1

2 and every edge has capacity 1. To do
that, we reduce the flow fhalf

C by ⌊fhalf
C ⌋ for each cycle C ∈ Chalf, and reduce edge capacities

accordingly. Then, since now fhalf is small, we can further reduce demands and capacities
to u′(e) = min{u(e), |C(fhalf)|} for each e ∈ E ∪D, so that

∑
e∈D∪̇E u(e) is polynomially

bounded. We can then replace each edge e by u(e) parallel edges of unit capacity. Given a
cycle C such that fhalf

C = 1
2 , we replace each edge e ∈ C by one of its parallel edges. This

can be done while ensuring that the resulting flow is still feasible and laminar. To facilitate
the proof, we still denote this graph by G + H and keep all other notations.

Recall that cycles in Chalf ⊆ Csep are separating and do not cross each other, so that the
family {in(C), C ∈ Chalf} is laminar. We partially order Chalf with the following relation:
C ≺ C ′ if in(C) ⊂ in(C ′). We have the following simple property:

▶ Lemma 12. If C1, C2, C ′ ∈ Chalf are such that C1 ≺ C ′ and C2 ⊀ C ′, then C1 and C2 are
edge-disjoint.

For the proof, see the full version of the paper. Our goal is to get a large subset C′ ⊆ Chalf

such that any two cycles in C′, are edge-disjoint. This is equivalent to finding a large
independent set in a properly defined graph Int(Chalf) with vertex set Chalf and such that
two cycles are adjacent if they share at least one edge. Using Lemma 12 we can show:

▶ Lemma 13. Given a graph embedded in Sg, let Chalf be defined as above. Let Int(Chalf) be
the graph with vertex set Chalf and such that two cycles are adjacent if they share at least one
edge. Then Int(Chalf) is a genus-g graph.

Proof. We prove the statement by induction on g + |Chalf|. When g + |Chalf| ⩽ 2, it is
trivial. Otherwise let G be a connected genus-g graph, embedded on Sg, and Chalf a family
as described above.

Suppose first that {in(C) | C ∈ Chalf} are pairwise disjoint. Then, contract in G∗ each set
in(C) into a single node. Two cycles C and C ′ share an edge if and only if in this contracted
graph, the nodes corresponding to in(C) and in(C ′) are adjacent. This means that Int(Chalf)
is a minor of G∗, and in particular has genus less than or equal to the genus of G∗.
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The case where there is one cycle C̄ such that C ≺ C̄ for all C ∈ Chalf \ C̄ and
{in(C) | C ∈ Chalf \ C̄} are pairwise disjoint works similarly; here we contract out(C̄).

Otherwise there exists a triple C1, C2, C ∈ Chalf such that C1 ≺ C and C2 ⊀ C. The
separating cycle C divides Sg into two sides. Each side can be closed – by identifying the
boundary of a disk with the boundary form by C – so that they are homeomorphic to Sgin

and Sgout , respectively. The connected sum of these two surfaces is homeomorphic to Sg,
and in particular we have gin + gout = g. This equality can easily be checked with Euler’s
formula.

Let Gin (resp. Gout) be the subgraph of G induced by the vertices embedded on the
side corresponding to Sgin (resp. Sgout), such that both contain C. The embedding of
G in Sg induces an embedding of Gin in Sgin and an embedding of Gout in Sgout . Thus,
genus(Gin) + genus(Gout) ⩽ g.

Now we define Chalf
⪯C := {C ′ ∈ Chalf|C ′ ≺ C}∪{C} and Chalf

⊀C := {C ′ ∈ Chalf|C ′ ⊀ C}∪{C}.
The choice of C implies that these two families are proper subsets of Chalf. Since the cycles in
Chalf do not cross, we have {C ∈ Chalf : C ⊆ Gin} = Chalf

⪯C and {C ∈ Chalf : C ⊆ Gout} = Chalf
⊀C .

By the induction hypothesis, Int(Chalf
⪯C ) and Int(Chalf

⊀C ) can be embedded on Sgin and Sgout ,
respectively. By Lemma 12, the graph Int(Chalf) arises from Int(Chalf

⪯C ) and Int(Chalf
⊀C ) by

identifying the two vertices that correspond to C.
Finally we prove that Int(Chalf) can be embedded on a surface genus gin + gout ⩽ g. To

see that, remove small disks Din and Dout in Sgin and Sgout , respectively, around the point
that corresponds to vertex C and that intersects only edges incident to C, and glue them
together by identifying boundaries of Din and Dout. The surface obtained is homeomorphic
to Sgin+gout It is easy to see that C, and the edges incident to C, can be re-embedded in this
surface without intersecting any other edges. This terminates the proof of Lemma 13. ◀

Using Theorem 3, this lemma ensures that one can compute in polynomial time a subset
C′ ⊆ Chalf of at least |Chalf|/χg pairwise edge-disjoint D-cycles. From this set, we define an
integral multiflow by setting f ′

C = 1 for C ∈ C′ and f ′
C = 0 for C ∈ C \ C′. It is easy to check

that f ′ is a multiflow that satisfies the properties of Lemma 11.

7 Non-separating cycles: routing an integral multiflow (Step 4)

If the separating cycles contribute less than half to the total value of the multiflow f obtained
by Lemma 7, we consider the non-separating cycles in the support of f . We first partition
them into free homotopy classes. The next theorem gives an upper bound on the number of
such classes.

▶ Theorem 14 ([19]). Let Sg be an orientable surface of genus g. Then there are at most
O(g2 log g) topological cycles such that any two of them are in different free homotopy classes
and cross each other at most once.

▶ Corollary 15. The D-cycles in the support of f can be partitioned into O(g2 log g) free
homotopy classes in polynomial time.

Proof. Take pairs of cycles in the support of f and check whether they are freely homotopic,
for example as in [13, 26]. ◀
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7.1 Greedy algorithm
Let H be a free homotopy class of non-separating cycles whose total flow value |f(H)| is
largest. We will run the following simple greedy algorithm (Algorithm 1) on H to get an
integral multiflow.

Algorithm 1 Greedy algorithm for integral multiflows.

Input: a sequence C1, . . . , Ck of D-cycles of C(f).
Output: an integral multiflow f .
f ← the all-zero multiflow;
for i = 1 to k do

Set fCi
to be the greatest integer such that f remains feasible.

The value of the integral multiflow returned by this algorithm depends on the order of
the D-cycles in the input. If it is ordered according to the following definition, then we show
that we lose only a constant fraction of the flow value.

▶ Definition 16. A family of cycles {C1, C2, . . . , Ck} is cyclically ordered, or has a cyclic
order if, whenever two cycles Ca and Cb share an edge, where a < b, then this edge is:
1. shared by all cycles Ca, Ca+1, . . . , Cb−1, Cb,
2. or shared by all cycles Cb, Cb+1, . . . , Ck, C1, · · · , Ca−1, Ca.

The following lemma establishes the approximation ratio of Algorithm 1 on cyclically
ordered input.

▶ Lemma 17. Let f be a multiflow and H = {C1, C2, . . . , Ck} a cyclically ordered family of
C(f). Then Algorithm 1 returns in polynomial time an integral multiflow of value at least
|f({C1, . . . , Ck})|/2.

Proof. Let f be a multiflow and H = {C1, C2, . . . , Ck} a cyclically ordered family of C(f).
It is clear that Algorithm 1 runs in polynomial time and returns an integral multiflow. Let f

be this flow. We show that its value is at least |f(H)|/2.
Let us define Ha,b = {Ca, Ca+1, . . . , Cb−1} and Hb,a = {Cb, Cb+1, . . . , Ck, C1, . . . , Ca−1}

for all 1 ⩽ a ⩽ b ⩽ k. Additionally, for all edges e ∈
⋃

C∈H C, we define He := {C ∈ H |
e ∈ C}. Since we assumed that H is cyclically ordered, we know that for each e ∈

⋃
C∈H C,

there are indexes 1 ⩽ a, b ⩽ k, such that He = Ha,b.
We call i0 the smallest index 1 ⩽ i ⩽ k such that there exists an edge e ∈ Ci such that

f(H1,i+1)(e) = u(e) and Hi,1 ⊆ He. Remark that in particular, for all i > i0, we must have
fCi = 0, and thus |f | = |f(H1,i0+1)|.

We first show by induction that for all 1 ⩽ i < i0 we have |f(H1,i+1)| ⩾ |f(H1,i+1)|. For
i = 1, we have |f(H1,i+1)| = |f(H1,2)| = fC1 = min{u(e)|e ∈ C1} ⩾ fC1 = |f(H1,2)|.

Assume now that at some iteration 1 < i < i0 of the algorithm we set fCi
= x. By

the choice of x, we know that there is an edge e ∈ Ci such that u(e) = f(H1,i+1)(e). In
particular, notice that |f(He)| = |f(He ∩H1,i+1)| = u(e). By feasibility of f , we have

|f(He ∩H1,i+1)| = u(e) ⩾ |f(He)|. (5)

Now, let a, b be the two indexes such that Ha,b = He. Since we assumed that i < i0, we
must have i < b ⩽ k. There are two cases: either 1 ⩽ a ⩽ i < b or 1 < i < b < a.
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If 1 ⩽ a ⩽ i < b, then equation (5) becomes |f(Ha,i+1)| ⩾ |f(He)| ⩾ |f(Ha,i+1)|.
Together with the induction hypothesis we obtain:

|f(H1,i+1)| = |f(H1,a)|+ |f(Ha,i+1)| ⩾ |f(H1,a)|+ |f(Ha,i+1)| = |f(H1,i+1)|.

Otherwise if 1 < i < b < a, then H1,i+1 ⊆ He, and thus the inequality claimed follows
directly from equation (5). We have established the induction. In particular, we have proved
that |f | = |f(H1,i0+1)| ⩾ |f(H1,i0)| ⩾ |f(H1,i0)|. To conclude the proof of Lemma 17, it
remains to show that |f | ⩾ |f(Hi0,1)|.

By definition of i0, we know that there exists an edge e ∈ Ci0 such that f(e) = u(e) and
such that Hi0,1 ⊆ He. By feasibility of f , we deduce that |f(Hi0,1)| ⩽ u(e) = f(e) ⩽ |f |.
This concludes the proof. ◀

▶ Remark 18. The analysis of Algorithm 1 for cyclically ordered inputs is tight. To see
this, imagine that H = {C1, . . . , C2k−1}, and there are two edges e1, e2, both of capacity k,
such that {C ∈ H | e1 ∈ C} = {C1, . . . , Ck} and {C ∈ H | e2 ∈ C} = {Ck+1, . . . , C2k−1, C1}.
Then Algorithm 1 may only set fC1 = k while f could be such that fC = 1 for all C ∈ H,
for a total value 2k − 1.

7.2 Computing a cyclic order
Lemma 20, the second main result of the section, states that a family H of pairwise freely
homotopic cycles crossing at most once can be cyclically ordered in polynomial time. One
key ingredient in the proof is that cycles in H are pairwise non-crossing. This fact uses the
assumption that the surface is orientable. In a non-orientable surface, two freely homotopic
cycles may cross exactly once.

Recall that f denotes the minimally-crossing multiflow obtained by Lemma 7.

▶ Lemma 19. Two freely homotopic cycles in C(f) do not cross.

For the proof of this simple topological fact, see the full version.

▶ Lemma 20. A family of non-separating, pairwise non-crossing and freely homotopic cycles
of a graph embedded in an orientable surface can be cyclically ordered. Such a cyclic order
can be found in polynomial time.

This result holds more generally for a family of non-contractible3, pairwise non-crossing
and freely homotopic cycles. For simplicity, we only consider the special case of non-separating
cycles, which is sufficient for our main result.

Proof. Let H be a set of non-separating, pairwise freely homotopic and non-crossing cycles.
We first order the cycles in H and then prove that this is a cyclic order. We assume that
|H| ⩾ 3, otherwise any order on H is a cyclic order.

In topology it is usually more convenient to work with disjoint cycles. If two (graph)
cycles do not cross, but may share common edges, it is possible to continuously deform by
free homotopy one of them, into an arbitrarily small open neighborhood so that the two
resulting (topological) cycles are now disjoint.

In the context of graph cycles, we now give a reduction from the setting of Lemma 20 to
the special case where the cycles are disjoint. Initially, Q = G + H.

3 all cycles that are not freely homotopic to a point on the surface.
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Figure 5 Construction of Q.

Step 1: If an edge is shared by s cycles, replace it s parallel edges. Each of these edges
corresponds to a different cycle so that the resulting set of cycles is still pairwise non-
crossing. Now the cycles are pairwise edge-disjoint but may still share some vertices.

Step 2: Let v be a vertex shared by two cycles C and C ′. Edges incident to v are embedded
around v in the cyclic order e1, a1, . . . , ai, e2, b1, . . . , bj where C ∩ δ(v) = {e1, e2}. Since
C and C ′ do not cross, we have C ′ ∩ δ(v) ⊆ {a1, . . . , ai} or C ′ ∩ δ(v) ⊆ {b1, . . . , bj}.
Then replace v by two adjacent vertices v′, v′′ and distribute the incident edges so that
δ(v′) = (e1, a1, . . . , ai, e2, {v′, v′′}) and δ(v′′) = ({v′, v′′}, b1, . . . , bj). Repeat step 2 until
all cycles are vertex-disjoint.

It is easy to see that this graph is connected (since G + H is connected) and can be
embedded in the same surface Sg. Figure 5 illustrates the construction of Q. Moreover, a
cyclic ordering of the resulting cycles naturally induces a cyclic ordering of H. This completes
the reduction. For simplicity, let us also call H the family of cycles in Q.

In the dual Q∗, let K denote the set of connected components of Q∗ \
(⋃

C∈H C∗)
. They

correspond to the connected components of Sg \
(⋃

C∈H C
)
. We say that a cycle C ∈ H is

incident to a connected component K ∈ K if there is an edge in C∗ with one endpoint in K.
Consider the bipartite graph B that has a vertex for each cycle in H and a vertex for each
element of K, and whose edges represent the incidence relation. Next we show that the graph
B is a cycle, and we order the D-cycles in H according to the cyclic order induced by B.

▷ Claim 21. B is a cycle.

The connectivity of B follows by construction from the connectivity of Q. Then it is
enough to prove that this graph is 2-regular.

We first prove that each vertex of B that corresponds to a cycle in H has degree two
in B. Since the cycles in H are disjoint, each cycle C has one component on its left, and
one on its right, when we walk along the cycle. Assume, for a contradiction, that they are
the same component: C is incident to only one component of Sg \

(⋃
C∈H C

)
. This cycle is

also incident to only one component of Sg \ (C ∪ C ′) where C ′ is any other cycle in H. By
Fact 4, we know that Sg \ (C ∪ C ′) has two connected components. But since C is incident
to only one connected component of Sg \ (C ∪ C ′), Sg \ C ′ must also have two connected
components, which contradicts the assumption that C ′ is non-separating. Thus, each cycle
in B must have degree two.

Now we prove that each element of K has degree two. For a contradiction, assume
that an element of K is incident to three cycles C, C ′, C ′′ or more. Then one component
of Q∗ \ (C ∪ C ′ ∪ C ′′) is also incident to C, C ′ and C ′′, and Q∗ \ (C ∪ C ′ ∪ C ′′) has two or
three components in total. If it has three components, then one of the other two components
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would be incident to exactly one cycle, which would mean that this cycle is separating, a
contradiction. If Q∗\(C ∪ C ′ ∪ C ′′) has exactly two connected components, then Q∗\(C∪C ′)
must be connected which contradicts Fact 4. Thus, each component is incident to exactly
two cycles. This concludes the proof of the claim.

It remains to show that the order induced by B satisfies the property of Definition 16.
If an edge e = {u, v} of G + H is shared by some cycles C ′

1, . . . , C ′
ℓ, then the vertex v can

be mapped to a path P = (v1, . . . , vℓ) in Q, so that C ′
i ∩ P = {vi}, 1 ⩽ i ⩽ ℓ. See Figure

5. It follows that for all 1 ⩽ i ⩽ ℓ− 1, C ′
i and C ′

i+1 are both incident the same connected
component of Q∗ \

(⋃
C∈H C

)
that contains the edge {vi, vi+1}∗. In particular, C ′

i and C ′
i+1

are consecutive in the order induced by B. ◀

8 Proof of Theorem 1

By construction, the output of the algorithm is a feasible solution. We now analyze the
value of the output. Since (1) is a relaxation of the maximum integral multiflow problem,
|f∗| ⩾ OPT. By Lemma 7, |f | ⩾ (1− ϵ)|f∗|. For ϵ = 1

2 we have |f | ⩾ 1
2 |f

∗|.
Consider the multiflow restricted to separating cycles, f sep. If |f sep| ⩾ 1

2 |f |, then
by Theorem 10, Lemma 11, and Theorem 3 we obtain an integral flow of value at least
|f sep|/Θ(√g).

Otherwise, by Theorem 14 there exists a free homotopy class H of non-separating cycles
such that |f(H)| ⩾ |f |/Θ(g2 log g). Use Lemmas 17 and 20 to obtain that the output has
value at least |f∗|/Θ(g2 log g).

Finally, we analyze the running time. As observed in Section 4, an optimum fractional
multiflow f∗ can be found in polynomial time. (Discretizing and) uncrossing is done in
time polynomial in |E||D| by Lemma 7. Partitioning into free homotopy classes is done by
Corollary 15. Finally, the operations of Theorem 10, Theorem 3, Lemma 11, Lemma 17 and
Lemma 20 can all be done in polynomial time, hence polynomial running time overall.

9 Proof of Corollary 2

In this section, we observe how Corollary 2 follows from Theorem 1 and the following result
by Tardos and Vazirani [36] (based on work by Klein, Plotkin and Rao [24]).

▶ Theorem 22 ([36]). Let (G, H, u) be a multiflow instance and γ > 1 such that the supply
graph G does not have a Kγ,γ minor. Then the minimum capacity of a multicut is O(γ3)
times the maximum value of a (fractional) multiflow.

The following is well known.

▷ Claim 23. If a graph G has genus at most g, where g ⩾ 1, then it has no Kγ,γ minor for
any γ > 2(√g + 1).

Proof. Suppose that such a minor Kγ,γ exists in G. As the three operations for obtaining a
minor (deleting edges/vertices and contracting edges) do not increase the genus, Kγ,γ has
genus at most g. Furthermore, K has 2γ vertices, γ2 edges, and at most γ2

2 faces (since
there is no odd cycle in a bipartite graph). By Euler’s formula, 2− 2g ⩽ 2γ − γ2 + γ2

2 , which
implies γ ⩽ 2(√g + 1). ◁

By Claim 23 and Theorem 22, the ratio between the minimum capacity of a multicut and
the maximum value of a (fractional) multiflow is O(g1.5). This, combined with Theorem 1,
proves Corollary 2.
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