
LF Successor: Compact Space Indexing for
Order-Isomorphic Pattern Matching
Arnab Ganguly #

Department of Computer Science, University of Wisconsin – Whitewater, WI, USA

Dhrumil Patel #

School of EECS, Louisiana State University, Baton Rouge, LA, USA

Rahul Shah #

School of EECS, Louisiana State University, Baton Rouge, LA, USA

Sharma V. Thankachan #

Department of Computer Science, University of Central Florida, Orlando, FL, USA

Abstract
Two strings are order isomorphic iff the relative ordering of their characters is the same at all positions.
For a given text T [1, n] over an ordered alphabet of size σ, we can maintain an order-isomorphic suffix
tree/array in O(n log n) bits and support (order-isomorphic) pattern/substring matching queries
efficiently. It is interesting to know if we can encode these structures in space close to the text’s size
of n log σ bits. We answer this question positively by presenting an O(n log σ)-bit index that allows
access to any entry in order-isomorphic suffix array (and its inverse array) in tSA = O(log2 n/ log σ)
time. For any pattern P given as a query, this index can count the number of substrings of T

that are order-isomorphic to P (denoted by occ) in O((|P | log σ + tSA) log n) time using standard
techniques. Also, it can report the locations of those substrings in additional O(occ · tSA) time.

2012 ACM Subject Classification Theory of computation → Pattern matching

Keywords and phrases Succinct data structures, Pattern Matching

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.71

Category Track A: Algorithms, Complexity and Games

1 Introduction

An index of a text T [1, n] is a data structure that is capable of counting/reporting all those
substrings of T that “match” (as per the problem specific definition of match) with any
pattern P given as a query. We use Σ to denote the alphabet set (of size σ) from which the
characters in T are drawn from. WLOG, we assume T [n] = $, a special character that does
not appear anywhere else in T . Two fundamental indexes for exact pattern matching are the
suffix tree (ST) [23] and the suffix array (SA) [17]. Both takes Θ(n log n) bits of space, which
could be much larger than the n⌈log σ⌉ bits needed to store T optimally. The first succinct
indexes that use close to n log σ bits are the Compressed Suffix Array (CSA) [13] and the
FM-index [7]. The crucial component of FM Index is Burrows-Wheeler Transform (BWT) [2]
and its associated operation called the Last-to-Front (LF) mapping. The subsequent work
lead to fully functional suffix trees in succinct space [22]. See [20] for further reading.

The parameterized ST [1, 18] and the order-isomorphic ST [5] are two popular ST variants
under the class known as suffix trees with missing suffix links [4]. As they do not hold some
critical structural properties of the original ST, their compression is challenging. Recently,
Ganguly et al. showed that it is indeed possible to compress the parameterized suffix arrays.
They implemented LF mapping using a BWT-like transformation called the parameterized
BWT [10]. However, such a transformation is hard to define for order-isomorphic ST because

EA
T
C
S

© Arnab Ganguly, Dhrumil Patel, Rahul Shah, and Sharma V. Thankachan;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 71; pp. 71:1–71:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gangulya@uww.edu
mailto:dpate42@lsu.edu
mailto:rahul@lsu.edu
mailto:sharma.thankachan@ucf.edu
https://doi.org/10.4230/LIPIcs.ICALP.2021.71
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

71:2 LF Successor: Compact Space Indexing for Order-Isomorphic Pattern Matching

LF mapping could lead to multiple changes in the (encoding of) associated suffixes. To that
end, we present a novel technique for implementing the LF mapping (named LF Successor),
leading to the first compact space index for order-isomorphic pattern matching.

1.1 Generalizing the Philosophy of BWT and LF Mapping
We present an overview of our approach using three text indexing problems for (i) tradition-
al/exact matching, (ii) parameterized matching, and (iii) order-isomorphic matching, in that
order, to show gradation and successive generalization of the LF mapping approach.

Indexing for Traditional Matching. The classic solution is the suffix tree (ST), which is
lexicographic arrangement of all strings in S = {T [t, n] | 1 ≤ t ≤ n} as a compacted trie. We
use path(u) to denote the concatenation of edge labels on the path from the root to node u.
Let ℓi denotes the ith leftmost leaf. Then, path(ℓi) is exactly the ith smallest string in S

in the lexicographic order. The suffix array SA[1, n] is such that SA[i] = n + 1 − |path(ℓi)|.
Also, its inverse array SA−1[1, n] is such that SA−1[SA[i]] = i. For convenience, we use the
term “suffix i” for T [SA[i], n]. For all i, where SA[i] ̸= 1, we define the Last-to-Front (LF)
mapping as LF(i) = SA−1[SA[i] − 1]. Therefore, suffix LF(i) is obtained by prepending to
suffix i the character in T which occurs just before the starting location of suffix i. The
Burrows-Wheeler Transform is an array BWT[1, n], such that BWT[i] = T [SA[i] − 1] (define
T [0] = $). Computing LF mapping is central to BWT based pattern matching, and in some
sense, the BWT enables efficient computation of LF mapping in succinct space. Therefore,
once we store the BWT and its associated counting structures, we can replace the costly
(space-wise) suffix array with a (cheaper) sampled suffix array [7].

Indexing for Parameterized Matching. Here, P matches with T at position i iff there is
one-to-one correspondence between the characters of P and T [i, i + |P | − 1]. For example,
xwyx can match with abca as x can be mapped to a, b to w, and c to y. However, abca does
not match with xyxw because both a and c cannot be mapped to x. Baker [1] presented an
encoding called prev(S) which encodes every character in the string by replacing it by its
distance to the previous occurrence of the same character and using 0 if the character has
not occurred before. For example, prev(xwxyywx) = 0020144. It is not hard to see that two
strings X and Y are a parameterized match iff prev(X) = prev(Y). The parameterized ST is
a lexicographic arrangement of all strings in S ′ = {prev(T [i, n − 1]) ◦ $ | 1 ≤ i < n} ∪ {$} as
a compacted trie, where ◦ denotes concatenation. The matching of P in T can be performed
via exact matching of prev(P) in this suffix tree. The same notion of LF-mapping can be
defined and implemented in succinct space using a BWT-like transform [10].

Indexing for Order-isomorphic Matching. This problem has received significant attention
[3, 5, 14, 16, 19] due to its simple formulation and the ability to model complex matching
problems in other domains where the relative ordering of characters has to be matched
rather than the string itself. Here, there is a total ordering between the symbols in Σ. The
pattern P matches with text T [1, n] at position i if for any j, k in [1, |P |], P [j] < P [k] iff
T [i + j − 1] < T [i + k − 1]. Similar constraints apply for P [j] > P [k] and P [j] = P [k]. For
example, 1423 can match with 2957 but not with 2657 because 6 < 7 and 4 > 3. A new
encoding “pred” works in this case. This is a slight modification of the scheme in [5].

▶ Definition 1 (pred encoding). Given a character S[i] in string S, its predecessor is a
character q which occurs in S[1, i − 1] such that q ≤ S[i] and there is no other character r

in S[1, i − 1] such that q < r ≤ S[i]. Given a string S, pred(S)[i] is defined as follows: let

A. Ganguly, D. Patel, R. Shah, and S. V. Thankachan 71:3

alphabet symbol q be the predecessor of S[i] in S[1, i − 1] and let position j be the rightmost
occurrence of q in S[1, i−1]. Then, pred(S)[i] = (i−j) if q ̸= S[i], (i−j)′ if q = S[i], and 0 if q

does not exist. Thus pred(S) is a string over the alphabet {0, 1, 1′, 2, 2′, . . . , |S| − 1, (|S| − 1)′}.

Thus, in pred encoding, every position (character) in T points to its closest predecessor
on the left. For e.g., pred(0869514371) = 0 1 2 2 4 5 1 2 6 4′. We refer to primed characters
as an equality version of their non-primed counterparts. For example, 2′ is equality variant
of 2. It is easy to see that two strings X and Y are order-isomorphic iff pred(X) = pred(Y).

The order-isomorphic ST [5] of T is a lexicographic arrangement of all strings in S ′′ =
{pred(T [i, n − 1]) ◦ $ | 1 ≤ i < n} ∪ {$} as a compacted trie. We order the encoded characters
as: 0 < 1 < 1′ < 2 < 2′ < · · · < n − 1 < (n − 1)′ < $. Then, the order-isomorphic matching
of P in T can be performed via exact matching of pred(P) in this suffix tree. As earlier, we
can define the (order-isomorphic) suffix array SA, its inverse array and the LF mapping.

1.2 Challenges in Implementing (Generalised) LF Mapping Compactly

The challenge here is in deciding what needs to be precomputed and stored, so that LF(i) for
any i can be computed efficiently. At its root, we need to solve the following: given two leaves
ℓi and ℓj with i < j, how quickly can we decide whether LF(i) < LF(j) or LF(i) > LF(j).

In the case of traditional matching, the order between LF(i) and LF(j) will stay the
same if the corresponding suffixes have the same previous character (which are BWT[i] and
BWT[j]). It will flip iff the previous character of the suffix corresponding to j is smaller than
that of i in the lexicographic order. Therefore pair-wise comparison between such i and j

can be computed in “bulk” for i against all j’s, enabling “quick” computation of LF(i) [7].
In the case of parameterized matching, this order determination is more sophistic-

ated [10]. Here, it becomes essential to see how prepending the previous character changes the
canonical encoding of a suffix and how can this information be stored compactly. For example,
consider T [1, n] = abcabbadcb and the suffix T [4, n] = abbadcb. Its previous character T [3] is
c. When we prepend this character, the suffix (in traditional ST) becomes cabbadcb. The
string corresponding to T [4, n] in the parameterized suffix tree is prev(T [4, n]) = 0013004.
When T [4, n] is prepended with c and prev is applied, apart from the insertion (of 0) at
the beginning, there is one change within prev of T [4, n], which is at the first occurrence
of c in T [4, n]. Thus, the second last character in the encoding switches from 0 to 6, i.e.,
prev(T [3, n]) = 00013064. Ganguly et al. [10] show how to record this change-location for
each suffix succinctly using the paramaterized-BWT, which supports LF mapping. Again, as
in the case of traditional pattern matching, we can compare two suffixes in terms of their
LF mapping by comparing which suffix changes first – in case at least one of them changes
before their longest common prefix (LCP). See [11, 15, 9] for some related results.

We now illustrate order-isomorphic matching using an example text T [1, n] =
20869514371$. Then, T [2, n] = 0869514371$ and pred(T [2, n − 1]) ◦ $ = 0 1 2 2 4 5 1 2 6 4′ $.
However, pred after prepending T [1], i.e., pred(T [1, n − 1]) ◦ $ is 0 0 2 3 2 5 5 7 8 6 4′ $.
Observe how the encoding changes when we go from T [2, n] to T [1, n]. Apart from the
obvious 0 in front, there are “five” other entries whose predecessor changed due to the newly
inserted 2. Both earlier problems, traditional and parameterized, incurred only a constant
(1 or 2) number of changes per suffix, and hence it was possible to record this information
compactly. However, the number of changes here can be as large as σ, which makes it
challenging and the existing techniques do not seem adequate.

ICALP 2021

71:4 LF Successor: Compact Space Indexing for Order-Isomorphic Pattern Matching

2

0

1 1

3

4

8

9

6

7

5

Cutting Line

Last point of change

Skyline of change points

Figure 1 Geometric interpretation of the change in pred encoding of 0869514371 when prepended
with 2. The cutting line corresponds to the prepended character.

Our approach. Even though many positions change, and they cannot be explicitly stored,
the structural properties of this problem show that the last point of change (the rightmost
value which changes) during LF is what matters. In the example above, the rightmost
character which changes its encoding is 3 and its encoding changes from 2 to 8. The good
part is that once we know this, we can deterministically pinpoint which other previous (to
the left) locations changed their encoding (we present this formally as Lemma 5). Thus, we
can register/store one particular value and all previous changes can be captured based on
that. Yet this only gives us existential dependency and not an algorithmic tool.

1.3 Our Contribution
The existing results on compressed text indexing for order-isomorphic pattern matching are
partial and conditional. For example, the O(n log log n)-bit by Gagie et al. [8] can answer
only counting queries, that too for short patterns of size O(logO(1) n). Another result by
Decaroli et al. [6] is based on heuristics. We show:

▶ Theorem 2. Let T [1, n] be a given text over an ordered alphabet Σ of size σ. We can
encode its order-isomorphic suffix array SA[1, n] in O(n log σ) bits and answer both SA[·] and
SA−1[·] queries in tSA = O(log2 n/ log σ) time.

Using the standard binary search algorithm, we can easily answer counting queries in time
O((|P | log σ + tSA) log n) and then reporting in time tSA per match. At the heart of proving
Theorem 2 lies a novel way of implementing LF mapping. We call this as LF Successor. It
goes one step beyond the current approach of simulating Suffix Array using LF mapping.

2 Structural Properties of the Order Isomorphic Suffixes

In this section we introduce two key lemmas explaining the structural properties of the pred
encoding. In other words, we see where the changes occur when a new character is prepended
to the suffix. Firstly, we formally define a change point as follows,

▶ Definition 3 (Change Point). Given a string T [r, z] along with its pred encoding pred(T [r, z]),
point i ∈ [r, z] is a change point if pred(T [r − 1, z])[i − r + 2] ̸= pred(T [r, z])[i − r + 1].

A. Ganguly, D. Patel, R. Shah, and S. V. Thankachan 71:5

In other words, when a character is prepended to T [r, z] (making it T [r − 1, z]) the
encoding of the character T [i] changes. Here point i means position in the text.

▶ Definition 4 (Skyline). A point j in text substring T [r, z] covers a point i iff j < i and
T [j] ≤ T [i]. γ-skyline of T [r, z] is set of all points i ∈ [r, z] such that T [i] ≥ γ and i is not
covered by any point j ∈ [r, i − 1] such that T [j] ≥ γ. When γ = T [r − 1], we simply refer
to this as skyline of T [r, z]. Given a point d ∈ T [r, z], the skyline induced by d is same as
T [d]-skyline of T [r, z] (i.e., the one obtained by setting γ = T [d]).

Lemma 5 proves that all the change points of T [r, z] are exactly the ones that are on the
skyline (See Figure 1 for geometric interpretation). Secondly, as mentioned earlier, although
there are many change points in the order isomorphic setting, given the rightmost or last
change point we can uniquely determine all the previous change points. More formally, it
can be stated as follows.

▶ Lemma 5 (Skyline Lemma). Given a text substring T [r, z] and it rightmost change point
d of the substring, all the change points in T [r, z] can be determined based on d. These are
precisely the points in T [d]-skyline of T [r, z].

Proof. Firstly, let’s consider any change point i ∈ T [r, z]. Since its pred-encoding changes
due to prepending of T [r − 1] the new predecessor of point i in T [r − 1, z] must be r − 1 (i.e.,
pred(i) = i − r + 1). This means T [i] ≥ T [r − 1]. Also if point i was covered by point j such
that j < i and T [j] ≥ T [r − 1], then predecessor of i in T [r − 1, z] would still be j.

For the other way around, consider a point i on the skyline of T [r, z]. The predecessor of
i in T [r, z] cannot be a point j such that T [j] ≥ T [r − 1] (by definition of cover), Thus, when
T [r − 1] is prepended, it will become the new predecessor of i. Hence, i is a change point.

Now, if d is the rightmost change point of T then no character value in T [r − 1, z] is in
between T [r − 1] and T [z]. That is, there is no i ∈ [r, d − 1] such that T [r − 1] ≤ T [i] ≤ T [d].
Thus, this indeed is the same as T [d]-skyline. Also, since there are no change points after d

they will not be on the skyline. ◀

Next, given two suffixes and their last common change points, all their previous change
points will be the same. We state this as a lemma below. Here we define rank(x, T [r, z]) as
the number of values in T [r, z] that are less than or equal to x. It follows from the definition
of rank that if there are two order isomophic substrings T [r, r + l − 1] and T [s, s + l − 1], then
for any point 1 ≤ d ≤ l, rank(T [r + d − 1], T [r, r + l − 1] = rank(T [s + d − 1], T [s, s + l − 1].

▶ Lemma 6 (Last Common Point of Change (LCPC) Lemma). Given two text substrings
T [r, r + l − 1] and T [s, s + l − 1] such that pred(T [r, r + l − 1]) = pred(T [s, s + l − 1]), let d be
the greatest value such that r + d − 1 and s + d − 1 are the change points in T [r, r + l − 1] and
T [s, s + l − 1] respectively. Thus, the dth point is the last common change point of substrings
T [r, r + l − 1] and T [s, s + l − 1]. Then for every e ∈ [1, d − 1], r + e − 1 is a change point in
T [r, r + l − 1] if and only if s + e − 1 is a change point in T [s, s + l − 1].

Proof. Firstly, w.l.o.g, let rank(T [r − 1], T [r, r + l − 1]) < rank(T [s − 1], T [s, s + l − 1]). Now,
there is no point p such that 1 < p < d and rank(T [r − 1], T [r, r + l − 1]) < rank(T [r + p −
1], T [r, r + l − 1]) < rank(T [s − 1], T [s, s + l − 1]). This is because if there was such a point
p, then d cannot be a change point of T [r, r + l − 1], because d will be covered by point p.
Secondly, if e ∈ [1, d − 1] is a change point of T [r, r + l − 1] and suppose q was the predecessor
of e before prepending of the new point T [r − 1], then rank(T [r + q + 1], T [r, r + l − 1]) <

rank(T [r − 1], T [r, r + l − 1]) < rank(T [r + e + 1], T [r, r + l − 1]). Therefore, we can say that

ICALP 2021

71:6 LF Successor: Compact Space Indexing for Order-Isomorphic Pattern Matching

rank(T [r+q+1], T [r, r+l−1]) < rank(T [r−1], T [r, r+l−1]) < rank(T [s−1], T [s, s+l−1]) <

rank(T [r+e+1], T [r, r+l−1]). Here if we just consider the ranking orders of T [s, s+l−1], then
rank(T [s+q+1], T [s, s+l−1]) < rank(T [s−1], T [s, s+l−1]) < rank(T [s+e+1], T [s, s+l−1])
because pred(T [r, r + l − 1]) = pred(T [s, s + l − 1]) . This implies that T [s − 1] is the new
predecessor of T [s + e + 1], which means e is also a change point of T [s, s + l − 1].

The encoding of characters which are not change points will stay the same in pred(T [r −
1, r + d − 1]) and pred(T [s − 1, s + d − 1]). On the characters which are change points,
their pred(·) values point to T [r − 1] (resp. T [s − 1]). Since pred encodes distance to the
predecessor character, these pred values will be the same for corresponding change points in
T [r − 1, r + d − 1] and T [s − 1, s + d − 1]. Thus, pred(·) encoding for both agree up to the
first d + 1 characters. ◀

As an example of LCPC, consider two substrings T [r − 1, r + 6] = dkgcihfe and T [s −
1, s + 6] = ckfaihdb. Now, T [r, r + 6] and T [s, s + 6] are both order-isomorphic with prev
encoding of 0002334 (here we follow the usual ordering of English characters). Considering,
the previous values T [r − 1] and T [s − 1], the change points for T [r, r + 6] are k, g, f, e at
locations r plus {0, 1, 5, 6} within string T [r, r + 6] and the change points for T [s, s + 6] are
k, f, d at locations s plus {0, 1, 5} within string [s, s + 6]. Thus, last common point of change
(LCPC) is at location 6 i.e., T [r + 5] and T [s + 5]. Note that T [r + 6] is also a change point
however it is not a common change point. Also, note that since all the earlier change points
in both the strings are at same locations {1, 2}. All the common change points at locations
{0, 1, 5} are indeed skylines of T [r, r + 5] as well as that of T [s, s + 5]. Alternatively, these
skylines are indeed T [r + 5]-skyline of T [r, r + 6] and T [s + 5]-skyline of T [s, s + 6].

3 LF Successor and Order-Isomorphic Text Indexing

Recall our encoding scheme pred (Definition 1) and the lexicographic order of encoded
symbols: 0 < 1 < 1′ < 2 < 2′ < · · · < n − 1 < (n − 1)′ < $. We will now introduce a few
more terminologies related to the order-isomorphic suffix tree (ST). We shall refer to any
character on any substring representing an edge label as a “point” in ST. An edge is labeled
by a substring represented by that edge in ST. For any point c in ST, let path(c) denote the
concatenation of labels from the root until c. We shall denote char(c) as an (pred encoded)
character represented by point c. We will also refer to nodes in ST as points. In this case, the
node will be represented by the character just above it (i.e., the last character of the label
of its parent edge). For any point c, depth(c) is length of path(c) and αDepth(c) = number
of distinct symbols in T [r, r + depth(c) − 1], where T [r, n] is any suffix passing through c.
Note that this αDepth indeed refers back to the original text instead of encoded text (in
terms of encoded text this would be the number of non-primed characters). We call this
the alphabet depth of point c. We shall generalize this notion as alphabet length for any
string S as α(S) = number of unique alphabet symbols in S. For any two suffixes i and j

(i.e., suffixes corresponding to leaves ℓi and ℓj), let point v = lca(i, j) be the lowest common
ancestor (LCA) of ℓi and ℓj . Then, the length of their longest common prefix, denoted by
LCP(i, j) is depth(v). Also αLCP(i, j) = αDepth(v).

The locus of a pattern P is the highest node u such that pred(P) is a prefix of path(u).
Every leaf ℓi in the sub-tree of u corresponds to an occurrence of P at a position in T given
by SA[i]. Let [sp, ep] be the suffix range of P , where ℓsp (resp. ℓep) is the leftmost (resp.
rightmost) suffix in the subtree of u. We note that in order to support pattern matching, we
need to (a) compute the suffix range [sp, ep] of P and (b) decode suffix array values SA[i],
i ∈ [sp, ep]. Using a standard binary search on the suffix array along with the text, we can

A. Ganguly, D. Patel, R. Shah, and S. V. Thankachan 71:7

find the suffix range. Storing SA[i] for every leaf ℓi is too costly as it will take Θ(n log n)
bits. The goal is to encode suffix array values in compact space so that they can be decoded
efficiently. We show how to achieve this using a sampled suffix array and LF mapping.

Recall that LF mapping is defined as: j = LF(i) iff SA[j] = SA[i] − 1. We explicitly store
SA[·] values belonging to the set {1, 1 + ∆, 1 + 2∆, . . . , n}, where ∆ is a tunable parameter
to be set later. For any suffix i, where SA[i] has not been stored, we repeatedly apply LF
mapping operation (starting from i) until we reach j such that SA[j] has been sampled.
Then, SA[i] = SA[j] + k, where k is the number of LF operations applied; note that k ≤ ∆.
Thus, we have reduced the problem to that of computing LF(·). For SA−1 queries, we store
SA−1[i] if i equals n or if i is a multiple of ∆. To compute SA−1[j], we first find the smallest
number j′ ≥ j, such that j′ is a multiple of ∆ (or j′ = n). Compute j′′ = SA−1[j′] from
sampled-SA−1 in O(1) time. Let k = j′ − j. Starting from j′′ carry out k successive LF
operations and report the final index as SA−1[j].

To compute LF, we introduce LF successor, defined as:

i′ is called the LF-successor of i iff LF(i′) = LF(i) + 1

We denote it as i′ = LFS(i). Throughout this paper, we use i′ to denote LFS(i) for any suffix i.
Thus, the leaves ℓi and ℓi′ are mapped by using LF operation to leaves ℓj and ℓj+1 respectively.
To compute LF mapping, we again use a sampling technique. Specifically, we explicitly store
LF(·) values in the set {1, 1 + ∆, 1 + 2∆, . . . , n}, thereby reducing the problem of computing
LF mapping to that of computing at most ∆ number of LF successors. In Section 4, we
show how to compute LF successor in time tLFS = O(log σ) by using an O(n log σ)-bit index.
Therefore, LF can be computed in time tLF = ∆ · tLFS and tSA = O(∆ · tLF). Theorem 2
follows immediately by fixing ∆ = logσ n.

4 Computing LF Successor in Time O(log σ) Using Compact Space

In this section, we shall describe what additional information should be augmented to each
leaf of the suffix tree, so that given ith leaf ℓi, we can quickly identify which leaf is its LF
successor LFS(i). We shall first describe the data structure and then the query algorithm for
computing LFS(i). We saw earlier that we will be writing SA values and LF values only for
n/∆ positions. Thus, this takes O(n log σ)-bit space by choosing ∆ = logσ n. What remains
to be seen is how to compute LF successor for a given suffix associated with the leaf ℓi. If
we explicitly write it at all the leaves, it will take Θ(log n) bits per leaf. Since there is no
sampling here, this will lead to Θ(n log n) bits which will defeat our purpose. Our approach
is to store only O(log σ) bits per leaf and yet be able to compute the LF successor quickly.

4.1 Four Cases for Suffix and its LF Successor
For the discourse in this section, we use the following terminology. Let the starting position
in the text for suffix denoted by leaf ℓi be r (i.e, r = SA[i]), and that of ℓi′ be r′, where
i′ = LFS(i). Let d = |LCP(i, i′)|, the length of the longest common prefix of pred(T [r, n]) and
pred(T [r′, n]). Thus, T [r, r + d − 1] and T [r′, r′ + d − 1] are order isomorphic. Inevitably, we
will also focus on suffixes LF(i) and LF(i′) which are encodings of text suffixes T [r − 1, n]
and T [r′ − 1, n] respectively.

Now, we distinguish two cases with respect to leaf ℓi (and its LF successor ℓi′) – case
(1) if T [r − 1, r + d − 1] is not order isomorphic with T [r′ − 1, r′ + d − 1], and case (2)
T [r − 1, r + d − 1] is order isomorphic with T [r′ − 1, r′ + d − 1] i.e., prepending of character
T [r − 1] (resp., T [r′ − 1]) to the left still maintains order-isomorphism until the LCP i.e.,
pred(T [r − 1, r + d − 1]) = pred(T [r′ − 1, r′ + d − 1]).

ICALP 2021

71:8 LF Successor: Compact Space Indexing for Order-Isomorphic Pattern Matching

First, we shall talk about case (1). Let us consider all the change points of T [r, r + d − 1]
and T [r′, r′ + d − 1]. Let e be their last common change point. If T [r′ − 1] ̸= T [r′ + e − 1]
then we call it case (1a) - the breakaway case. Else, we call it case (1b) - the equality case.
In case (1a), let g be the first change point after e for T [r′, r′ + d − 1]. To proceed to case
(2), we now define LF-image, which generalizes the concept of Wiener links.

▶ Definition 7 (LF-image). Let c be any point in the suffix tree and point p above c be such
that for at least one of the suffixes T [r, n] passing through c, p is the last change point before
c. The LF-image of c with respect to a change point p, denoted by LF(c, p, EQBT) is a point
representing the position of (pred encoding of) T [r − 1, r + depth(c) − 1]. EQBT is called
the equality bit and is set to 1 if p is an equality change point and 0 otherwise.

For any such suffix i passing through c with change point p being the last one above c,
LF(i) passes through LF(c, p, EQBT). So if q = LF(c, p, EQBT), path(q) = pred(T [r − 1, r +
depth(c) − 1]). Note that the same point c can have multiple LF-images based on which
change point above c is taken as the last one and also if that is equality change point or not.

If leaf ℓi falls under case 2, we shall again break this case into cases (2a) and (2b). In case
(2a) we consider i < i′ (we call this ordered case) and in case (2b) we consider i′ < i (we call
this inverting case). We say that a suffix l inverts over suffix k iff l < k and LF(l) > LF(k).

▶ Lemma 8. If suffixes i and i′ = LFS(i) fall in case 2 then they have the same change
points (and also the same type of change points - equality or not) until lca(i, i′). Then i

cannot have a change point immediately after lca(i, i′). Moreover, if they fall in case (2b)
then i′ must have a change point immediately after lca(i, i′).

Proof. Let the point c = lca(i, i′). For case (2) we know that T [r − 1, r + d − 1] is order
isomorphic with T [r′ − 1, r′ + d − 1] i.e. pred(T [r − 1, r + d − 1]) = pred(T [r′ − 1, r′ + d − 1]).
This means that i and i′ have all the same change points until c.

Now let p be the last common change point of i and i′ i.e. p = LCPC(i). Here,
LCPC(i) denotes the last common point of change of i and its LFS i′. Additionally, suppose
b = LF(c, p, EQBT). So this means that LF(i) and LF(i′) will pass through b. As per the
definition of LF successor we know that, LF(i) < LF(i′). More specifically, LF(i′) = LF(i) + 1.

Firstly, lets say that i has a change point right after c. It is easy to observe from the
structural properties of order-isomorphic suffixes that both i and i′ cannot change immediately
after c. Hence, if we see all the branches under b, then LF(i) will fall under the rightmost
branch (or just previous branch depending on whether that change point is of equality type or
not). This leads to LF(i′) < LF(i) which is not possible as per the definition of LF successor.
Thus, i cannot have a change point immediately after c.

Now, if we take the case (2b), then i′ inverts over i because LF(i′) must be greater than
LF(i). For this to happen i′ must have a change point immediately after c. ◀

The proof of the lemma above also leads us to the following fact.

▶ Fact 1. Let c be a point immediately above a node v. Let b = LF(c, p, EQBT), where p is
the last common change point (of type equality or non-equality) on path(c) for two case (2b)
suffixes i and i′ = LFS(i) passing through c. Then, i′ has a change point immediately after v.
Moreover, there cannot be another pair of case (2b) suffixes j and j′ = LFS(j), which have
the same last common point of change p, and j′ changes immediately after v.

Proof. If any two of the suffixes i′ and j′, where i′ = LFS(i) and j′ = LFS(j), passing through
v have a change point right after the node v and their last common change point is p, then
under the point b = LF(c, p, EQBT) only one of their LF values (either LF(i′) or LF(j′)) can
be next to their respective LF(i) or LF(j). That implies only one of either LF(i′) = LF(i) + 1
or LF(j′) = LF(j) + 1 can be true. This is a contradiction, implying the fact is true. ◀

A. Ganguly, D. Patel, R. Shah, and S. V. Thankachan 71:9

4.2 Storing Augmenting Information for each Leaf
We shall describe this section in terms of augmenting information stored with each leaf.
However, one can easily see them as arrays that run parallel to the suffix array. We shall
show that each of these augmenting fields in all the cases can be stored in O(log σ) bits. For
each leaf ℓi, we can write in 2 bits which of the above 4 cases it belongs to. We denote this
by CASE[i]. We also store the same value with i′ and in this case we shall call it CASE[i′].

If ℓi belongs to case (1b), then we intend to store e which we will denote as LCPC[i] = e.
Recall that e is defined as the rightmost (maximum value) common change point for
T [r, r + d − 1] and T [r′, r′ + d − 1], and LCPC stands for last common point of change. Thus,
LCPC is an array whose ith entry corresponds to leaf ℓi. However, storing the value e directly
will require log n bits. Therefore, instead of e, we store number of distinct alphabet symbols
in T [r, r + e − 1]) (i.e., α(T [r, r + e − 1])). We will call this value αLCPC[i]. It is worth noting
that since change points only occur at new (first occurrence) alphabets in the string, e can
be uniquely decoded from αLCPC. We also store a complementary array of αLCPC denoted
as αLCPC such that αLCPC[i′] = αLCPC[i]. Thus, this value is not only stored with leaf i

but also replicated in leaf i′ = LFS(i) - albeit under a differently named field.
Recall that for case (1a), g is the first change point after e for T [r′, r′ + d − 1]. For the

case (1a), we store g which we call the first point of break FPB[i]. Again, we will not store
the value g directly but an encoding α(T [r, r + g − 1]) which takes log σ bits. We will call
this value αFPB[i]. Similarly, we store this value with i′ as αFPB[i′] = αFPB[i].

For the case (2a), we maintain αLCPC and αLCPC as in case (1b). We also maintain an
extra-bit EQBT indicating which type of change point LCPC is - whether equality change
point (indicated by EQBT = 1) or not. Similarly, we also store EQBT. We also store
α(T [r, r + d − 1]) that is the number of distinct alphabet symbol occurring until LCP(i, i′).
We shall call it αLCP[i]. Again, we store the same value at leaf ℓi′ so that αLCP[i′] = αLCP[i].
Additionally to this, we store FPC[i] (read as first point of change post LCA) which in
this case will be defined as the first change point of T [r, n] after T [r + d − 1]. Note that
this point of change cannot be right after LCA at T [r + d] because otherwise i will invert
over i′ (this would then be case (2b) Lemma 8) during LF mapping operation and LF(i)
will be greater than LF(i′). Once again we define FPC[i′] = FPC[i] and define αFPC[i] and
αFPC[i′] in similar vein. In summary, we maintain αLCPC, EQBT, αLCP and αFPC for each
such leaf which falls in case (2a). We also store these values at their corresponding LF
successors. One point to note here is that FPC, LCPC, FPB are all uniquely decodable from
αFPC, αLCPC, αFPB since they necessarily fall on the new alphabet which is yet unseen in
the suffix. However, the same is not true of αLCP.

As an example, let us look at T [r − 1, n] = caghhfbab... and T [r′ − 1, n] = cagjjebae....
Then, pred(T [r, n]) = 0111′456′2′... and pred(T [r′, n]) = 0111′456′3′.... Their LCPC is at
depth 5 which is encoded as 4 in the encodings of both the suffixes. Their αLCPC = 4, since
there are 4 distinct alphabets in both the strings until that point (4 non-prime characters in
their pred encoding). Length of their LCP = 7, however the character a which occurs their as
encoded character 6′ is not a new character. Hence, αLCP = 5 which points to character b in
both the original strings. If we try to decode αLCP, it will lead us to position 6 rather than
7. Finally, after the LF mapping, the encoded strings are 00211′556′2′ and 00211′556′3′.

For case (2b), our solution is more intricate so we only give a brief overview and defer
details to Case (2b) section of the proof of correctness. In this case, i′ inverts over i. Thus,
i′ has a change point right after the lca(i, i′) at T [r′ + d]. Just storing additional augmenting
values to the leaves of the suffix tree is not sufficient. Like before, we shall store αLCPC and
αLCP values. But we shall construct additional data structures called mini-trees and search
for i′ in an appropriate mini-tree identified by αLCPC and αLCP values of i. We will denote
this mini-tree as ταLCPC[i],αLCP[i].

ICALP 2021

71:10 LF Successor: Compact Space Indexing for Order-Isomorphic Pattern Matching

4.3 Query Algorithm
Now, we outline the pseudo-code for our query algorithm.

Computing LFS(i)

If ℓi falls in case (1a),
ℓi′ is the unique leaf under u s.t. CASE[i′] = CASE[i] and αFPB[i′] = αFPB[i],

where u is the highest ancestor of ℓi with αDepth(u) ≥ αFPB[i]

ElseIf ℓi falls in case (1b)
ℓi′ is unique leaf under u s.t. CASE[i′] = CASE[i] and αLCPC[i′] = αLCPC[i],

where u is the highest ancestor of ℓi with αDepth(u) ≥ αLCPC[i]

ElseIf ℓi falls in case (2a)
Let c = point above FPC[i] on suffix T [r, n] in the suffix tree. Then ℓi′ is leftmost

leaf after ℓi in the (subtree of αLCP[i]) \ (subtree of c) s.t. CASE[i′] = CASE[i],
αLCP[i] = αLCP[i′], αLCPC[i] = αLCPC[i′] and EQBT[i] = EQBT[i′]

Else
i′ = findSucc

(
i, αLCPC[i], αLCP[i]

)
, which is to be defined later

Note that all the arrays mentioned above can be represented in O(n log σ) bits, and
the implementation uses standard succinct-data-structure techniques (see Section 4.5); the
difficulty lies in proving the correctness of the algorithm, which is our focus next.

4.4 Proofs of Correctness
We shall show correctness of each case. In each case, we need to ensure that we would not
end up with a wrong answer. This could happen if there is another pair j, j′ such that
j′ = LFS(j) and this pair shares the same characteristics with the pair i, i′. In this case, pair
j, j′ may interfere in the search for i′ leading to false answer j′.

4.4.1 Case (1a)
Let c be the first point (the character within an edge of ST) on path(ℓi) such that T [r, r +
depth(c) − 1] has exactly αFPB[i] distinct characters. Thus, this is the first (encoded)
character where pred(T [r − 1, n]) and pred(T [r′ − 1, n]) differ; in other words, path(ℓLF(i))
and path(ℓLF(i′)) bifurcate at the position given by depth(c) + 1. Let ĉ be the point in
ST such that path(ĉ) = pred(T [r − 1, r + depth(c) − 1]) and ĉ′ be such that path(ĉ′) =
pred(T [r′ − 1, r′ + depth(c) − 1]). These points are on sibling edges going down from the same
node. Let v be the node just above ĉ and ĉ′. For example, consider T [r − 1, n] = jeabdh...

and T [r′ − 1, n] = gfabdh.... Then, path(c) = pred(eabdh) = pred(fabdh) = 00114. This
makes path(ĉ) = pred(jeabdh) = 000114. However, path(ĉ′) = pred(gfabdh) = 000115.
Note that 5 is the highest encoded character (with an exception of 5′) which branches out of
the node v.

▶ Lemma 9. There is only one pair of leaves i, i′ in the subtree of c, such that αFPB[i] =
αFPB[i′] = α(T [r, r + depth(c) − 1]).

A. Ganguly, D. Patel, R. Shah, and S. V. Thankachan 71:11

Proof. Consider LF mapping of i and i′. path(ℓLF(i)) and path(ℓLF(i′)) first bifurcate at points
ĉ and ĉ′ respectively. Since i′ = LFS(i), char(ĉ) < char(ĉ′). Moreover, char(ĉ′) is precisely
depth(c) or its equality version i.e. (depth(c))′. This is the highest (encoded) character, and
thus the branch with ĉ′ will be one of the two rightmost branches among branches (depending
on whether the change point c for suffix i′ was based on “equality” or not). However, the
point ĉ will certainly be before the two rightmost branches at v. If there was any other pair j

and j′ of case (1a) under the subtree of c such that j′ = LFS(j) and FPB(j) = FPB(i), then
both LF(i′) and LF(j′) will fall under the subtree of ĉ′ because as per the LCPC lemma all
the change points of i′ and j′ are the same until c (including c). On the contrary, LF(i) and
LF(j) cannot fall under this subtree as they are under the subtree of ĉ. Thus, depending on
whether LF(i′) < LF(j′) or not, only one pair out of (LF(i), LF(i′)) or (LF(j), LF(j′)) can be
adjacent. Since, i′ is indeed the LF successor of i, such a pair j, j′ cannot exist. ◀

4.4.2 Case (1b)
Let c be the first point in ST on path(ℓi) such that T [r, r + depth(c) − 1] has αLCPC[i]
distinct characters. In this case, c is a change point for both i and i′. For i′, it is the
equality change point while for i it is not (i.e., T [r′ − 1] = T [r′ + depth(c) − 1] and T [r − 1] ̸=
T [r+depth(c)−1]). Let point ĉ correspond to path(T [r−1, r+depth(c)−1]) and ĉ′ correspond
to path(T [r′ −1, r′ +depth(c)−1]). Let v be the node right above ĉ (and also ĉ′) which can be
identified by path(v) = T [r−1, r+depth(c)−2]. In this case, ĉ′ will fall in the rightmost branch
at node v and ĉ will fall in the branch previous to that. The character at point ĉ′ is precisely
the equality (prime) version of the character at ĉ. For example, consider T [r−1, n] = geabdh...

and T [r′ − 1, n] = hfabdh.... Then, path(c) = pred(eabdh) = pred(fabdh) = 00114. This
makes path(ĉ) = pred(geabdh) = 000115. However, path(ĉ′) = pred(hfabdh) = 000115′.
Here 5′ is the highest encoded character. Again, as in the case (1a), if there were any other
pair j, j′ falling in case (1b) under subtree of c such that LCPC(j) = LCPC(i), then LF(j′)
will also fall in the rightmost branch at v while LF(j) will fall in the previous one. Again, by
applying simple interval logic as in case (1a), we can show that only one of the pairs can
satisfy the LF-successor definition.

4.4.3 Case (2a)
In this case, post lca(i, i′), branch with ℓi is to the left of the branch with ℓi′ . Let c be the
point just above FPC[i]. Let ℓk be the rightmost leaf in the subtree of c. Note that since
FPC[i] is not immediately after the lca(i, i′), the subtree of c does not include i′. Therefore,
the order between i and i′ will not be inverted after taking LF mapping. Let f be the first
point in ST on suffix T [r, n] such that α(path(f)) = αLCP[i]. The actual LCP[i] will be
somewhere in the subtree of f because LCP[i] is not uniquely decodable from αLCP[i]. Here
LCP[i] denotes the lcp(i, i′). Let j, j′ be another pair in the subtree of f such that j′ = LFS(j)
and αLCP[j] = αLCP[i] and LCPC[j] = LCPC[i]. All four leaves LF(i), LF(i′), LF(j), LF(j′)
will be in the subtree of f̂ which is the LF-image LF(f, LCPC[i], EQBT). In other words, f̂

is the locus of pred(T [r − 1, r + depth(f) − 1]) in ST.

▶ Lemma 10. There does not exist a pair (j, j′) such that j′ = LFS(j), αLCP[j] = αLCP[i],
αLCPC[j] = αLCPC[i] and j′ lies in between k and i′.

Proof. Consider any other pair j, j′ in the subtree of f and with the same αLCPC, EQBT
and αLCP values such that k < j′ < i′. We will show by contradiction that such a j′

cannot exist. Firstly, since i < k < j′ and ℓk being the rightmost leaf in the subtree of c,

ICALP 2021

71:12 LF Successor: Compact Space Indexing for Order-Isomorphic Pattern Matching

i i'

c
o

oo
o

i j j' i' i j j' i'

These cases cannot arise
contradiction!

Common change point for j, j'
would imply different LCA

Both j and j' cannot have
change points

Subtree of c cannot have i'

Figure 2 Illustration of case (2a). Small black circles are change points.

i cannot invert over j′ after taking LF mapping. This is because c is the point just above
FPC[i]. Hence LF(i) < LF(j′). Also, since LF(i′) = LF(i) + 1, LF(j′) must be greater than
LF(i′). Secondly, the pair j, j′ falls under case (2a) where j < j′ and LF(j) < LF(j′). Thus,
LF(i′) ≤ LF(j) < LF(j′) which means both j and j′ invert over i′ after LF operation.

Next, j < j′ < i′ means lca(j, i′) is equal to or above lca(j′, i′). Since j and j′ invert over i′,
it must be at lca(j, i′) and lca(j′, i′) respectively. If lca(j, i′) is above lca(j′, i′), then j inverts
above j′ and it implies LF(j) > LF(j′) which is a contradiction. Now if lca(j, i′) = lca(j′, i′),
then there are two cases. The first case is where j and j′ invert from a common branch
connecting path of i′. Here, j and j′ will have a common change point at this branch which
is post lca(j′, i′). It implies that there is another common change point for j, j′ which leads
to LCPC[j] > LCPC[i] (a contradiction). In the second case, j and j′ branch out at lca(j′, i′)
but fall in different branches. However, according to Lemma 8, only one of j or j′ can have a
change point right after the lca(i, i′). Hence, this case also leads to contradiction. Thus, j′

does not lie in between k and i′. See Figures 2 and 3 for illustration. ◀

4.4.4 Case (2b)
For the case (2b), we know that suffix i′ comes before suffix i in the suffix tree, i.e. i′ < i.
Additionally, for the case (2b), i′ has a change point right after the node representing the
lca(i, i′). Moreover, under lca(i, i′) the branch containing the suffix i′ will be the only one
that will have a change point tied with the same LCPC (see Fact 1). Since i′ = LFS(i), after
the LF mapping i′ will invert over i making LF(i′) = LF(i) + 1. See Figure 3.

As mentioned in Section 4.2, for the case (2b) we store αLCPC[i] and αLCP[i] values for
each leaf ℓi as augmenting information. Additionally, we store their complements αLCPC[i′]
and αLCP[i′] for each leaf ℓi′ . Now we consider an additional data structure called mini-
trees that will help us in finding i′ given i. Specifically, a particular mini-tree τa,b has
set of all leaves ℓi and their corresponding LF successors ℓi′ from the suffix tree that has
αLCPC[i] = αLCPC[i′] = a and αLCP[i] = αLCP[i′] = b. A particular leaf ℓi will not be in
any mini-tree if that leaf does not fall under the case (2b). Thus, a leaf can be present in
a mini-tree if it falls under case (2b) or it is an LF-successor of some other leaf which falls
under the case (2b). Therefore, each leaf in the suffix tree will be in at most two mini-trees
and some mini-trees are possibly empty. In other words, a mini-tree is a compacted subtrie
of the suffix tree containing only those leaves selected for that mini-tree. Hence, overall size
of all the mini-trees combined is O(n).

A. Ganguly, D. Patel, R. Shah, and S. V. Thankachan 71:13

Figure 3 Illustration of case (2a) (left) and case (2b) (right). Red underline shows the character
encoding that changes after taking LF.

To draw a correspondence between the leaves of the suffix tree and the leaves of the
mini-trees, we use a bit-vector B[1, n], where B[i] = 1 iff leaf i falls in case (2b) or leaf i is an
LF-successor of the leaf which falls in case (2b). In other words, B[i] = 1 if a leaf from the
suffix tree is present in at least one of the mini-trees, and B[i] = 0 otherwise. Next, we create
two character vectors C and C as follows. If B[i] = 0, then C[i] = C[i] = 0. Otherwise,
1. C[i] stores an encoding of the pair αLCPC[i], αLCP[i] as a combined character from an

alphabet of size σ2; essentially C[i] = (σ − 1) · αLCPC[i] + αLCP[i]
2. C[i] = −C[i] if αLCPC[i] = αLCPC[i] and αLCP[i] = αLCP[i], and C[i] = (σ − 1) ·

αLCPC[i] + αLCP[i] otherwise.

Now given a particular leaf ℓi in the suffix tree, for finding the corresponding leaf in the
mini-tree, we first check if B[i] = 1. Since a = αLCPC[i] and b = αLCP[i], we can quickly
identify the mini-tree τa,b it belongs to as augmenting information αLCPC[i] and αLCP[i]
is stored for the leaf ℓi. To find out which leaf in τa,b corresponds to ℓi, all we have to do
is figure out the number of leaves j ≤ i that satisfy a = αLCPC[j] = a and b = αLCP[j]
or αLCPC[j] = a and αLCP[j] = b; this is the same as the number of entries j ≤ i in the
character vectors C such that C[j] = C[i] plus the number of entries k ≤ i in the character
vectors C such that C[k] = C[i]. This is because the mini-tree is just a compacted subtrie
of the original suffix tree consisting of only those leaves present in a particular mini-tree.
To map a leaf from the mini-tree back to the leaf of the original suffix tree, we need to
store a character vector for each mini-tree over the leaves of the mini-tree. Let Ca,b be the
character vector for the mini-tree τa,b. This character array indicates whether the leaf has
a = αLCPC[i] and b = αLCP[i] or a = αLCPC[i] and b = αLCP[i] or both. In other words, it
simply specifies how the leaf was selected for that mini-tree using techniques similar to that
described above. It is to be noted that all character vectors combined need O(n log σ) bits.

4.4.4.1 Identifying i′

We know that αLCPC[i] = a and αLCP[i] = b. Let pa be the first point in suffix tree where
α(T [r + depth(pa) − 1])) = a and pb be the first point such that α(T [r + depth(pb) − 1]) = b.
Thus, pa and pb are the points in suffix tree where αLCPC[i] and αLCP[i] are located. Note
that pa is above or the same as pb. Now consider the mini-tree τa,b. Let another pair j, j′

where j′ = LFS(j) fall under the same mini-tree (i.e., ℓj and ℓ′
j are also descendants of pb

and αLCPC[j] = αLCPC[i] and αLCP[j] = αLCP[i]). Here j′ will be on the left of j because
they fall under the case (2b). We will focus here on searching i′ as the first qualifying leaf to
the left of i. Another pair j, j′ could interfere with our process of searching if j′ falls between
i′ and i. Formally, we say

ICALP 2021

71:14 LF Successor: Compact Space Indexing for Order-Isomorphic Pattern Matching

▶ Definition 11. A pair j, j′ interferes with i, i′ if i′ < j′ < i and αLCPC[j] = αLCPC[i] and
αLCP[j] = αLCP[i]. Here, i′ = LFS(i) and j′ = LFS(j)

There are two cases of “interference” that can occur with respect to these two pairs –
case (2b′) is where both j′ and j are in between i′ and i i.e. i′ < j′ < j < i and case (2b*)
where j is on the right of i i.e. i′ < j′ < i < j. As we know that αLCPC[i] = αLCPC[j] = a

and pa is the first point in the suffix tree where α(T [r + depth(pa) − 1])) = a. Suppose
x = LF(lca(i, i′), pa, EQBT) and y = LF(lca(j, j′), pa, EQBT). Here EQBT is set to 1 if i′ has
an equality change point and 0 otherwise. Now in the case (2b′), after taking LF-mapping, j′

inverts over j under y and i′ inverts over all three of j, j′, i under x – we call this the nested
case. In case (2b*), j′ and i both together (maintaining same order) invert over j under y

and then i′ inverts over all of them under x – we call this the bulk-invert case. Additionally,
we will need to augment this mini-tree further so that we can distinguish the pair i, i′ from
the pair j, j′.

▶ Lemma 12. If a pair j, j′ interferes with i, i′, then lca(i′, i) occurs above lca(j′, j) in the
suffix tree. Additionally, if i < j, then lca(j′, i) is below lca(j, j′).

Proof. Note that in bulk invert case since j′ and i both invert together over j, lca(j′, i) must
be below lca(j, j′). Even though αLCP[i] = αLCP[j], it cannot happen that LCAs of both
the pairs are on the same node in the suffix tree (i.e. lca(i′, i) = lca(j′, j)). This is because
from any node only one branch can have a change point at the next character below the
node (see Fact 1). But we know that i′ has a change point just below the node representing
lca(i, i′). Therefore, the branch containing j′ cannot have a change point just below that
node. This implies j′ ̸= LFS(j) since j falls under the case (2b). This holds a contradiction.

Therefore, for the case (2b′), it must be the case that lca(j′, j) is below lca(i′, i), implying
that suffixes j′ and j belong to the subtree at lca(i′, i). In case (2b*), it cannot happen
that lca(i′, i) is below lca(j′, j) because that would mean j′ has a change point right below
lca(j′, j) which falls above lca(i′, i). This would make αLCPC[i] different than αLCPC[j]
because the suffixes i and i′ will have an extra change point above lca(i, i′) and below the
lca(j, j′). Hence, for the case (2b*) this leads to a contradiction and lca(j, j′) cannot be
above the lca(i, i′). ◀

If lca(i′, i) and lca(j′, j) are not on the same root-to-leaf path (neither above nor below
nor same as each other), then pairs i, i′ and j, j′ are non-interfering. So we need not consider
that case as in some sense for i, our algorithm looks at the closest suffix to the left of i that
has the same αLCP and αLCPC as the qualifying suffix for LFS(i).

Finally, from Fact 1 we can say that there exists a unique suffix i′ marked with case (2b)
under the point at 1 + depth(lca(i′, i)) depth such that αLCP[i] = αLCP[i′] and αLCPC[i] =
αLCPC[i′], with the constraint that i′ has a change point at 1 + depth(lca(i′, i)) depth.

4.4.4.2 Searching in Minitree

For any i, if we can identify lca(i′, i) precisely, then i′ is the leaf which has the same αLCPC
and αLCP values (as that of i) and i′ is in the subtree of a branch of lca(i′, i) whose leading
character in that branch is a change point. For this, we mark some nodes in the tree. More
precisely, for each mini-tree, we mark a node v if a point at (depth(parent(v)) + 1) depth is a
change point for a suffix i′ (in case (2b)) in the subtree of v. Note that only one child of
a node can get marked (refer to Fact 1). Also note that there is only one marked node in
a path from the root to a leaf because if there were another marked node w for a suffix j′,
then αLCPC[i′] ̸= αLCPC[j′]. But we know that all the leaves in a mini-trie have the same
αLCPC[i], αLCP (or their complement) values.

A. Ganguly, D. Patel, R. Shah, and S. V. Thankachan 71:15

O X

O X

i' j' ji

LCA(j', j)

LCA(i', i)LCA(i', i)
O X

O X

ijj'i'

LCA(j', j)

Figure 4 Mini-trees for case (2b). Red (resp. black) circle is the marked node after the change
point of i′ (resp. j′) immediately after lca(i′, i) (resp. lca(j′, j)). Red (resp. black) cross is the
sibling of the marked node lying on the path from the LCA to the leaf ℓi (resp. ℓj).

Now lets say that a node x in the mini tree ταLCPC[i],αLCP[i] is the node corresponding
to lca(i′, i) in the suffix tree. Therefore, given i, our task simply becomes locating the leaf
ℓ in the mini-tree that corresponds to i. Then, find the lowest ancestor of ℓ that has a
marked child before ℓ in pre-order; observe that this lowest ancestor is precisely the node
x corresponding to lca(i′, i). Let y be the marked child of x. Within the subtree of y, we
can find the unique leaf ℓ′ corresponding to i′, which can be mapped back to the original
suffix tree. To find this unique leaf, we store a unary encoding at the marked node indicating
which leaf we looking for; more precisely, if the desired leaf is the zth leftmost leaf under
the marked node, then store z in unary at the marked node. Since there is only one marked
node from a leaf to root path in a mini-tree, the total length of all such unary encodings
combined is bounded by the size of the mini-tree. The mapping to and from the suffix tree to
a mini-tree can be carried out using the bit-vector and the character vectors defined earlier.

For the sake of completion, we summarize the discussion in the following findSucc method,
which was used by pseudo-code in Section 4.3. See Figure 4 for an illustration.

findSucc(i, a, b)

Use the bit-vector B and the character vectors C and C to identify the leaf ℓ in
τa,b that corresponds to ℓi

Find the lowest ancestor x of ℓ that has a marked child y before x in pre-order
Use the unary encoding stored at y to locate the leaf ℓ′ in τa,b corresponding to ℓi′

Finally, use the character vector Ca,b to map ℓ′ back to i′

4.5 Implementation and Complexity Analysis
We will rely on the following well-known data structures of Fact 2 and Fact 3.

▶ Fact 2 (Wavelet Tree [12]). Given an array A[1, t] over Σ, by using a t log |Σ| + o(t log |Σ|)-
bit structure, we can compute the following in O(log |Σ|) time:

A[i]
rankA(i, x) = number of occurrences of x in A[1, i]
selectA(i, x) = i-th occurrence of x in A

prevValueA(i, y) = rightmost position j < i such that A[j] ≤ y

We drop the subscript A when the context is clear.

ICALP 2021

71:16 LF Successor: Compact Space Indexing for Order-Isomorphic Pattern Matching

▶ Fact 3 (Fully-Functional Succinct Tree [21]). The topology of order-isomorphic suffix tree
can be encoded in O(n) bits to support the following operations in O(1) time.

pre-order(u)/post-order(u): pre-order/post-order rank of node u

parent(u): parent of node u

nodeDepth(u): number of edges on the path from the root to u

child(u, q): qth leftmost child of node u

sibRank(u): number of children of parent(u) to the left of u

lca(u, v): lowest common ancestor (LCA) of two nodes u and v

sp(u)/ep(u): leftmost/rightmost leaf in the subtree of u

levelAncestor(u, d): ancestor of u such that nodeDepth(u) = d

Moving forward, we assume that any array has been pre-processed using Fact 2. We
maintain the topology of the order-isomorphic suffix tree and the mini-trees (Case 2b) using
Fact 3. Finally, we explicitly store αDepth(u) for every node u in the order-isomorphic suffix
tree. For the purpose of locating the node immediately below FPB or LCPC, we will rely on
the following lemma.

▶ Lemma 13. By maintaining an O(n log σ) bit data structure, given a leaf ℓi and an integer
W , we can find the highest ancestor w of ℓi satisfying αDepth(w) ≥ W in O(log σ) time.

Proof. Create an array A such that A[k] = αDepth(w), where w is the node with pre-order
rank k. Maintain A as a wavelet tree. Given ℓi, find the rightmost entry r < pre-order(ℓi) in A

such that A[r] < W using prevValueA(pre-order(ℓi), W − 1). Let v′ = lca(ℓi, v), where v is the
node with pre-order rank r. Then, w = levelAncestor(ℓi, nodeDepth(v′)+1). To see why this is
correct, observe that αDepth(v′) ≤ αDepth(v) < W . If αDepth(w) < W , the prevValue-query
should have returned w instead of v (since pre-order(v) < pre-order(w) ≤ pre-order(ℓi)). ◀

4.5.1 Case (1a) and Case (1b)
In case (1a), i′ is the only leaf marked with case (1a) in the sub-tree of FPB(i) that satisfies
αFPB[i′] = αFPB[i]. The first task is to find the subtree of FPB(i), i.e., the node just below
FPB(i). This node, say v, can be found in O(log σ) time using Lemma 13 and by using
αFPB[i]. Within the subtree of v, we simply find the only leaf i′ marked with 1a such that
FPB[i′] = FPB[i] using Fact 2. Since αFPB and αFPB entries for case (1a) suffixes are at
least one, in order to identify a valid case (1a) suffix, we simply set the αFPB and αFPB
entries for non case (1a) suffixes to zero.

In case (1b), the idea is the same, with the difference that we use αLCPC and αLCPC
arrays (instead of FPB and αFPB arrays) for finding the node v and then i′. As in the
previous case, we set the αLCPC and αLCPC entries for non case (1b) suffixes to zero.

Note that the wavelet trees for the four arrays need O(n log σ) bits, and a wavelet tree
query needs O(log σ) time.

4.5.2 Case (2a)
Let c be the point just above FPC[i]. Let ℓk be the rightmost leaf in the subtree of c. By
Lemma 10, it is evident that i′ is the leftmost leaf such that i′ > k, αLCP[i′] = αLCP[i],
αLCPC[i′] = αLCPC[i], and EQBT[i′] = EQBT[i]. To properly identify a case (2a) suffix,
we maintain a summary vector X defined as follows. For any suffix i lying in case (2a),
X[i] = (σ −1) ·αLCP[i]+αLCPC[i] if EQBT[i] = 1, and X[i] = −(σ −1) ·αLCP[i]−αLCPC[i]
if EQBT[i] = 0. For any suffix j not in case (2a), we let X[i] = 0. Likewise, we define X

based on αLCP, αLCPC, and EQBT.

A. Ganguly, D. Patel, R. Shah, and S. V. Thankachan 71:17

Note that any entry in X and X is from the set [0, 2σ2]; hence, a wavelet over them
needs O(n log σ) bits and supports queries in O(log σ) time. Thus, if we can find out the leaf
ℓk, we can locate i′ by using the wavelet-tree over the two summary vectors X and X in
additional O(log σ) time.

To find ℓk, we use Lemma 13 and αFPB to first find the highest node v such that
αDepth(v) ≥ αFPB[i]. Note that ℓk is the rightmost leaf in the subtree of parent(v) if FPB[i]
is the first character of the edge on which it lies, and is the rightmost leaf in the subtree of v

otherwise. We explicitly store a bit-vector to distinguish between the cases. Using these, ℓk

is located in O(log σ) time.

4.5.3 Case (2b)
In our previous discussion, we have already addressed how to map a case (2b) leaf i in the
suffix tree to its corresponding leaf in the mini-tree (refer to Section 4.4.4). We have also
addressed that given the desired marked node (corresponding to i) in the mini-tree, how we
can find the leaf in the mini-tree corresponding to the LF-successor i′. Finally, we also know
how to map-back to i′ from the mini-tree. Note that all of these can be achieved by storing
the character vectors and the bit vector as a wavelet tree, and by using a succinct encoding
of the mini trees. What is left to discuss is how to find the marked node. To this end, we
present Lemma 14. Using this we can find the desired marked node in O(1) time given the
leaf corresponding to i in the mini-tree.

▶ Lemma 14. Consider a tree having t nodes, where each non-leaf node has at least two
children. Also, each node is marked or unmarked. By using an O(t)-bit data structure, given
a leaf x, in O(1) time, we can find the rightmost leaf y < x such that the child of lca(y, x) on
the path to y is marked.

Proof. Let u be a node. We associate 1 with u iff parent(u) has a child v before u in pre-order,
where v is marked. Pre-process the tree with Lemmas 15 and 16.

Given the query x, use Lemma 15 to locate the lowest ancestor u of x associated with a 1.
We find the marked sibling v of u to its left using Lemma 16. The time needed is O(1). ◀

▶ Lemma 15. Consider a tree having t nodes, where each non-leaf node has at least two
children. Also, each node is associated with a 0 or 1. By using an O(t)-bit data structure, in
O(1) time, we can find the lowest ancestor of a leaf that is associated with a 1.

Proof. Starting from the leftmost leaf, every g = c⌈log t⌉ leaves form a group, where c is a
constant to be decided later. (The last group may have fewer than g leaves.) Mark the lca of
the first and last leaf of each group. At each marked node, write the node-depth of its lowest
ancestor which is associated with a 1. The space needed is O(t

g log t) = O(t) bits. Let τu be
the subtree rooted at a marked node u. Since each node in τu is associated with a 0 or 1, the
number of possible trees is at most 2g (because τu has fewer than g non-leaf nodes). We store
a pointer from u to τu. The total space needed for storing all pointers is O(t

g log 2g) = O(t)
bits. For each possible τu, store the following satellite data in an additional array. Consider
the kth leftmost leaf ℓk in τu. Let v be the lowest node on the path from u to ℓk associated
with a 1. If v exists, store the node-depth of v relative to u, else store −1. The space needed
for each τu is O(g log g) = O(g log log t) bits. Therefore, the total space for all such trees is
O(2gg log log t). By choosing c = 1/2, this space is bounded by o(t) bits. Thus, the total
space is bounded by O(t) bits.

ICALP 2021

71:18 LF Successor: Compact Space Indexing for Order-Isomorphic Pattern Matching

Given a query leaf ℓk, we first locate the lowest marked node u∗ = lca(1 +
g⌊k/g⌋, max{t, g(1 + ⌊k/g⌋)}) of ℓk. Let d∗ be the depth stored at u∗. Let k′ = k − g⌊k/g⌋.
Check the k′th entry of the satellite array of u∗, and let it be d. If d = −1, then assign
D = d∗, else assign D = nodeDepth(u∗) + d. The lowest ancestor of ℓk associated with a 1 is
given by levelAncestor(ℓk, D). ◀

▶ Lemma 16. Consider a tree of t nodes, where some nodes are marked. By using an
O(t)-bit data structure, in O(1) time, given a node v, we can find a node u (if any) such
that u is the rightmost marked child of parent(v) and pre-order(u) < pre-order(v).

Proof. For each node w, we store a bit-vector Bw[tw], where tw is the number of children
of w. Assign Bw[i] = 1 iff the ith leftmost child of w, given by child(w, i), is marked. The
total space needed is O(t) bits. Given the query node v, we go to the bit vector Bv′ , where
v′ = parent(v). Let r = rankBv′ (sibRank(v), 1). If r = 0, then u does not exist; otherwise,
u = child(v′, selectBv′ (r, 1)). ◀

References
1 Brenda S. Baker. A theory of parameterized pattern matching: algorithms and applications.

In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing, May
16-18, 1993, San Diego, CA, USA, pages 71–80, 1993. doi:10.1145/167088.167115.

2 M. Burrows and D. J. Wheeler. A block-sorting lossless data compression algorithm, 1994.
3 Domenico Cantone, Simone Faro, and M. Oguzhan Külekci. The order-preserving pattern

matching problem in practice. Discret. Appl. Math., 274:11–25, 2020. doi:10.1016/j.dam.
2018.10.023.

4 Richard Cole and Ramesh Hariharan. Faster suffix tree construction with missing suffix
links. SIAM J. Comput., 33(1):26–42, 2003. An extended abstract appeared in STOC 2000.
doi:10.1137/S0097539701424465.

5 Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka, Marcin Kubica, Alessio Langiu,
Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, and Tomasz Walen. Order-preserving
indexing. Theor. Comput. Sci., 638:122–135, 2016. doi:10.1016/j.tcs.2015.06.050.

6 Gianni Decaroli, Travis Gagie, and Giovanni Manzini. A compact index for order-preserving
pattern matching. In 2017 Data Compression Conference, DCC 2017, Snowbird, UT, USA,
April 4-7, 2017, pages 72–81, 2017. doi:10.1109/DCC.2017.35.

7 Paolo Ferragina and Giovanni Manzini. Indexing compressed text. J. ACM, 52(4):552–581,
2005. An extended abstract appeared in FOCS 2000 under the title “Opportunistic Data
Structures with Applications”. doi:10.1145/1082036.1082039.

8 Travis Gagie, Giovanni Manzini, and Rossano Venturini. An encoding for order-preserving
matching. In 25th Annual European Symposium on Algorithms, ESA 2017, September 4-6,
2017, Vienna, Austria, pages 38:1–38:15, 2017. doi:10.4230/LIPIcs.ESA.2017.38.

9 Arnab Ganguly, Wing-Kai Hon, Kunihiko Sadakane, Rahul Shah, Sharma V. Thankachan,
and Yilin Yang. A framework for designing space-efficient dictionaries for parameterized and
order-preserving matching. Theor. Comput. Sci., 854:52–62, 2021. doi:10.1016/j.tcs.2020.
11.036.

10 Arnab Ganguly, Rahul Shah, and Sharma V Thankachan. pBWT: Achieving succinct data
structures for parameterized pattern matching and related problems. In Proceedings of the
Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 397–407. Society
for Industrial and Applied Mathematics, 2017.

11 Arnab Ganguly, Rahul Shah, and Sharma V. Thankachan. Structural pattern matching -
succinctly. In Yoshio Okamoto and Takeshi Tokuyama, editors, 28th International Symposium
on Algorithms and Computation, ISAAC 2017, December 9-12, 2017, Phuket, Thailand,
volume 92 of LIPIcs, pages 35:1–35:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPIcs.ISAAC.2017.35.

https://doi.org/10.1145/167088.167115
https://doi.org/10.1016/j.dam.2018.10.023
https://doi.org/10.1016/j.dam.2018.10.023
https://doi.org/10.1137/S0097539701424465
https://doi.org/10.1016/j.tcs.2015.06.050
https://doi.org/10.1109/DCC.2017.35
https://doi.org/10.1145/1082036.1082039
https://doi.org/10.4230/LIPIcs.ESA.2017.38
https://doi.org/10.1016/j.tcs.2020.11.036
https://doi.org/10.1016/j.tcs.2020.11.036
https://doi.org/10.4230/LIPIcs.ISAAC.2017.35

A. Ganguly, D. Patel, R. Shah, and S. V. Thankachan 71:19

12 Roberto Grossi, Ankur Gupta, and Jeffrey Scott Vitter. High-order entropy-compressed
text indexes. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, January 12-14, 2003, Baltimore, Maryland, USA., pages 841–850, 2003.

13 Roberto Grossi and Jeffrey Scott Vitter. Compressed suffix arrays and suffix trees with
applications to text indexing and string matching. SIAM J. Comput., 35(2):378–407, 2005.
An extended abstract appeared in STOC 2000. doi:10.1137/S0097539702402354.

14 Jinil Kim, Peter Eades, Rudolf Fleischer, Seok-Hee Hong, Costas S. Iliopoulos, Kunsoo Park,
Simon J. Puglisi, and Takeshi Tokuyama. Order-preserving matching. Theor. Comput. Sci.,
525:68–79, 2014. doi:10.1016/j.tcs.2013.10.006.

15 Sung-Hwan Kim and Hwan-Gue Cho. Simpler fm-index for parameterized string matching.
Inf. Process. Lett., 165:106026, 2021. doi:10.1016/j.ipl.2020.106026.

16 Marcin Kubica, Tomasz Kulczyński, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń.
A linear time algorithm for consecutive permutation pattern matching. Information Processing
Letters, 113(12):430–433, 2013.

17 Udi Manber and Eugene W. Myers. Suffix arrays: A new method for on-line string searches.
SIAM J. Comput., 22(5):935–948, 1993. doi:10.1137/0222058.

18 Juan Mendivelso, Sharma V. Thankachan, and Yoan J. Pinzón. A brief history of parameterized
matching problems. Discret. Appl. Math., 274:103–115, 2020. doi:10.1016/j.dam.2018.07.
017.

19 Temma Nakamura, Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda. Order preserving
pattern matching on trees and dags. In Gabriele Fici, Marinella Sciortino, and Rossano
Venturini, editors, String Processing and Information Retrieval - 24th International Symposium,
SPIRE 2017, Palermo, Italy, September 26-29, 2017, Proceedings, volume 10508 of Lecture
Notes in Computer Science, pages 271–277. Springer, 2017. doi:10.1007/978-3-319-67428-5_
23.

20 Gonzalo Navarro. Compact data structures: A practical approach. Cambridge University Press,
2016.

21 Gonzalo Navarro and Kunihiko Sadakane. Fully functional static and dynamic succinct trees.
ACM Trans. Algorithms, 10(3):16:1–16:39, 2014. An extended abstract appeared in SODA 2010.
doi:10.1145/2601073.

22 Kunihiko Sadakane. Compressed suffix trees with full functionality. Theory Comput. Syst.,
41(4):589–607, 2007. doi:10.1007/s00224-006-1198-x.

23 Peter Weiner. Linear pattern matching algorithms. In 14th Annual Symposium on Switching
and Automata Theory, Iowa City, Iowa, USA, October 15-17, 1973, pages 1–11, 1973. doi:
10.1109/SWAT.1973.13.

ICALP 2021

https://doi.org/10.1137/S0097539702402354
https://doi.org/10.1016/j.tcs.2013.10.006
https://doi.org/10.1016/j.ipl.2020.106026
https://doi.org/10.1137/0222058
https://doi.org/10.1016/j.dam.2018.07.017
https://doi.org/10.1016/j.dam.2018.07.017
https://doi.org/10.1007/978-3-319-67428-5_23
https://doi.org/10.1007/978-3-319-67428-5_23
https://doi.org/10.1145/2601073
https://doi.org/10.1007/s00224-006-1198-x
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.1109/SWAT.1973.13

	1 Introduction
	1.1 Generalizing the Philosophy of BWT and LF Mapping
	1.2 Challenges in Implementing (Generalised) LF Mapping Compactly
	1.3 Our Contribution

	2 Structural Properties of the Order Isomorphic Suffixes
	3 LF Successor and Order-Isomorphic Text Indexing
	4 Computing LF Successor in Time O(log sigma) Using Compact Space
	4.1 Four Cases for Suffix and its LF Successor
	4.2 Storing Augmenting Information for each Leaf
	4.3 Query Algorithm
	4.4 Proofs of Correctness
	4.4.1 Case (1a)
	4.4.2 Case (1b)
	4.4.3 Case (2a)
	4.4.4 Case (2b)

	4.5 Implementation and Complexity Analysis
	4.5.1 Case (1a) and Case (1b)
	4.5.2 Case (2a)
	4.5.3 Case (2b)

