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Abstract
The edit distance (ED) and longest common subsequence (LCS) are two fundamental problems which
quantify how similar two strings are to one another. In this paper, we first consider these problems
in the asymmetric streaming model introduced by Andoni, Krauthgamer and Onak [11] (FOCS’10)
and Saks and Seshadhri [64] (SODA’13). In this model we have random access to one string and
streaming access the other one. Our main contribution is a constant factor approximation algorithm
for ED with memory Õ(nδ) for any constant δ > 0. In addition to this, we present an upper bound of
Õϵ(

√
n) on the memory needed to approximate ED or LCS within a factor 1 ± ϵ. All our algorithms

are deterministic and run in polynomial time in a single pass.
We further study small-space approximation algorithms for ED, LCS, and longest increasing

sequence (LIS) in the non-streaming setting. Here, we design algorithms that achieve 1 ± ϵ approx-
imation for all three problems, where ϵ > 0 can be any constant and even slightly sub-constant.
Our algorithms only use poly-logarithmic space while maintaining a polynomial running time. This
significantly improves previous results in terms of space complexity, where all known results need
to use space at least Ω(

√
n). Our algorithms make novel use of triangle inequality and carefully

designed recursions to save space, which can be of independent interest.
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1 Introduction

We consider edit distance (ED) and longest common subsequence (LCS) which are classic
problems measuring the similarity between two strings. Edit distance is defined on two
strings s and s̄ and seeks the smallest number of character insertions, character deletions,
and character substitutions to transform s into s̄. While in edit distance the goal is to make
a transformation, longest common subsequence asks for the largest string that appears as a
subsequence in both s and s̄.

Edit distance and longest common subsequence have applications in various contexts,
such as computational biology, text processing, compiler optimization, data analysis, image
analysis, among others. As a result, both problems have been subject to a plethora of studies
since 1950 (e.g. see [19, 20, 2, 14, 13, 11, 47, 17, 32, 34, 46, 57, 33, 42, 54, 23, 6, 26, 63, 24,
62, 48, 40, 38, 59, 3, 25, 45, 8, 10, 9, 7, 15, 39, 29, 53, 64, 43, 4, 21, 44, 26]).

Both problems are often used to measure the similarity of long strings. For example, a
human genome consists of almost three billion base pairs that are modeled as a string for
similarity testing. Classic algorithms for the problems require quadratic runtime as well as
linear memory to find a solution. These bounds might be impractical for some real-world
applications. Therefore, recent work on ED and LCS focus on obtaining fast algorithms [61,
44, 20, 13, 11, 8, 9, 60, 22, 52, 26] as well as solutions with small memory [45, 20, 28, 41].

As can be seen from the aforementioned references, while there have been a lot of previous
works on obtaining fast algorithms, the equally important question of achieving algorithms
using small space has not been studied in depth. In this paper our focus is to design
algorithms with significantly improved space complexity for these string measures, in several
different models.

Our first model is related to the streaming setting studied in most previous works on space
complexity for ED and LCS. This is an increasingly popular framework to model memory
constraints. In this setting, the input arrives as a data stream while only sublinear memory
is available to the algorithm. The goal is to design an algorithm that solves/approximates
the solution by taking a few passes over the data. While several works have studied ED and
LCS in the streaming model (see Section 1.1 for a detailed discussion), positive results are
known only for the low-distance regime [56, 66, 18, 28, 27]. In addition to this, strong lower
bounds are given for the streaming variant of LCS [56, 66].

Inspired by the work of [11] (FOCS’10), Saks and Seshadhri [64] (SODA’13) studied the
problem of approximating n − LCS (which is half of the the edit distance between two strings
of length n when only insertions and deletions are allowed) in the asymmetric model. In this
model we have random access to one of the strings (say s̄) and streaming access to the other
string (say s). They showed that (1 + ϵ) approximation of n − LCS can be found with a
memory of Õϵ(

√
n). Another work by Saha [63] gives an algorithm for ED in this setting,

using a memory of O(
√

n
ϵ ), and achieving an ϵn additive approximation.

In this work, we study ED and LCS in the asymmetric streaming model. We present
a single-pass deterministic constant factor approximation algorithm for ED that uses only
Õ(nδ) memory for any constant δ > 0. In addition to this, we show that with the memory of
Õϵ(
√

n) one can approximate both ED and LCS within a factor of 1± ϵ. All our algorithms
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are deterministic and run in a single-pass and in polynomial time. Moreover, the memory
bound of our algorithm for LCS is tight due to a lower bound given in [37]. It is also worth
mentioning that the lower bound of Ω(log2 n/ϵ) is known for computing 1 + ϵ approximation
of n − LCS due to the result of [58].

LIS and distance to monotonicity (DTM) are special cases of LCS and ED that are also
studied in the streaming model [41, 64]. In these two problems, one of the strings is a length
n string over the alphabet [n] and the second string is the sorted permutation ⟨1, 2, . . . , n⟩.
Therefore, any asymmetric streaming algorithm for LCS and ED also implies a classical
streaming algorithm for LIS and DTM, since we can assume that we have random access to
the sorted permutation ⟨1, 2, . . . , n⟩. As a result, our algorithms for ED and LCS can be seen
as a generalization of [41, 64] on streaming LIS and distance to monotonicity.

More generally, we also study the memory requirements of ED, LCS, and LIS in the
non-streaming model, where we have random access to all input strings. Even in this setting,
classic algorithms that compute ED and LCS exactly using dynamic programming need
linear space. A recent work [50] slightly improves the space complexity to O( n log1.5 n

2
√

log n
) while

preserving a polynomial running time, however achieving strongly sublinear space (i.e., space
n1−α for some constant α > 0) with a polynomial running time for ED and LCS still seems
out of reach. Therefore, in this paper we turn to the relaxed goal of approximating ED and
LCS using significantly smaller space while preserving a polynomial running time.

The only previous positive results in this setting we are aware of, are the previously
mentioned works on streaming algorithms and the work of Saha [63]. Again, for ED the
streaming results only work in the low-distance regime, except the work of Saks and Seshadhri
[64] which gives a (1 + ϵ) approximation of n − LCS using Õϵ(

√
n) space. Additionally, [64]

also gives a randomized algorithm that achieves an ϵn additive approximation of LCS in
this model, using space O(k log2 n/ϵ) where k is the maximum number of times any symbol
appears in y. [63] gives a small space algorithm for ED, although the result only works for
constant alphabet size and only provides an additive approximation instead of multiplicative
approximation. Further the space needed is at least Ω(n2/3). For LIS the situation is slightly
better. In particular, the work of Gopalan, Jayram, Krauthgamer and Kumar [41] provides
a deterministic streaming algorithm that approximates LIS to within a 1− ϵ factor, using
time O(n log n) and space O(

√
n/ϵ log n); while a very recent work by Kiyomi, Ono, Otachi,

Schweitzer and Tarui [51] obtains a deterministic algorithm that computes LIS exactly using
O(n1.5 log n) time and O(

√
n log n) space. [63] in addition provides an algorithm for LIS

using space O( log n
ϵ ) that achieves an ϵn additive approximation. Thus here we seek to obtain

an 1− ϵ approximation of LIS using space much smaller than
√

n.
More broadly, the questions studied in this paper are closely related to the general question

of non-deterministic small space computation vs. deterministic small space computation.
Specifically, the decision versions of all three problems (ED, LCS, and LIS) can be easily
shown to be in the class NL (i.e., non-deterministic log-space), and the question of whether
NL = L (i.e., if non-deterministic log-space computation is equivalent to deterministic log-
space computation) is a major open question in complexity theory. Note that if NL = L,
this would trivially imply polynomial time algorithms for exactly computing ED, LCS, and
LIS in logspace. However, although we know that NL ⊆ P and NL ⊆ SPACE(log2 n) (by
Savitch’s theorem [65]), it is not known if every problem in NL can be solved simultaneously
in polynomial time and polylog space, i.e., if NL ⊆ SC where SC is Steve’s class. In fact,
it is not known if an NL-complete language (e.g., directed s-t connectivity) can be solved
simultaneously in polynomial time and strongly sub linear space (i.e., space n1−α for some
fixed constant α > 0). Thus, studying special problems such as ED, LCS, and LIS, and the
relaxed version of approximation is a reasonable first step towards major open problems.

ICALP 2021
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In the non-streaming setting, for all three problems ED, LCS, and LIS, we give efficient
deterministic approximation algorithms that can achieve 1± ϵ approximation, using even
polylog(n) space while maintaining a polynomial running time. By relaxing the space com-
plexity to nδ for any constant δ > 0, we obtain algorithms whose running time is comparable
to the standard dynamic programming approach. This is in sharp contrast to the time
complexity of ED, LCS, where we only know how to beat the standard dynamic programming
significantly by using randomized algorithms and with much worse approximation guarantees.

Last but not least, it turns out that we can also use our techniques developed for the non-
streaming model to significantly reduce the running time of our algorithm in the asymmetric
streaming model, resulting in a polynomial time algorithm.

1.1 Related work
Quadratic time solutions for ED and LCS have been known for many decades [55]. Recently,
it has been shown that a truly subquadratic time solution for either ED or LCS refutes
Strong Exponential Time Hypothesis (SETH), a conjecture widely believed in the community
(see [14, 2, 25]). Therefore, much attention is given to approximation algorithms for the
two problems. For edit distance, a series of works [54], [16], [17], and [13] improve the
approximation factor culminating in the seminal work of Andoni, Krauthgamer, and Onak [11]
that finally obtains a polylogarithmic approximation factor in near-linear time. More recently
constant factor approximation algorithms with truly subquadratic runtimes are obtained for
edit distance (a question which was open for a few decades): first a quantum algorithm [20],
then a classic solution [26], and finally near linear time solutions are given [22, 52, 12].
LCS has also received tremendous attention in recent years [44, 60, 61, 1, 4, 30]. Only
trivial solutions were known for LCS until very recently: a 2 approximate solution when the
alphabet is 0/1 and an O(

√
n) approximate solution for general alphabets in linear time.

Both these bounds are recently improved by [44] and Rubinstein and Song [60] (see also a
recent approximation algorithms given by [61]).

Streaming algorithms for edit distance have been limited to the case that the distance
between the two strings is bounded by a parameter k which is substantially smaller than n.
In particular, [28] gives a randomized one-pass algorithm in a variant of the streaming model
where one can scan the two strings s and s̄ simultaneously in the coordinated fashion, using
space O(k6) and time O(n + k6). This was later improved to space O(k) and time O(n + k2)
in [27, 18]. [18] further gives a randomized one-pass algorithm in the standard streaming
model using space O(k8 polylog n) and time Õ(k2n). It is improved to O(k3 polylog n) space
recently in [49]. Note that in all these algorithms the space can be as large as n.

Table 1 The results for asymmetric streaming model of this paper along with previous work.

problem approximation factor memory reference
ED O(21/δ) Õ(nδ/δ) Theorem 1
ED 1 + ϵ Õϵ(

√
n) Theorem 2

LCS 1 − ϵ Õϵ(
√

n) Theorem 2
LIS 1 − ϵ Õϵ(

√
n) [41] (SODA’07)

n − LCS 1 + ϵ Õϵ(
√

n) [64] (SODA’13)
DTM 1 + ϵ Oϵ(log2 n) [64, 58] (SODA’13, SODA’14)
DTM 1 + ϵ Õϵ(

√
n) [41] (SODA’07)

DTM 2 O(log2 n) [35] (SODA’08)
DTM 4 O(log2 n) [41] (SODA’07)



K. Cheng et al. 54:5

1.2 Our Results
We summarize our main theorems in this section and in Table 1. In the next subsection we
demonstrate our main techniques and general ideas in details. Formal proofs are deferred to
the appendix. First we start with the following results for the asymmetric streaming model.

▶ Theorem 1. Given online string s and offline string s̄ both in Σn, for any constant δ > 0,
there exists a deterministic algorithm that, making one pass through s, outputs a O(21/δ)
approximation of ED(s, s̄) using Õ(nδ/δ) space and Õδ(n4) time.

▶ Theorem 2. Given online string s and offline string s̄ both in Σn, for any constant
ϵ ∈ (0, 1), there is a deterministic algorithm that, making one pass through s, outputs a
(1− ϵ)-approximation of LCS(s, s̄) using Õ(

√
n

ϵ ) space, or (1 + ϵ)-approximation of ED(s, s̄)
using Õ(

√
n
ϵ ) space, in polynomial time.

Theorem 1 is surprising in the sense that by allowing random access to one string, we
can design an efficient deterministic one pass streaming algorithm achieving a constant
approximation of ED with space nδ for any constant δ > 0. Previously no such positive
results with sublinear space are known in the full streaming model even for randomized
algorithms. The proof of this theorem makes novel uses of triangle inequality, and combines
the techniques we develop for the non-streaming model. Theorem 2 further shows that we
can in fact achieve an (1 + ϵ)-approximation of ED, albeit using a larger space (Õ(

√
n
ϵ )).

The result also extends to give the first (1− ϵ)-approximation of LCS with sublinear space in
the asymmetric streaming model, and the space matches the lower bound implied from the
lower bound for LIS in [37].

Next we bring our results for the (non-streaming) small space model.

▶ Theorem 3. Given any strings x and y each of length n, there are deterministic algorithms
that approximate ED(x, y) with the following parameters:
1. For any constants δ ∈ (0, 1

2 ) and ϵ ∈ (0, 1), an algorithm that outputs a 1+ϵ approximation
of ED(x, y) using Õϵ,δ(nδ) space and Õϵ,δ(n2) time.

2. An algorithm that outputs a 1 + O( 1
log log n ) approximation of ED(x, y) using O( log4 n

log log n )
space and n7+o(1) time.

Note that our first algorithm for ED uses roughly the same running time as the standard
dynamic programming, but much smaller space. Indeed, we can use space nδ for any constant
δ > 0. This also significantly improves the previous result of [64], which needs to use space
Ω(
√

n log n) and only provides a 2 + ϵ approximation for standard ED. With a larger (but
still polynomial) running time, we can achieve space complexity O( log4 n

log log n ).

▶ Theorem 4. Given any strings x and y each of length n, there are deterministic algorithms
that approximate LCS(x, y) with the following parameters:
1. For any constants δ ∈ (0, 1

2 ) such that 1
δ is an integer, and ϵ ∈ (0, 1),an algorithm that

outputs a 1− ϵ approximation of LCS(x, y) using Õϵ,δ(nδ) space and Õϵ,δ(n3−δ) time.
2. An algorithm that outputs a 1−O( 1

log log n ) approximation of LCS(x, y), using O( log4 n
log log n )

space and n6+o(1) time.

To the best of our knowledge, Theorem 4 (together with Theorem 2) is the first 1 − ϵ

approximation of LCS using truly sub-linear space, and in fact we can achieve space nδ for
any constant δ > 0 with only a slightly larger running time than the standard dynamic
programming approach. We can achieve space O( log4 n

log log n ) with an even larger (but still
polynomial) running time. For LIS, we have a similar theorem.

ICALP 2021
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▶ Theorem 5. Given any string x of length n, there are deterministic algorithms that
approximate LIS(x) with the following parameters:
1. For any constants δ ∈ (0, 1

2 ) such that 1
δ is an integer, and ϵ ∈ (0, 1), an algorithm that

computes a 1− ϵ approximation of LIS(x) using Õϵ,δ(nδ) space and Õϵ,δ(n2−2δ) time.
2. An algorithm that outputs a 1 − O( 1

log log n ) approximation of LIS(x) using O( log4 n
log log n )

space and n5+o(1) time.

2 Preliminaries

Let Σ be an alphabet. For a string s ∈ Σn, we use s[i] to denote the ith character in s. We
use s[i, j] to denote the substring of s from the ith character to the jth character. We also
use s[i, j) to denote the substring of s from the ith character to (j − 1)th character (s[i, i) is
an empty string). We denote the concatenation of two strings x and y by x ◦ y. We use two
special symbols ∞ and −∞ with ∞ > i and −∞ < i for any character i ∈ Σ.

Given two strings s and s̄ in Σn, the longest common subsequence (LCS) of s and s̄ is a
string t with the maximum length such that t is a subsequence of both s and s̄. In other
words, t can be obtained from both s and s̄ by removing some of the characters. We use
LCS(s, s̄) to denote the length of the LCS of two strings s and s̄. The edit distance (ED)
between two strings s and s̄, denoted by ED(s, s̄), is the minimum number of character
insertions, deletions, and substitutions needed to transform one string to the other string.
The longest increasing subsequence (LIS) problem is defined as follows. We assume there is a
given total order on the alphabet set Σ. We say the string x ∈ Σt is an increasing subsequence
of s ∈ Σn if there exists indices 1 ≤ i1 < i2 < · · · < it ≤ n such that x = si1si2 · · · sit and
si1 < si2 < · · · < sit

. We denote the length of the longest increasing subsequence of string s

by LIS(s).

Asymmetric streaming model. Throughout this paper, we assume that the input of the
algorithm consists of two strings s̄ and s. We assume for simplicity and without loss of
generality that the two strings have equal length n. We call the string s̄ the offline string
and assume that the algorithm has random access to the characters of s̄ via making a query.
The other string s arrives as a stream of characters. We call s the online string.

3 Constant Approximation for Streaming Edit distance

Our main results in the asymmetric streaming setting is an algorithm that given any constant
δ > 0 finds a constant approximation of the edit distance using Õ(nδ) memory. As we
discussed in the previous section, instead of directly solving the edit distance, we aim to find
a substring of s such that its edit distance is smallest to s̄. We can this problem Closest
Substring. It is defined as follows. It takes two inputs: an offline string s̄ and an online string
s. The goal is to find two indices l, r and ED(s̄[l, r], s) such that ED(s̄[l, r], s) ≤ ED(s̄[i, j], s)
for every 1 ≤ i ≤ j ≤ n.

We first show that how solving the closest substring problem can give us a good approx-
imation of the edit distance. Let s̄[l, r] be the substring of s̄ with the minimum edit distance
to s. We know by the definition of edit distance that it satisfies the triangle inequality1.

1 ED(s1, s3) ≤ ED(s1, s2) + ED(s2, s3) for any strings s1, s2, s3.
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Therefore, we have

ED(s̄, s) ≤ ED(s̄, s̄[l, r]) + ED(s̄[l, r], s) . (1)

We also have,

ED(s̄, s̄[l, r]) + ED(s̄[l, r], s)
≤ ED(s̄, s) + ED(s̄[l, r], s) + ED(s̄[l, r], s) By the triangle inequality.
≤ 3ED(s̄, s) Since s̄[l, r] has the minimum ED to s.

(2)

It follows from (1) and (2) that ED(s̄, s̄[l, r]) + ED(s̄[l, r], s) is a 3-approximation of the
edit distance between s̄ and s. Therefore, if we design a streaming algorithm that finds
s̄[l, r] and its edit distance from s, we can then estimate the edit distance of s and s̄ by
computing ED(s̄, s̄[l, r]) + ED(s̄[l, r], s). In the following theorem which directly implies from
Savitch’s theorem [65], we show that ED(s̄, s̄[l, r]) + ED(s̄[l, r], s) can be computed using
a poly-logarithmic memory. In specific, we show that the edit distance between any two
substrings of the offline string can be computed using a very small memory of O(log2 n).
The proof is deferred to the full version [36]

▶ Theorem 6. Suppose that we have random access to two given strings s and s̄ of length n.
Then LCS(s, s̄) and ED(s, s̄) can be computed using O(log2 n) memory.

Therefore, by finding the substring that has the minimum edit distance to s, we can
get a good approximation of the edit distance. Nonetheless, we do not know any streaming
algorithm with the memory of O(nδ) for finding closest substring, and our algorithm only
finds an approximate solution for this problem. In other words, it finds a substring of s̄ such
that its approximate edit distance to s is close to the minimum. In the rest of the section, we
show that how we can approximately solve the closest substring problem with the memory
of Õ(nδ). Given an online string, we divide the online string into n1−δ windows of size nδ.
Our algorithm (formally as Algorithm 1), then recursively finds substrings of s̄ that have
the minimum edit distance from each of these windows. Note that for each window we can
store the result of solving the closest substring problem in O(log n) (We can store only three
numbers which are the start and the end of the interval and the approximate edit distance
to the online string). Therefore, by the end of all recursive calls our algorithm needs to store
O(nδ) values.

In order to find the solution of the closest substring problem using these partial solutions,
our algorithm considers all different substrings s̄[l, r] of s̄ and all different mappings between
the windows of the s and the substrings of s̄[l, r]. Then, for any mapping it estimates the
edit distance between a window of s and its mapped substring of s̄[l, r] using the solution of
the closest substring problem that we have found in the recursive call.

In order to analyze our algorithm, we first show that finding any approximation of the
closest substring problem, can yield us an approximation for the edit distance. We first
define an approximate version of the closest substring problem as follows.

▶ Definition 7. Given an offline string s̄ and online string s, we say that the substring s̄[l, r]
along with its approximate edit distance d is an α-approximation for the closest substring
problem if for any substring s̄[l∗, r∗] we have

ED(s̄[l, r], s) ≤ d ≤ α · ED(s̄[l∗, r∗], s) . (3)

ICALP 2021
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Algorithm 1 Algorithm APPROXIMATE-CLOSEST-SUBSTR for approximating ED.

Data: An offline string s̄ of length n, a stream of characters of the online string s, and a
parameter δ > 0.

1: if |s| ≤ nδ then
2: Store all characters of s in the memory.
3: Find a substring of s̄ that has the minimum edit distance to s. Let s̄[l, r] be

this substring and d be its edit distance.
4: return l, r and d.
5: else
6: ξ ← nδ.
7: Divide s into ξ windows s∗

1, s∗
2, . . . , s∗

ξ of size |s|/ξ.
8: for i ∈ [ξ] do
9: Recursively find the closest substring of s̄ from s∗

i . Let li, ri be the start
and the end of this substring respectively, and di be the approximate edit
distance of this substring to s∗

i .
10: min_dist←∞.
11: for 1 ≤ p0 ≤ p1 ≤ . . . ≤ pξ ≤ n + 1 do
12: dist =

∑ξ
i=1 di + ED

(
s̄[pi−1, pi), s̄[li, ri]

)
.

13: if dist < min_dist then
14: min_dist← dist.
15: l← p0.
16: r ← pξ − 1.
17: return l, r and min_dist.

In the following claim we show that we can use any α-approximation of the closest substring
problem to get a O(α)-approximation for the edit distance.

▷ Claim 8. Let s̄[l, r] be an α approximation of the closest substring problem and let d be
its approximate edit distance to s. Then for any substring s̄[l∗, r∗], d + ED

(
s̄[l, r], s̄[l∗, r∗]

)
is

a (2α + 1)-approximation for the edit distance between s̄[l∗, r∗] and s.

Proof. First we show that
(
d + ED

(
s̄[l, r], s̄[l∗, r∗]

))
is not less than the edit distance between

s̄[l∗, r∗] and s.

d + ED
(
s̄[l, r], s̄[l∗, r∗]

)
≥ ED(s̄[l, r], s) + ED

(
s̄[l, r], s̄[l∗, r∗]

)
By (3).

≥ ED
(
s̄[l∗, r∗], s

)
. By the triangle inequality.

We now show that the value of
(
d + ED

(
s̄[l, r], s̄[l∗, r∗]

))
is at most (2α + 1) · ED

(
s, s̄[l∗, r∗]

)
.

Thus, it gives us a (2α + 1)-approximation of the edit distance. We have

d + ED
(
s̄[l, r], s̄[l∗, r∗]

)
≤ d + ED

(
s, s̄[l, r]

)
+ ED

(
s, s̄[l∗, r∗]

)
By the triangle inequality.

≤ d + α · ED
(
s, s̄[l∗, r∗]

)
+ ED

(
s, s̄[l∗, r∗]

)
By (3).

= d + (α + 1) · ED
(
s, s̄[l∗, r∗]

)
≤ α · ED

(
s, s̄[l∗, r∗]

)
+ (α + 1) · ED

(
s, s̄[l∗, r∗]

)
By (3).

= (2α + 1) · ED
(
s, s̄[l∗, r∗]

)
,

which completes the proof of the claim. ◁
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Based on our discussion above, we design an algorithm that finds a constant approximation
of the edit distance using Õ(nδ) memory for any δ > 0. The algorithm first divides the
online string into nδ windows with the equal length. Therefore, the length of each window
is n1−δ. It then finds an approximate solution of the closest substring problem for each
window recursively. By Claim 8, we can use the approximate solution of the closest substring
problem for each window, to find its edit distance from every other substring of the offline
string. The algorithm uses these approximate solutions to approximate the edit distance
between the entire online string and any substring of the offline string.

Note that by each recursive call the length of the online string will get smaller by a
multiplicative factor of n−δ. Therefore, when the depth of the recursive calls becomes 1/δ,
the length of the remaining online string is bounded by O(nδ) and we can store all of this
remaining online string in the memory and find the exact solution of the closest substring
problem. Thus, the depth of the recursion is bounded by O(1/δ). In the following theorem
we show that the approximation ratio of our algorithm is O(21/δ).

▶ Theorem 9. Given an offline string s̄, an online string s and any constant δ > 0, let n be
the length of the offline string and nγ be the length of the online string where γ > 0. Then,
Algorithm 1 finds a O

(
2γ/δ

)
approximation for the closest substring problem.

The full proof of Theorem 9 is deferred to the full version [36]. Now we are ready to
prove a version of Theorem 1 without the time complexity bound. We introduce how to
achieve polynomial runtime in Section 5.2.

Proof of Theorem 1 without the time complexity bound. By Theorem 9, Algorithm 1
finds a O(21/δ) approximation of the closest substring problem. Recall that by Theorem 6,
we can find the edit distance of any two substrings of s̄ using a very small memory. Therefore
by Claim 8, we can find a O(21/δ) approximation of the edit distance between s and s̄.

Now we show that the memory of Algorithm 1 is at most Õ(nδ/δ). While the length of
the online string is larger than nδ, Algorithm 1 divides the online string into nδ windows
and recursively solves the closest substring problem for each window. Therefore, by each
recursive call the length of the online string will decrease by a multiplicative factor of n−δ.
Thus, the maximum depth of the recursive calls is bounded by O(1/δ). At each call the
algorithm acquires a memory of Õ(nδ) which is the memory needed for storing the result of
the recursive calls and iterating over all possible mappings. Therefore, the memory of the
algorithm is bounded by Õ(nδ/δ). ◀

4 1 + ϵ-Approximation of Streaming ED

A previous work by Saks and Seshadri [64] studied the approximation algorithm for deletion
distance in the asymmetric streaming model. Here, the deletion distance (DD) is defined
as the minimum number of insertions and deletions required to transform s to s̄. Thus,
assuming |s| = |s̄| = n, DD(s, s̄) = 2(n− LCS(s, s̄)). [64] gives an algorithm that outputs a
(1 + ϵ) approximation of DD(s, s̄) for any constant ϵ > 0 with Õϵ(

√
n) space.

▶ Theorem 10 ([64]). Given an offline string s̄, an online string s, both with length n, and
any constant ϵ ∈ (0, 1], there is a deterministic algorithm that outputs a 1 + ϵ approximation
of DD(s̄, s) with O(

√
n log n/ϵ) space in polynomial time.

Although deletion distance is not equivalent to edit distance we study in this paper, there
is a simple transformation that reduces edit distance to deletion distance. The transformation
can be found in previous works (see example 6.9 of [67] for example). More specifically,
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for any given string s, we can obtain a new string s′ by prepending a special symbol
$ ($ is not the in the alphabet set) to each character of s. Thus, say s = s1s2 · · · sn,
we let s′ = $s1$s2 · · · $sn ∈ (Σ ∪ {$})2n. We can obtain a string s̄′ from s̄ with the same
transformation. The following lemma shows that the above transformation reduces computing
edit distance to computing deletion distance.

▶ Lemma 11. DD(s′, s̄′) = 2ED(s, s̄).

Proof. We first show that 2ED(s, s̄) ≥ DD(s′, s̄′). Assume we can transform s to s̄ with d

edit operations (insertion, deletion, and substitution), we show that it is possible to transform
s′ to s̄′ with 2d insdel operations (insertion and deletion). To see this, if we delete one symbol
from s, we delete the corresponding symbol in s′ together with the $ prepended to it. If we
insert one symbol to s, we insert the corresponding symbol to s′ together with a $ prepended
to it. If we substitute one symbol with another in s, we can first delete the corresponding
symbol in s′ and insert the new symbol at the same position.

We now show that 2ED(s, s̄) ≤ DD(s′, s̄′). We consider an LCS between s′ and s̄′, and
consider each pair of adjacent matches of $ in this LCS. Without loss of generality, we can
assume that in at least one side (say s′), this pair looks like $a$ where a is a symbol (we
can also append a $ at the end if needed), because otherwise if both sides have at least two
symbols between the $’s, then there is another pair of $’s in the middle that can be matched
and added to the LCS. Suppose now in s̄′ there are t non-$ symbols between the two $’s.
We have two cases: 1. If in the LCS, a is matched to one of the t symbols in s̄. Then the
number of insdel operations between s′ and s̄′ we need for this part is 2t− 2, while for the
corresponding part of s and s̄, we only need t− 1 deletions. 2. If in the LCS a is not matched
to any of the t symbols in s̄. Then the number of insdel operations between s′ and s̄′ we need
for this part is 2t, while for s and s̄ we need t− 1 deletions and one substitution (we can
substitute a for any of the t symbols in s̄), so that’s t operations. Thus, if we can transform
s′ to s̄′ with d insdel operations, we can transform s to s̄ with d

2 edit operations. ◀

Note that the reduction can be implemented in a streaming manner, thus the following
theorem is a direct result of the reduction and Theorem 10.

▶ Theorem 12. Given an offline string s̄, an online string s, both with length n, and any
constant ϵ > 0, there is a deterministic algorithm that outputs a 1 + ϵ approximation of
ED(s̄, s) with Õ(

√
n
ϵ ) space in polynomial time.

5 Space Efficient Algorithms for ED in the Non-Streaming Model

5.1 Space Efficient algorithms for ED
In this section, we present our algorithm for approximating ED with small space. The
pseudocode for our algorithm is given in Algorithm 2. Our algorithm is based on recursion.
In each level of recursion, we use an idea from [45] to approximate the edit distance between
certain pairs of substrings. We start by giving a brief description of the algorithm in [45].

Let x and y be two input strings such that |x| = n and |y| = m. We assume a value ∆ is
given to us. If ∆ is a (1+ϵ)-approximation of ED(x, y), then the algorithm will output a good
approximation of ED(x, y). Otherwise, the algorithm will output a value at least ED(x, y).
Thus, we can try every ∆ = ⌈(1 + ϵ)i⌉ ≤ n for some integer i and take the minimum. This
only increases the running time by a log1+ϵ n factor.

Given such a ∆, we first divide x into b blocks each of length n
b . [45] showed that, for each

block of x that is not matched to a too large or too small interval in y, there is a way to choose
O( b

ϵ log1+ϵ n) = O( b
ϵ2 log n) candidate intervals such that one of them is close enough to the
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Algorithm 2 Algorithm SpaceEfficientApproxED.

Data: Two strings x and y, parameters b ≤
√

n and ϵ ∈ (0, 1)
1: if |x| ≤ b then
2: compute ED(x, y) exactly.
3: return ED(x, y).
4: ed←∞.
5: set n = |x| and m = |y|.
6: divide x into b block each of length at most ⌈n/b⌉ such that x = x1 ◦ x2 ◦ · · · ◦ xb.
7: for all ∆ = 0 or ⌈(1 + ϵ)j⌉ for some integer j and ∆ ≤ max{|x|, |y|} do
8: for i = 1 to b do
9: for all (a, b) ∈ CandidateSet(n, m, (li, ri), ϵ, ∆) do

10: M(i, (a, b))← SpaceEfficientApproxED(xi, y[a, b], b, ϵ).
11: e← min{e, DPEditDistance(n, m, b, ϵ, ∆, M)}.
12: return e.

optimal alignment. We compute the edit distance between each block and all of its candidate
intervals, which gives O( b2

ϵ2 log n) values. After this, a simple dynamic programming gives
(1 + O(ϵ))-approximation of the edit distance if ∆ is a (1 + ϵ)-approximation of ED(x, y).
The dynamic programming algorithm takes O( b3 log n

ϵ3 ) time.
Since each block has length n

b , computing the edit distance of each block with one of
its candidate intervals in y takes at most O( n

b log n) space (we assume each symbol can be
stored with space O(log n)). We can run this algorithm sequentially and reuse the space for
each computation. Storing the edit distance of each pair takes O( b2

ϵ2 log2 n) bits of space.
Thus, if we take b = n1/3, the above algorithm uses a total of Õϵ(n2/3) space.

We now run the above algorithm recursively to further reduce the space required. Al-
gorithm 2 takes four inputs: two strings x, y ∈ Σn, two parameters b, ϵ such that b ≤

√
n and

ϵ ∈ (0, 1). The goal is to output a good approximation of ED(x, y) with small space (related
to parameters b and ϵ). Similarly, we first divide x into b blocks. We try every ∆ that is
equal to ⌈(1 + ϵ)i⌉ for some integer i, and for each ∆ there is a set of candidate intervals
for each block of x. Then, for each block of x, we use a sub algorithm called CandidateSet
to return all its O( b

ϵ2 log n) candidate intervals. Instead of computing the edit distance
between each block of x and its candidate intervals exactly, we recursively call our space
efficient approximation algorithm with this pair as input, while keeping b and ϵ unchanged.
After getting the results from the recursive calls, we combine these results with a dynamic
programming (the sub algorithm DPEditDistance). We argue that if the recursive call outputs
a (1 + γ)-approximation of the actual edit distance, the output of the dynamic programming
increases by at most a (1 + γ) factor. Thus if ∆ is a (1 + ϵ)-approximation of ED(x, y), the
output of the dynamic programming is guaranteed to be a (1 + O(ϵ))(1 + γ)-approximation.
The recursion stops whenever one of the input strings has length smaller than b, where we
compute the edit distance exactly with O(b log n) space.

Notice that at each level of the recursion, the first input string is divided into b blocks if
it has length larger than b. Thus the length of first input string at the i-th level of recursion
is at most n

bi−1 . The depth of recursion is at most d = logb n.
At the d-th level, Algorithm 2 computes the edit distance exactly. Using this as a

base case, we can show that the output of the i-th level of recursion is a (1 + O(ϵ))d−i

approximation of the edit distance by induction on i from d to 1. Thus, the output in
the first level is guaranteed to be a (1 + O(ϵ))d-approximation. Since d ≤ logb n, we get a
(1 + O(ϵ))d = 1 + O(ϵd) = 1 + O(ϵ logb n) approximation of ED(x, y).
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To analyze the time and space complexity, we study the recursion tree in our algorithm.
Notice that for each block xi and each choice of ∆, we consider O( b

ϵ2 log n) candidate
intervals. Since there are b blocks and O(log1+ϵ n) choices of ∆, we need to solve O( b2

ϵ3 log3 n)
subproblems by recursion. Thus, the degree of the recursion tree is O( b2

ϵ3 log3 n).
The dynamic programming at each level can be divided into b steps. At the j-th step,

the inputs are the edit distances between block xj and each of its candidate intervals. The
information we need to maintain is an approximation of edit distances between the first
j − 1 blocks of x and the substrings y[1, l] of y, where l is chosen from the set of starting
points of the candidate intervals of xj . There are O( b

ϵ ) choices for l and we query the
approximated edit distance between xj and each of its candidate intervals by recursively
applying our algorithm. Thus, we only need to maintain O( b

ϵ ) values at any time for the
dynamic programming.

At the i-th level of recursion, we either invoke one more level of recursion and maintain
O( b

ϵ ) values where each value takes O(log n) space, or do an exact computation of edit
distance when one of the input strings has length at most b, which takes O(b log n) space.
Hence, the space used at each level is bounded by O( b

ϵ log n). There are at most d = logb n

levels. The aggregated space used by our recursive algorithm is still O( b log2 n
ϵ log b ).

We compute the running time by counting the number of nodes in the recursion tree.
Notice that the number of nodes at level i is at most (O( b2

ϵ3 log3 n))i−1. For each leaf node,
we do exact computation with time O( b2

ϵ ), and the number of leaf nodes is bounded by
(O( b2

ϵ3 log3 n))d−1. For each inner node, we run the dynamic programming O(log1+ϵ n) times
(the number of choices of ∆) which takes O( b3 log2 n

ϵ4 ) time, and the number of inner nodes is
bounded by (d− 1)(O( b2

ϵ3 log3 n))d−2.
If we take b = log n and ϵ = 1

log n , we get a (1 + O( 1
log log n ))-approximation using

O( log4 n
log log n ) space and n7+o(1) time. If we take b = nδ for δ ∈ (0, 1

2 ) and ϵ a small constant,
we get a (1 + O(ϵ))-approximation using Õϵ,δ(nδ) space and Õϵ,δ(n2) time.

5.2 Improving the Runtime of Streaming ED

We can now use our techniques for small space approximation of ED to reduce the runtime of
our algorithm for ED in the asymmetric streaming model proposed in Section 3. Recall that
the most time consuming part of our streaming algorithm is finding the optimal window-
compatible solution given a series of windows. More specifically, this can be formulated as
follows. Suppose we divide the online string s into b = nδ windows {si}, and in the recursion
our algorithm already finds b windows {s̄[li, ri]} in the offline string s̄, that are approximately
the closest to {si}. We now need to use the windows {s̄[li, ri]} to find a substring in s̄

that is approximately the closest to s. Previously, this is done by a brute force approach:
we try all possible 1 ≤ p0 ≤ p1 ≤ . . . ≤ pb ≤ n + 1 to find the set of pi’s that minimizes∑b

i=1 ED(s̄[pi−1, pi), s̄[li, ri]). Let the optimal set be {p∗
i } and record the substring s̄[l, r] of

s̄ where l = p∗
0 and r = p∗

b − 1. The exponential running time comes from two parts: First,
the step of trying all possible 1 ≤ p0 ≤ p1 ≤ . . . ≤ pb ≤ n + 1 needs to examine

(
n

nδ+1
)

such choices. Second, when computing ED(s̄[pi−1, pi), s̄[li, ri]), the O(log2 n) algorithm from
Savitch’s theorem uses quasi-polynomial time.

Our main observation now is that, the step of trying all possible 1 ≤ p0 ≤ p1 ≤ . . . ≤
pb ≤ n + 1 to find the set of pi’s that minimizes

∑b
i=1 ED(s̄[pi−1, pi), s̄[li, ri]), is equivalent

to finding the substring of s̄ that minimizes the edit distance to the concatenation of s̄[li, ri]
from i = 1 to b. Thus, instead of trying all possible pi’s, we can try all substrings of y (there



K. Cheng et al. 54:13

are only O(n2) such substrings) and compute the edit distance between each substring and
the concatenation of the s̄[li, ri]’s. Furthermore, instead of an exact computation which
either uses Ω(n) space or 2Ω(log2 n) time, we can use our (1 + ϵ)-approximation for ED with
Õ(nδ) space and Õ(n2) time. The approximation factor is now increased to O((2 + ϵ) 1

δ ),
which is still O(2 1

δ ) if we take ϵ to be small enough. But the running time decreases to Õ(n4),
and the space complexity remains Õ(nδ/δ).

6 1 − ϵ-Approximation of Streaming LCS

In this section, we design a streaming algorithm for finding a (1− ϵ) approximation of the
LCS using Õ(

√
n/ϵ) memory. We first define the LCSPosition function as below. Given the

online string s and the offline string s̄, it takes a position p in s̄ and a non-negative integer k

as inputs. The output is the smallest position q such that LCS(s̄[p, q], s[l, r]) ≥ k. If no such
q exists, the output is ∞.

For a position p in s̄, a substring s[l, r] of s, and a non-negative integer k, we use
LCSPositionl,r(p, k) to denote the result of the mentioned function.2 It is easy to verify that
the LCS of two strings s̄ and s is equal to the largest k such that LCSPosition1,n(1, k) <∞.
Therefore, instead of solving the LCS problem, we can solve the LCSPosition1,n problem and
report the largest k such that LCSPosition1,n(1, k) <∞.

Algorithm 3 Algorithm for approximating the LCS in streaming model.

Data: An offline string s̄ of length n, an online string s, and an ϵ∗ > 0.
1: Divide s into

√
n windows s∗

1, s∗
2, . . . , s∗√

n
of size

√
n.

2: D ← an array of size ⌊log1+ϵ∗ n⌋ initially containing ∞ in all cells.
3: for i ∈

[√
n

]
do

4: T ← an array of size ⌊log1+ϵ∗ n⌋ initially containing ∞ in all cells.
5: for 0 ≤ k ≤ ⌊log1+ϵ∗ n⌋ do
6: T [k]← LCSPosition(i−1)

√
n+1,i

√
n

(
1, ⌊(1 + ϵ∗)k⌋

)
.

7: for 0 ≤ k1 ≤ k do
8: if D[k1] <∞ then
9: Find LCSPosition(i−1)

√
n+1,i

√
n

(
D[k1] + 1, ⌊(1 + ϵ∗)k⌋− ⌊(1 + ϵ∗)k1⌋

)
using any

offline algorithm. Let q be this result.
10: T [k]← min

{
T [k], q

}
.

11: D ← T .
12: return The largest value ⌊(1 + ϵ∗)k⌋ such that D[k] <∞.
13: return 0 if no such k exists.

We now describe our algoirthm. The pseudocode is given in algorithm 3. It first divides
the online string into

√
n windows of equal sizes. We assume w.l.o.g., that length of the

strings is divisible by
√

n. Otherwise we can always pad offline and online strings with
different characters that are not in Σ such that their new length get divisible by

√
n. The

algorithm divides s into
√

n windows s∗
1, s∗

2, · · · , s∗√
n

each with the size of
√

n where s∗
i is the

substring s[(i− 1)
√

n + 1, i
√

n]. Given an ϵ∗ > 0, the algorithm keeps an array D of the size
⌊log1+ϵ∗ n⌋ where D[k] is an estimation of LCSPosition(1, ⌊(1 + ϵ∗)k⌋) in the subsequence of
the online string that has arrived so far in the stream. Specifically, after arrival of the window

2 We also define LCSPositionl,r(p, 0) to be p − 1.
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s∗
i in the stream, the algorithm keeps an estimation of LCSPosition1,i

√
n(1, ⌊(1 + ϵ∗)k⌋) in

D[k]. Please see the full version [36] for more details on how we update the array D upon
arrival of a new window and why we can achieve the approximation guarantee. We have the
following Theorem. The full proof is deferred to [36].

▶ Theorem 13. There exists a single-pass deterministic streaming algorithm that finds a
(1− ϵ) approximation of the LCS between s̄ and s using Õ(

√
n/ϵ) memory and polynomial

time.

7 Space Efficient Algorithms for LIS in the Non-Streaming Model

We now consider approximating the LIS of a string x ∈ Σn where the alphabet Σ has a total
order. We assume each symbol in Σ can be stored with O(log n) space. Let ∞ and −∞ be
two special symbols such that for any symbol σ ∈ Σ, −∞ < σ <∞. We denote the length
of the longest increasing subsequence of x by LIS(x).

Again our algorithm is a recursive one, and in each recursion we use an approach similar
to the deterministic streaming algorithm from [41] that gives a 1− ϵ approximation of LIS(x)
with O(

√
n/ϵ log n) space. Before describing their approach, we first give a brief introduction

to a classic algorithm for LIS, known as PatienceSorting. The algorithm initializes a list P

with n elements such that P [i] =∞ for all i ∈ [n], and then scans the input sequence x from
left to right. When reading a new symbol xi, we find the smallest index l such that P [l] ≥ xi

and set P [l] = xi. After processing the string x, for each i such that P [i] < ∞, we know
σ = P [i] is the smallest possible character such there is an increasing subsequence in x of
length i ending with σ. Finally the algorithm returns the largest index l such that P [l] <∞.
This computes LIS exactly in O(n log n) time and O(l log n) space (see [5] for more details).

In the streaming algorithm from [41], we maintain a set S and a list Q, such that, Q[i] is
stored only for i ∈ S and S ⊆ [n] is a set of size O(

√
n). We use S and Q as an approximation

to the list P in PatienceSorting in the sense that for each s ∈ S, there is an increasing
subsequence in x of length s ending with Q[s]. More specifically, we can generate a list P ′

from S and Q such that P ′[i] = Q[j] for the smallest j ≥ i that lies in S. For i larger than
the maximum element in S, we set P ′[i] =∞. Each time we read a new element, we update
Q and S accordingly, which is equivalent to doing PatienceSorting on the list P ′. When
S gets larger than 2

√
n, we do a cleanup to S by only keeping

√
n/ϵ evenly picked values

from 1 to max S and storing Q[s] for s ∈ S. This loses at most ϵ√
n

LIS(x) in the length
of the longest increasing subsequence detected. Since we only do O(

√
n) cleanups, we are

guaranteed an increasing subsequence of length at least (1− ϵ) LIS(x).
We now modify the above algorithm into another form. This time we first divide x evenly

into many small blocks. Meanwhile, we also maintain a set S and a list Q. We now process
x from left to right, and update S and Q each time we have processed one block of x. If the
number of blocks in x is small, we can get the same approximation as in [41] with S and Q

having smaller size. For example, we can divide x into n1/3 blocks each of size n2/3, and we
update S and Q once after processing each block. If we do exact computation within each
block, we only need to maintain the set S and the list Q of size O(n1/3

ϵ ). We can still get
a (1− ϵ) approximation, because we do n1/3 cleanups and for each cleanup, we lose about

ϵ
n1/3 LIS(x) in the length of the longest increasing subsequence detected.

This almost already gives us an Õϵ(n1/3) space algorithm, except the exact computation
within each block needs O(n2/3 log n) space. A natural idea to reduce the space complexity
is to replace the exact computation with an approximation. When each block xi has size
n2/3, running the approximation algorithm from [41] takes O( n1/3

ϵ log n) space and thus we
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can hope to reduce the total space required to O( n1/3

ϵ log n). However, a problem here is that
the approximation algorithm on each block xi only gives us an approximation of LIS(xi).
This alone does not give us enough information on how to update S and Q. Also, for a
longest increasing subsequence of x, say τ , the subsequence of τ that lies in the block xi

may be much shorter than LIS(xi). This subsequence of τ may be ignored if we run the
approximation algorithm instead of using exact computation.

We now give some intuition of our approach to fix these issues. Let us consider a longest
increasing subsequence τ of x such that τ can be divided into many parts, where the i-th
part τ i lies in xi. We denote the length of τ i by di. Let the first symbol of τ i be αi and
the last symbol be βi if τ i is not empty. When we process the block xi, we want to make
sure that our algorithm can detect an increasing subsequence of length very close to di in xi,
where the first symbol is at least αi and the last symbol is at most βi. We can achieve this by
running a bounded version of the approximation algorithm which only considers increasing
subsequences no longer than di. Since we do not know αi or di in advance, we can guess αi

by trying every symbol in Q[s] where one of them is close enough to αi. For di, we can try
O(log1+ϵ n) different values of l such that one of them is close enough to di. In this way, we
are guaranteed to detect a good approximation of τi.

Based on the above intuition, we now introduce our space-efficient algorithm for LIS called
ApproxLIS. The pseudocode is given in Algorithm 4. It takes three inputs, a string x ∈ Σ∗,
two parameters b and ϵ. We also introduce a slightly modified version of ApproxLIS called
ApproxLISBound. It takes an additional input l, which is an integer at most n. We want
to guarantee that if the string x has an increasing subsequence of length l ending with α ∈ Σ,
then ApproxLISBound(x, b, ϵ, l) can detect an increasing subsequence of length close to l

ending with some symbol no larger than α. The idea is to run ApproxLIS but only consider
increasing subsequence of length at most l. ApproxLISBound has the same space and
time complexity as ApproxLIS.

We now describe ApproxLIS. When the input string x has length at most b2, we
compute an (1− ϵ)-approximation of LIS using the algorithm in [41] with O( b

ϵ log n) space.
Otherwise, we divide the input string into b blocks each of length n

b . Similar to the streaming
algorithm in [41], we maintain two sets S and Q of size O( b

ϵ ) as an approximation of the list
P when running PatienceSorting. We will show that it is enough to use O( b

ϵ log n) bits for
S and Q, because we only update them b times and we lose about O( ϵ

b ) LIS(x) after each
update. Initially, S contains only one element 0 and Q[0] = −∞. We update S and Q after
processing each block of x as follows.

For simplicity, we denote S and Q after processing the t-th block by St and Qt. To see
how S and Q are updated, we take the t-th update as an example. Given St−1 and Qt−1,
we first determine the length of the LIS in x1 ◦ · · · ◦ xt that can be detected based on St−1
and Qt−1. We denote this length by kt. Notice that, for each s ∈ St−1, we know there is
an increasing subsequence in x1 ◦ · · · ◦ xt−1 of length s ending with Qt−1[s] ∈ Σ. This gives
us |St−1| increasing subsequences. The idea is to find the best extension of these increasing
subsequences in the block xt and see which one gives us the longest increasing subsequence of
x1 ◦ · · · ◦ xt. Since each block is of size n

b , we cannot always afford to do exact computation.
Thus we compute an approximation of the LIS by recursively calling ApproxLIS itself.
For each s ∈ St−1, we run ApproxLIS(zs, b, ϵ) where zs is the subsequence of xt with only
symbols larger than Qt−1[s]. Finally, we let kt = maxs∈St−1(s+ApproxLIS(zs, b, ϵ)). Given
kt, we then set St to be the b

ϵ -th evenly picked integers from 0 to kt.
The next step is to compute Qt. We first set Qt[s] =∞ for all s ∈ St except s = 0, and

we set Qt[0] = −∞. Then, for each s ∈ St−1 and l = 1, 1 + ϵ, (1 + ϵ)2, . . . , kt − s, we run
ApproxLISBound(zs, b, ϵ, l). For each s′ ∈ St such that s ≤ s′ ≤ s + l, we update Qt[s′]
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Algorithm 4 Algorithm ApproxLIS (ApproxLISBound) for approximating LIS.

Data: A string x , parameters b and ϵ. And an additional parameter l for
ApproxLISBound

1: if |x| ≤ b2 then
2: compute an (1− ϵ)-approximation of LIS(x) with the streaming algorithm from [41]

using O( b
ϵ log n) space. (For ApproxLISBound, we only consider LIS of length at

most l.)
3: return
4: divide x evenly into b blocks such that x = x1 ◦ x2 ◦ · · · ◦ xb. ▷ |xi| ≤ ⌈n/b⌉
5: initialize S = {0} and Q[0] = −∞.
6: for i = 1 to b do
7: k = 0.
8: for all s ∈ S do
9: let z be the subsequence of xi by only considering the elements larger than Q[s].

10: d = ApproxLIS(z, b, ϵ).
11: k = max{k, s + d}. (For ApproxLISBound, we let k = min{l, max{k, s + d}}) .
12: if k ≤ b/ϵ then
13: let S′ = {0, 1, 2, . . . , k}.
14: else
15: let S′ = {0, ϵ

b k, 2 ϵ
b k, . . . , k}. ▷ evenly pick b/ϵ + 1 integers from 0 to k (including 0

and k).
16: Q′[s] =∞ for all s′ ∈ S′ except Q′[0] = −∞.
17: for all s ∈ S do
18: let z be the subsequence of xi by only considering the elements larger than Q[s].
19: for all l = 1, 1 + ϵ, (1 + ϵ)2, . . . , k − s do
20: S̃, Q̃← ApproxLISBound(z, b, ϵ, l) .
21: for each s′ ∈ S′ such that s ≤ s′ ≤ s + l, let s̃ be the smallest element in S̃ that is

larger than s′ − s and set Q′[s′] = min{Q̃[s̃], Q′[s′]}.
22: S ← S′, Q← Q′.
23: return max S. (for ApproxLISBound, we return the set S and Q)

if ApproxLISBound(zs, b, ϵ, l) detects an increasing subsequence of length at least s′ − s

ending with a symbol smaller than the old Qt[s′]. The intuition is that, with the bound l,
we may be able to find a smaller symbol in Σ such that there is an increasing subsequence
of length l ending with it. This information can be easily ignored if l is a lot smaller than
the actual length of LIS in xt. To see why this is important, let τ be a longest increasing
subsequence of x, and let τ t be the part of τ that lies in the block xt. The length of τ t may
be much smaller than the length of LIS in xt. When the bound l is close to |τ t|, we will be
able to detect a good approximation of τ t by running ApproxLISBound(zs, b, ϵ, l) on zs

for each s ∈ St−1. Since we do not know the length of τ t, we will guess it by trying Oϵ(log n)
values of l and always record the optimal Qt[s] for s ∈ St.

Continue doing this, we get Sb and Qb. ApproxLIS outputs the largest element in Sb.
ApproxLIS is recursive. We denote the depth of recursion by d, and it can be seen that

d is at most logb n − 1. To see the correctness of our algorithm, given fixed b, ϵ, we show
the output at the r-th recursive level is a (1−O((d− r)ϵ))-approximation. Thus, the final
output will be a (1−O(ϵ logb n))-approximation to LIS(x).
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The proof is by induction on r from d to 1. For the base case of r = d, the statement
follows from [41]. Now consider the computation at the r-th level. For convenience, we denote
the input string by x, which has length at most n

br−1 . Let τ be an increasing subsequence
of x where τ i lies in xi. For our analysis, let P ′

t be the list generated by St and Qt in the
following way: for every i let P ′

t [i] = Qt[j] for the smallest j ≥ i that lies in St. If no such j

exists, set P ′
t [i] =∞. Correspondingly, Pt is the list P after running PatienceSorting with

input x1 ◦ x2 ◦ · · · ◦ xt.
Let ht =

∑t
j=1 |τ j | and kt = max St, our main observation is the following inequality:

P ′
t [(1− 3(d− (r + 1)ϵ− ϵ)ht − 2t

ϵ

b
kt] ≤ Pt[ht] (4)

Note that hb = |τ | = LIS(x). We have Pb[hb] < ∞ by the correctness of PatienceSorting.
If inequality 4 holds, then by kt ≤ ht, there must exist an element in Sb larger than
(1− 3(d− r)ϵ) LIS(x) which gives the correctness of the computation at the r-th level.

We prove inequality 4 by induction on t. The intuition is that, at the t-th update, if
inequality 4 holds for t− 1, we know that there must exist an s ∈ St−1 that is close to ht−1
and Qt−1[s] ≤ Pt−1[ht−1] = βt−1 < αt. By trying l = 1, 1 + ϵ, (1 + ϵ), . . . , kt − s, one l is
close enough to |τ t|. Thus we are guaranteed to detect a good approximation of τt in xt and
the inequality also holds for t.

At each recursive level, we need to maintain the sets S and Q with space O( b
ϵ log n). Thus

the total space is O(d b
ϵ log n) = O( b log2 n

ϵ log b ). The analysis of time complexity is similar to the
case of edit distance, where we analyze the recursion tree and bound the number of nodes.

If we take b = log n and ϵ = 1
log n , we get a (1 − O( 1

log log n ))-approximation algorithm
using O( log4 n

log log n ) space and O(n5+o(1)) time. Let δ ∈ (0, 1
2 ) be a constant such that 1

δ is
an integer. If we take b = nδ and ϵ a small constant, we get a (1 + O(ϵ))-approximation
algorithm using Õϵ,δ(nδ) space and Õϵ,δ(n2−2δ) time.

8 Space Efficient ALgorithms for LCS in the Non-Streaming Model

Our algorithm for LCS is based on a reduction to LIS. Given input strings x and y, for each
i ∈ [n] let bi ∈ [m]∗ be the sequence consisting of all distinct indices j in [m] such that
xi = yj , arranged in descending order. Note that bi may be empty. Let z = b1 ◦ b2 ◦ · · · ◦ bn,
which has length O(mn) since each sequence bi is of length at most m. We claim that
LIS(z) = LCS(x, y). This is because for every increasing subsequence of z, say t = t1t2 · · · td,
the corresponding subsequence yt1yt2 · · · ytd

of y also appears in x. Conversely, for every
common subsequence of x and y, we can find an increasing subsequence in z with the same
length. We call this procedure ReduceLCStoLIS. Note that in our algorithms, z need not be
stored, since we can compute each element in z as necessary in logspace by querying x and y.
Thus our reduction is a logspace reduction.

Based on the reduction, we can use similar techniques as we used for LIS. Specifically, let
z = ReduceLCStoLIS(x, y). We call our space efficient algorithm for LCS ApproxLCS. If
one input string is shorter than the parameter b, we know LCS(x, y) ≤ b and we can compute
LIS(z) using PatienceSorting with O(b log n) space. Otherwise, the goal is to compute an
approximation of LIS(z). One difference here is, instead of dividing z evenly into b blocks,
we divide z according to x. That is, we first divide x evenly into b blocks, and then divide
z into b blocks such that zi = ReduceLCStoLIS(xi, y). This gives us a slight improvement
on running time over the naive approach of running our LIS algorithm on z. Note that
LIS(zi) is at most n

b since the length of xi is n
b . We compute an approximation of LIS(zi) by

recursively calling ApproxLCS with inputs x, y, b, ϵ. The input size to the next recursive
level is decreased by a factor of b. The remaining analysis is similar to the case of LIS.
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