
Faster Algorithms for Rooted Connectivity
in Directed Graphs
Chandra Chekuri # Ñ

University of Illinois at Urbana-Champaign, IL, USA

Kent Quanrud #Ñ

Purdue University, West Lafayette, IN, USA

Abstract
We consider the fundamental problems of determining the rooted and global edge and vertex
connectivities (and computing the corresponding cuts) in directed graphs. For rooted (and hence
also global) edge connectivity with small integer capacities we give a new randomized Monte Carlo
algorithm that runs in time Õ

(
n2)

. For rooted edge connectivity this is the first algorithm to improve
on the Ω(n3) time bound in the dense-graph high-connectivity regime. Our result relies on a simple
combination of sampling coupled with sparsification that appears new, and could lead to further
tradeoffs for directed graph connectivity problems.

We extend the edge connectivity ideas to rooted and global vertex connectivity in directed graphs.
We obtain a (1 + ϵ)-approximation for rooted vertex connectivity in Õ(nW/ϵ) time where W is the
total vertex weight (assuming integral vertex weights); in particular this yields an Õ

(
n2/ϵ

)
time

randomized algorithm for unweighted graphs. This translates to a Õ(κnW) time exact algorithm
where κ is the rooted connectivity. We build on this to obtain similar bounds for global vertex
connectivity.

Our results complement the known results for these problems in the low connectivity regime due
to work of Gabow [8] for edge connectivity from 1991, and the very recent work of Nanongkai et al. [23]
and Forster et al. [6] for vertex connectivity.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases rooted connectivity, directed graph, fast algorithm, sparsification

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.49

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2104.07205

Funding Chandra Chekuri: Supported in part by NSF grants CCF-1910149 and CCF-1907937.

Acknowledgements We thank the reviewers for their helpful comments.

1 Introduction

Let G = (V, E) be a simple directed graph; that is, a directed graph with no parallel edges.
Recall that G is strongly connected if there is a path from any vertex a ∈ V to any vertex
b ∈ V . The edge connectivity is the minimum number of edges that need to be removed so
that G is not strongly connected. The corresponding set of edges is called the minimum edge
cut. The vertex connectivity is the minimum number of vertices that need to be removed so
that the remaining graph is not strongly connected or has only one vertex. The corresponding
set of vertices is called the minimum vertex cut. These problems generalize to weighted
settings where the edges and vertices are assigned positive weights and the goal is to find the
minimum weight edge or vertex cut. Determining the edge and vertex connectivities and
finding the corresponding minimum cuts are among the basic problems in graph algorithms.

EA
T

C
S

© Chandra Chekuri and Kent Quanrud;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 49; pp. 49:1–49:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chekuri@illinois.edu
http://chekuri.cs.illinois.edu/
mailto:krq@purdue.edu
https://www.kentquanrud.com/
https://doi.org/10.4230/LIPIcs.ICALP.2021.49
https://arxiv.org/abs/2104.07205
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

49:2 Faster Algorithms for Rooted Connectivity in Directed Graphs

This work obtains faster randomized algorithms for finding minimum edge and vertex cuts
in directed graphs, especially in the dense setting. The algorithms are based on a simple
technique which could be of independent interest.

Our interest is actually in the more general rooted connectivity problems. Let r ∈ V be a
fixed vertex, called the root. The r-rooted edge connectivity is the minimum number of edges
that have to be removed so that there is some vertex in V −r that r cannot reach. An algorithm
for rooted edge connectivity easily implies an algorithm for edge connectivity, by fixing any
root and returning the minimum of the rooted connectivity in G and the rooted connectivity
in the graph obtained by reversing all the edges in G. Another important motivation for
investigating rooted connectivity is the fundamental result by Edmonds [4] that the r-rooted
edge connectivity equals the maximum number of edge-disjoint arboresences rooted at r. We
refer the reader to [27, 7] for further connections in combinatorial optimization. Similarly,
the r-rooted vertex connectivity is the minimum number of vertices (excluding r) that have
to be removed so that r cannot reach some vertex in the residual graph. Algorithms for
rooted vertex connectivity also lead to global vertex connectivity by a similar but somewhat
more involved reduction. There is a long and rich history of developing algorithms for
determining the edge and vertex connectivity. We first note that all of these connectivity
and cut problems reduce to a polynomial number of (s, t)-cut and flow problems by standard
reductions. Beyond (s, t)-flow, an interesting algorithmic landscape emerges with different
running times depending on whether we are interested in edge or vertex cuts, directed or
undirected graphs, and weighted or unweighted graphs.

Rooted and global edge-connectivity. We first discuss edge connectivity in directed graphs.
Let λ denote either the rooted or global edge connectivity of the graph depending on the
context. One can compute both via O(n) (s, t)-minimum cut computations. For the simple
and unweighted directed graph setting, Mansour and Schieber [21] improved on this and
gave algorithms that run in O(mn) time or in O

(
λ2n2)

time for global connectivity. It was
also observed by Alon (cf. [21]) that this approach can be parameterized by the minimum
out-degree δ+ to obtain a O(n log(δ+) EC(m, n)/δ+) algorithm, where EC(m, n) denotes
the running time for (s, t)-edge connectivity1. Gabow [8] then gave a O

(
mλ log

(
n2/m

))
for rooted connectivity in graphs with integer capacities. Gabow’s algorithm is based on
Edmonds’ theorem described above. Gabow’s algorithm is nearly linear time for sparse
unweighted graphs, and remains the fastest algorithm for small λ for both rooted and global
edge connectivity. It is interesting that Gabow’s algorithm is not based on (s, t)-flow. For
directed graphs with arbitrary edge capacities, Hao and Orlin [12] gave an O

(
mn log

(
n2/m

))
algorithm for rooted connectivity by adapting the push-relabel max flow algorithm; in fact
their algorithm computes the (r, v)-connectivity for all v ∈ V − r. Thereafter there have
been no direct running time improvements to rooted or global edge connectivity in directed
graphs but we point out that there have been numerous breakthroughs in the running times
for (s, t)-flow and connectivity [11, 24, 15, 19, 20, 18, 14, 28, 10]. In particular, starting
with the work of Goldberg and Rao [11], the running time for (s, t)-flow is o(mn) which
breaks the flow-decomposition barrier. Motivated by these developments and several others,
there has been a resurgence of interest and literature on faster graph algorithms for several
fundamental problems. Despite these developments there has been no algorithm for rooted

1 Depending on the context, we let EC(m, n) denote the running time for (s, t)-cut in either a simple or a
weighted directed graph with m edges and n vertices.

C. Chekuri and K. Quanrud 49:3

Table 1 Running times for finding the minimum cut in unweighted directed graphs (i.e., U = 1).
EC(m, n) denotes the running time of computing (s, t)-connectivity (in unweighted graphs). See
also [27, §15.3a].

O(n EC(m, n)) Trivial. Also holds for rooted connectivity.

O(n ECλ(m, n)) Matula [22]. Also holds for rooted connectivity.

O(mn), O
(
λ2n2)

Mansour and Schieber [21]

* O
(

n log δ

δ
EC(m, n)

) Alon (cf. Mansour and Schieber [21]). δ is the minimum out-degree
in the graph.

* O
(
mλ log

(
n2/m

))
Gabow [8]. Also holds for rooted connectivity.

* Õ
(
n2)

Theorem 1. Randomized. Also holds for rooted connectivity.

edge-connectivity in simple directed graphs that is faster than O(n3) in the worst case. In
this paper we obtain a nearly quadratic time algorithm which also applies to graphs with
small integer capacities.2

▶ Theorem 1. Let G = (V, E) be a simple directed graph with m edges n, vertices, and
integer edge weights w : E → [U]. Then the minimum rooted r-cut can be computed with high
probability in Õ

(
n2U

)
randomized time.

This running time is particularly compelling when the rooted edge connectivity λ is high.

Rooted and global vertex-connectivity. We now consider (rooted) vertex connectivity in
directed graphs. It is well known that for fast algorithms, global vertex connectivity is more
involved than edge connectivity and the running times are more varied. While the rooted
vertex connectivity can be reduced to computing O(n) (s, t)-cuts, the global version, if done
naively, would require Ω(n2) calls to the (s, t)-cut problem since it is not obvious how to
find a vertex that is not part of the minimum global vertex cut. There is a large body of
literature and we highlight the leading (randomized) running times, where we state running
times for randomized algorithms with high probability of success. Let κ denote the weight
minimum vertex cut, where we assume the minimum weight of any vertex is 1. For large κ

and general capacities, there is a randomized algorithm by Henzinger et al. [13] (extending
the directed edge connectivity algorithm of [12]) that runs in O(mn log(n)) time. For small
values of κ in the unweighted setting, recent randomized algorithms by Forster et al. [6]
based on local connectivity have obtained Õ

(
mκ2)

and Õ
(
nκ3 + κ3/2√

mn
)

running times.
For more intermediate values of κ, there are also randomized Õ

(
κm2/3n

)
and Õ

(
κm4/3)

time algorithms [23] as well as an O(nω + nκω) time algorithm [3], where ω ≈ 2.3728596
is the current exponent for fast matrix multiplication [1]. There is also recent interest in
obtaining fast (1 + ϵ)-approximation algorithms for minimum vertex cut [23, 6]. In particular
[23] obtains a O

(
nω/ϵ2 + m min{κ,

√
n}

)
running time (where ω denotes the exponent for

matrix multiplication) and [6] obtains a randomized algorithm with running time Õ(mκ/ϵ).
We obtain the following theorem.

2 Here and throughout Õ(· · ·) hides polylogarithmic factors in m and n. We note that the ideas introduced
in this work are simple and the logarithmic factors they generate are easy to account for. However
Theorem 1 also uses the recent (s, t)-flow algorithm of [28] with running time EC(m, n) = Õ

(
m + n1.5

)
,

which has large logarithmic factors.

ICALP 2021

49:4 Faster Algorithms for Rooted Connectivity in Directed Graphs

Table 2 A table of running times for finding the minimum vertex cut in unweighted directed
graphs (i.e., W = n). VC(m, n) denotes the running time of computing (s, t)-vertex connectivity,
and is at most Õ

(
m + n1.5)

[29]. All randomized algorithms above are correct with high probability.
See also [27, §15.2a] and [6].

O
(
n2 VC(m, n)

)
Trivial.

O(n VC(m, n) log(n)) Trivial. Randomized. κ ≤ .999n

O(κn VC(m, n)) Podderyugin [25], Even and Tarjan [5]

O(nω + nκω) Cheriyan and Reif [3].

O(κmn), O
(
(κ3 + n)m

)
Henzinger et al. [13].

O(mn log(n)) Henzinger et al. [13]. Randomized.

O
(
min

{
κ5/2, κn3/4}

m + mn
)

Gabow [9].

Õ
(
κm2/3n

)
, Õ

(
κm4/3)

Nanongkai et al. [23]. Randomized.

Õ
(
mκ2)

, Õ
(
nκ3 + κ3/2m1/2n

)
Forster et al. [6]. Randomized.

Õ
(
n2κ

)
Corollary 3. Randomized.

▶ Theorem 2. Let G = (V, E) be a directed graph with m edges, n vertices, and integer
vertex weights w : V → N. Let r ∈ V be a fixed root vertex. Let κ be the rooted vertex
connectivity from r. Let W =

∑
v∈V w(v) be the total weight of the graph. For any ϵ > 0

a (1 + ϵ)-approximate rooted minimum vertex cut can be computed with high probability
in Õ(m + n(W − κ)/ϵ) randomized time; for unit weights this is Õ(m + n(n − κ)/ϵ). The
rooted connectivity can be computed with high probability in Õ(m + κn(W − κ)) time.

Note that W ≥ n in the above running times. We point out that the approximation
algorithm’s running time is independent of κ. This large κ regime has been challenging for
previous approaches. The rooted connectivity algorithm, when combined with sampling and
other ideas, gives the following theorem for global vertex connectivity. As we remarked,
the reduction from global to rooted is not as clean for vertex connectivity as it is for edge
connectivity.

▶ Corollary 3. Let G = (V, E) be a directed graph with m edges, n vertices, and integer
vertex weights w : V → N. Let W =

∑
v∈V w(v) be the total vertex weight of the graph. Let

κ be the global vertex connectivity of G. There is a randomized algorithm that for any ϵ > 0
outputs a (1 + ϵ)-approximate minimum vertex cut with high probability in time Õ(nW/ϵ).
There is a Õ(κnW) time randomized algorithm that computes the (exact) minimum vertex
cut with high probability. In particular, for unit weights, the running time is Õ

(
κn2)

.

1.1 Key ideas
Our algorithms are based on a simple but key idea that we briefly outline below. We focus
on the edge-connectivity case since the idea for vertex connectivity is essentially the same
with some modifications. We would like to take advantage of recent developments on fast
algorithms for (s, t)-cut and reduce to solving a small number of such cut problems in a
black box fashion (unlike the approach of [12] based on the properties of a specific flow

C. Chekuri and K. Quanrud 49:5

algorithm). For undirected graph global connectivity there has been very recent exciting
progress by Li and Panigrahi [17] reducing to a logarithmic number of (s, t)-cuts. However,
the technique makes strong use of the symmetry of the edge-cut function which are absent
in the directed graph setting. In a different direction the work of Nanongkai, Saranurak, and
Yingchareonthawornchai [23] and follow up improvements by Forster et al. [6], developed
fast algorithms for global connectivity based on local connectivity and randomization. At a
high-level they use sampling to identify two vertices s, t on the opposite sides of a cut and
then reduce to (s, t)-cut, or they use a local-connectivity algorithm from each vertex v ∈ V .
This approach is particularly well-suited for small connectivity.

For directed graph edge connectivity Gabow’s algorithm with running time Õ(mλ) is very
good. In order to beat O(n3) in the worst case, the bottleneck is the dense graph regime with
high connectivity. We have two main ideas that are particularly well suited to this regime.
First, we focus on the rooted case even though it may appear to be more difficult than
the global connectivity case. The global connectivity can be much smaller than the rooted
connectivity; for instance the graph may not be strongly connected, in which case the global
edge connectivity is 0, while the rooted connectivity for a particular root can still be Ω(n).
Consider rooted connectivity from a given vertex r. In order to reduce to (s, t)-cut we would
like to find a node t such that t is the sink side of a minimum r-cut. Let T ⊆ V be a sink side
of a minimum r-cut and hence λ = |δ−(T)|; here δ−(T) denotes the set of edges entering T .
If |T | is large we can randomly sample a small number of vertices and we will succeed with
good probability in finding a vertex from T . Therefore the difficult case is when |T | is small
and this is the setting in which we make our key observation: if the graph is simple (or edge
capacities are small) and the sink side of a minimum r-cut is small (but not a singleton!),
then T cannot have a high-degree vertex. How can we take advantage of this? Since we are
working with the rooted problem, we can shrink all high-degree vertices into the root r! In
other words we can sparsify the graph if the sink side is small and compensate for the higher
sampling rate (and larger number of (s, t)-cut computations) we need to find a vertex on
the sink side. Simple in retrospect, this tradeoff between sparsification and sampling rate
coupled with guessing the size of the sink component gives us the overall algorithm with
some additional technical work. We believe that our high-level idea will find use in other
contexts when combined with other techniques.

Recent related work. Several recent papers have obtained results that are relevant to this
work. Li et al. [16] obtained an Õ

(
mn1−1/12+o(1)) time algorithm for vertex connectivity

in directed and unweighted graphs. A followup work by one of the authors of this paper
obtained (1 + ϵ)-approximation algorithms for weighted graphs, for rooted and global, edge
and vertex connectivity, with Õ

(
n2/ϵO(1)) running times [26]. Improved exact algorithms

for weighted edge connectivity have also been obtained very recently in [2].

2 Edge connectivity

In this section, we prove the main theorem for edge connectivity, Theorem 1. To this end, we
will first introduce the main key lemma, called the Rooted Sparsification Lemma, in Section
2.1. In Section 2.2, we give a lemma that applies the Rooted Sparsification Lemma to give
a faster algorithm when the number of vertices in the sink component is known to be in a
fixed interval between 1 and n. Theorem 1 is then proven in Section 2.4, applying the ideas
from Section 2.2 to each of a small family of intervals.

ICALP 2021

49:6 Faster Algorithms for Rooted Connectivity in Directed Graphs

<latexit sha1_base64="qyz1ClOO+A52uJnaUZuH8Cdthgc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0lE0WPBi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUUP1yxa26c5BV4uWkAjnq/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELuWShqh9rP5oVNyZpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjrZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTcmG4C2/vEpal1Xvuuo2riq18zyOIpzAKVyABzdQg3uoQxMYIDzDK7w5j86L8+58LFoLTj5zDH/gfP4A1geM3g==</latexit>r <latexit sha1_base64="D4RiVxoBINowZLnMubtzgQU1Nf4=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNiFe5E0TJgYxnBxEByhL3NXLJkd+/c3RNCyJ+wsVDE1r9j579xk1yhiQ8GHu/NMDMvSgU31ve/vcLK6tr6RnGztLW9s7tX3j9omiTTDBssEYluRdSg4AoblluBrVQjlZHAh2h4M/UfnlAbnqh7O0oxlLSveMwZtU5qdbh0W9B0yxW/6s9AlkmQkwrkqHfLX51ewjKJyjJBjWkHfmrDMdWWM4GTUiczmFI2pH1sO6qoRBOOZ/dOyIlTeiROtCtlyUz9PTGm0piRjFynpHZgFr2p+J/Xzmx8HY65SjOLis0XxZkgNiHT50mPa2RWjByhTHN3K2EDqimzLqKSCyFYfHmZNM+rwWXVv7uo1E7zOIpwBMdwBgFcQQ1uoQ4NYCDgGV7hzXv0Xrx372PeWvDymUP4A+/zBzsRkAE=</latexit>

=)
<latexit sha1_base64="a72DEtRKha+mxVc1x/GVBXP214A=">AAAB7nicbVBNS8NAEJ3Ur1q/oh69LBbFU0lE0WPBi8cK9gPaUCbbTbt0swm7G6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvTAXXxvO+ndLa+sbmVnm7srO7t3/gHh61dJIpypo0EYnqhKiZ4JI1DTeCdVLFMA4Fa4fju5nffmJK80Q+mknKghiHkkecorFSuxeiytW071a9mjcHWSV+QapQoNF3v3qDhGYxk4YK1Lrre6kJclSGU8GmlV6mWYp0jEPWtVRizHSQz8+dkjOrDEiUKFvSkLn6eyLHWOtJHNrOGM1IL3sz8T+vm5noNsi5TDPDJF0sijJBTEJmv5MBV4waMbEEqeL2VkJHqJAam1DFhuAvv7xKWpc1/7rmPVxV6+dFHGU4gVO4AB9uoA730IAmUBjDM7zCm5M6L86787FoLTnFzDH8gfP5A5PAj6M=</latexit>

r̄

Figure 1 An example of the Rooted Sparsification Lemma in action. In particular, contracting
the high in-degree vertices into r leaves the sink component of the minimum r-cut intact.

2.1 The Rooted Sparsification Lemma for Edge Connectivity
We introduce the key technical ingredient that we call the Rooted Sparsification Lemma.
This lemma says that if the sink component of the minimum r-cut is small, then unless it is a
singleton cut (which is easy to find directly), we can contract all vertices with high in-degree
into the root while preserving the minimum rooted cut exactly. The result is a smaller and
sparser graph in which we can find the minimum rooted cut faster. Later we will see that the
running time saved by operating on a smaller graph makes up for the difficulty in identifying
a vertex from a smaller sink component.

▶ Lemma 4. Let G = (V, E) be a simple directed graph with m edges, n vertices, and edge
weights w : E → [1, U]. Let r ∈ V be a fixed root vertex. Let k ∈ N. Consider the graph Ḡ

obtained by contracting all vertices with weighted in-degree ≥ (1 + U)k into r. Let r̄ denote
the contracted vertex in Ḡ. Then we have the following.
1. Ḡ is a multigraph with less than (1 + U)nk edges.
2. If the minimum number of vertices in a sink component of a minimum r-cut has greater

than 1 and less than or equal to k vertices, then the minimum r-cut and the minimum
r̄-cut are the same.
Note that contraction cannot reduce the value of r-cut. An example illustrating the

lemma is given in Figure 1. The proof is in two steps.

Small sinks make small cuts (except for singletons). The first step towards the Rooted
Sparsification Lemma for edge connectivity is the following basic observation relating the
connectivity to the number of vertices in the sink component of a minimum rooted cut.
For simple graphs (i.e., U = 1), the following lemma says that except for the case where
the minimum rooted cut is achieved by a singleton, the rooted connectivity is less than the
number of vertices in the sink component of the cut. With capacities between 1 and U ,
we obtain a similar inequality except scaled by U . See Figure 2 for an illustration of the
following lemma.

▶ Lemma 5. Let G = (V, E) be a simple directed graph with m edges, n vertices, and edge
weights w : E → [1, U]. Let r ∈ V be a fixed root vertex. Let λ be the rooted edge connectivity
from r. Let k be the minimum number of vertices in a sink component of a minimum r-cut.
Then either k = 1 or λ < Uk.

Proof. Let T be the set of vertices on the sink-side of a cut with λ edges. Suppose k = |T | > 1.
Every vertex in T has weighted in-degree > λ. Consider all edges with head in T . Because
G has capacities between 1 and U , of all the edges with head in T , at most k(k − 1)U
total weight have their tail in T as well. Thus λ > kλ − k(k − 1)U. Rearranging, we have
k(k − 1)U > (k − 1)λ, hence kU > λ. ◀

C. Chekuri and K. Quanrud 49:7

<latexit sha1_base64="qyz1ClOO+A52uJnaUZuH8Cdthgc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0lE0WPBi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUUP1yxa26c5BV4uWkAjnq/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELuWShqh9rP5oVNyZpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjrZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTcmG4C2/vEpal1Xvuuo2riq18zyOIpzAKVyABzdQg3uoQxMYIDzDK7w5j86L8+58LFoLTj5zDH/gfP4A1geM3g==</latexit>r
<latexit sha1_base64="8VtJT/Byjr9JQR+oDnNpTsQrb7E=">AAAB6HicbVBNS8NAEJ34WetX1aOXxaJ4Kokoeix48dhCv6ANZbOdtGs3m7C7EUroL/DiQRGv/iRv/hu3bQ7a+mDg8d4MM/OCRHBtXPfbWVvf2NzaLuwUd/f2Dw5LR8ctHaeKYZPFIladgGoUXGLTcCOwkyikUSCwHYzvZ377CZXmsWyYSYJ+RIeSh5xRY6V6o18quxV3DrJKvJyUIUetX/rqDWKWRigNE1Trrucmxs+oMpwJnBZ7qcaEsjEdYtdSSSPUfjY/dErOrTIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCe/8jMskNSjZYlGYCmJiMvuaDLhCZsTEEsoUt7cSNqKKMmOzKdoQvOWXV0nrquLdVNz6dbl6kcdRgFM4g0vw4Baq8AA1aAIDhGd4hTfn0Xlx3p2PReuak8+cwB84nz+oj4zA</latexit>

T

Figure 2 The set of vertices T has 4 vertices and there are 5 edges crossing into T . Lemma 5
implies that T cannot be the sink component of the minimum r-cut. Indeed, there are singleton
cuts of degree 4 inside T .

▶ Remark 6. The above argument is simple and (unsurprisingly) we realized that a similar
line of reasoning has appeared in previous work [21] (though towards a different algorithmic
approach and not in the context of rooted connectivity).

Small sinks are sparse sinks. We now prove the Rooted Sparsification Lemma, Lemma 4.
The high level argument is very simple and we first give an informal argument to emphasize
the intuition. If the sink component of the minimum r-cut is small, then by Lemma 5, the
minimum r-cut is also small. Suppose for the sake of discussion that the graph is simple
(i.e., U = 1). If both the minimum r-cut and the sink component are small and the graph
is simple, then every vertex in the sink component has small in-degree. The contrapositive
implies that every high in-degree vertex is on the source side of the cut. Thus the high
in-degree vertices can be safely contracted into the root.

Proof of the rooted sparsification lemma. Recalling the statement of the lemma, it is easy
to see that contracting all vertices with weighted in-degree ≥ (1 + U)k into r results in a
multigraph Ḡ in which every vertex has weighted in-degree < (1 + U)k, and hence there are
at most (1 + U)nk edges total.

Let T be the sink component of a minimum r-cut. Observe that contracting into r cannot
decrease the edge connectivity. If one can show that no vertices in T are contracted into r̄,
then T is the sink component of a minimum r̄-cut as well.

By Lemma 5, the minimum r-cut has size λ < Uk. Because G is simple and T has ≤ k

vertices, every vertex in T has in-degree less than λ + k < (1 + U)k. Thus any contracted
vertex is outside of T . This completes the proof. ◀

2.2 Rooted connectivity for a fixed range of component sizes
Applying the Rooted Sparsification Lemma usefully requires a fairly tight upper bound on
the number of vertices in the sink component of the minimum r-cut. In this section, we
assume we are given a lower bound k1 and an upper bound k2 on the number of vertices in
the sink component, and develop algorithms for the minimum rooted cut in this parametrized
regime. The running times are decreasing in k1 and increasing in k2; that is, they are better
for tighter bounds on the number of vertices in the sink component.

▶ Lemma 7. Let G = (V, E) be a simple directed graph with m edges, n vertices, and edge
weights w : E → [1, U]. Let r ∈ V be a fixed root vertex. Let λ be the rooted edge connectivity
from r. Let k1, k2 ∈ N with 1 ≤ k1 ≤ k2 ≤ n. Suppose the sink component of the minimum
r-cut has between k1 and k2 vertices. Then the minimum r-cut can be computed with constant
probability in

O

(
m + n

k1
(EC(min{m, nk2U}, n))

)
time.

ICALP 2021

49:8 Faster Algorithms for Rooted Connectivity in Directed Graphs

Proof. We first consider the case k1 > 1. By Lemma 4, we can reduce the number of edges
to m′ = O(k2nU) while preserving the r-cut and retaining all k1 or more vertices in the
sink-side component. Let us sample O(n/k1) sink vertices t in the remaining graph uniformly
at random, and compute the minimum (r, t)-cut for each. This takes EC(min{m, m′}, n) =
EC(min{m, k2nU}, n) time for each instance, as desired. With constant probability, at least
one sink is sampled out of the sink component of the minimum r-cut, which will return the
minimum r-cut.

If k1 = 1, then we must also address the possibility of a singleton cut. We apply the
above for k1 = 2 and compare the output to all of the singleton r-cuts, and output the
smallest of these cuts. ◀

2.3 Rooted connectivity for small sink components
▶ Lemma 8. Let G = (V, E) be a simple directed graph with m edges, n vertices, and integer
edge weights w : E → [U]. Let r ∈ V be a fixed root vertex. Let k ∈ N be a given parameter.
There is a deterministic algorithm that runs in O

(
m + nk2U2 log(max{n/kU})

)
time and

returns an r-cut with the following guarantee. If the sink component of a minimum r-cut has
at most k vertices, then the algorithm will return a minimum r-cut.

Proof. If the sink side of the minimum cut has less than k vertices, then via Lemma 5, either
a singleton induces a minimum r-cut, or the minimum r-cut has size λ < Uk. For the latter
case, we apply the rooted sparsification lemma and reduce the graph to O(nkU) edges while
preserving the minimum r-cut. We apply Gabow’s algorithm [8] to the sparsified graph
and it runs O

(
nk2U2 log(max{1, n/kU})

)
time, and either finds a minimum rooted cut or

certifies that the r-cut value in the sparsified graph has value ≥ kU . We compare the output
with all singleton r-cuts. ◀

2.4 Algorithm for rooted edge connectivity
We now prove the main theorem for edge connectivity, Theorem 1. By Lemma 7, if the
number of vertices in the sink component is known, then we can reduce very efficiently to
(s, t)-connectivity by either sparsifying the graph (if the number is small) or easily guessing
a sink (if the number is large). More generally, we can pursue both strategies relative to any
given upper and lower bounds on the number of vertices in the sink component. Meanwhile,
for small component sizes (that are not singletons), we can still sparsify the graph, while
the cut size must be small, which combine to produce fast running times via [8] in Lemma
8. The only unknown is the number of vertices in the sink component. Here we guess the
number of vertices up to a constant factor, which only requires enumerating a logarithmic
number of guesses. We restate Theorem 1 for the sake of convenience.

▶ Theorem 1. Let G = (V, E) be a simple directed graph with m edges n, vertices, and
integer edge weights w : E → [U]. Then the minimum rooted r-cut can be computed with high
probability in Õ

(
n2U

)
randomized time.

Proof. Let ℓ ∈ [n] be a parameter to be determined. The sink component of the minimum
r-cut either (a) is a singleton, (b) has at most ℓ vertices, or (c) has between 2i and 2i+1

vertices for some i ≥ ⌊log ℓ⌋. For each of these categories we apply a subroutine and take the
minimum of the cut values found.

C. Chekuri and K. Quanrud 49:9

Singleton cuts are easy to evaluate in O(m) time. Let i0 = ⌊log ℓ⌋ and i1 =
max{⌈log m/nU⌉, i0 + 1}. For i = i0, . . . , i1 − 1, let ki = 2i. Let ki1 = n. For (b) we invoke
Lemma 8 with maximum sink component ki0 . To address (c), for each i = i0, . . . , i1 − 1, we
invoke Lemma 7 O(log n) times with lower bound ki and upper bound ki+1 on the number
of vertices in the sink component. We use EC(m, n) = Õ

(
m + n1.5)

[28]. The combined
running time is Õ

(
n2U + n2.5

ℓ + nℓ2U2
)

. For ℓ =
√

n/U , this gives the claimed running
time. ◀

3 Rooted and global vertex connectivity

In this section, we describe and analyze the approximation algorithms for rooted and
global vertex connectivity. The high-level approach is similar to the previously discussed
algorithm for edge connectivity. The first step, Lemma 10, is a variant of the Rooted
Sparsification Lemma that applies to (approximate) vertex connectivity. It plays a similar
role as its counterpart for edge connectivity, allowing one to sparsify the graph when the
sink component of the minimum rooted vertex cut is small. The proof of Lemma 10 is given
Section 3.1. We then give an algorithm specific to (roughly) the number of vertices in the
sink component in Section 3.2. We use this algorithm as a subroutine in the final algorithm
for approximate rooted connectivity in Section 3.4. In Section 3.5, we give the reduction
from approximate global vertex connectivity to approximate rooted vertex connectivity. The
exact global vertex connectivity algorithm for integer weights follows from an appropriate
choice of error parameter.

3.1 Rooted sparsification for approximate vertex connectivity
Recall that a key idea in the algorithm for (rooted) edge connectivity was the Rooted
Sparsification Lemma, which allows us to substantially decrease the number of edges when
the sink component of the minimum rooted cut is small. Underlying the rooted sparsification
lemma for edge connectivity was a direct relation between the size of the sink component
and the weight of the minimum edge cut – Lemma 5 in Section 2.1. But this relation does
not hold for vertex connectivity, even in unweighted and undirected graphs – even if the sink
component is small, the vertex in-cut can be very large. For example, for arbitrarily large n

and any fixed constant k, let S = Kn be a clique of size n and let T = Kk be a clique of size
k. Add edges between all s ∈ S and all t ∈ T . Let r be an additional root vertex connected
to every vertex in S. Then T is the sink component of the minimum vertex r-cut. It has a
constant number of vertices, k, while the size of the vertex cut, n, is arbitrarily large.

<latexit sha1_base64="5RIx1QhGfO5U5SjQXbWf6lOSMlk=">AAACr3icdVHbShxBEO2dXDSbi5o85qXJouRpmRFNzENAyEseFVxXWCda01urjX0Zums2LsN+QV4TyK/lb9K9O4jjpaDhUOdUnaquolTSU5r+6yRPnj57vrL6ovvy1es3a+sbb4+9rZzAgbDKupMCPCppcECSFJ6UDkEXCofF1bfID6fovLTmiGYl5houjJxIARRSh+5svZf200Xw+yBrQI81cXC20fl7Orai0mhIKPB+lG2XlNfgSAqF8+5p5bEEcQUXOArQgEaf14tJ53wzZMZ8Yl14hvgie7uiBu39TBdBqYEu/V0uJh/iRhVN9vJamrIiNGJpNKkUJ8vj2nwsHQpSswBAOBlm5eISHAgKn9Nt2WgpnI1Fc34Tmy2zoyyv4/zRqUUER5XXhNckrC7DFO3OBn+W15F9tPN0Cq4o8qWyWbYl8AIUjr+m/S+7cV1hjbcKCKIu3DK7e7n74Hi7n33qZ4c7vf2t5qqr7D37wD6yjH1m++w7O2ADJhiyX+w3+5NkyTD5kZwvpUmnqXnHWpHI/x4X0cQ=</latexit>A

fully connected

<latexit sha1_base64="5YurtplgpDbeWi+yO/YZpLOpCik=">AAACtXicdVFNa9tAEF0r/UjcryQ95rLUpPRkpNA2zSEQ6KXQS0rjOOAIM1qNksX7IXZHTozwj+ittL+s/6YrW5QqaQcWHvPezJvZyUolPcXxr1608eDho8ebW/0nT589f7G9s3vubeUEjoRV1l1k4FFJgyOSpPCidAg6UzjOZh8bfjxH56U1Z7QoMdVwZWQhBVBIjb/yY/55aqbbg3gYr4LfB0kLBqyN0+lO7/tlbkWl0ZBQ4P0kOSgprcGRFAqX/cvKYwliBlc4CdCARp/Wq3mXfD9kcl5YF54hvsr+XVGD9n6hs6DUQNf+Ltck/8VNKio+pLU0ZUVoxNqoqBQny5vleS4dClKLAEA4GWbl4hocCApf1O/YaCmcbYqW/E/sd8zOkrRu5m+cOkRwVGlNeEvC6jJM0e1s8Ka8bdj/dp7PwWVZula2y3YEXoDC/DgeHr1r1hXWeKuAoNGFWyZ3L3cfnB8Mk/fD5Mvbwcnr9qqbbI+9Ym9Ywg7ZCfvETtmICTZj39gP9jM6jNIoj4q1NOq1NS9ZJyL7G17g03Y=</latexit>

(= =
<latexit sha1_base64="/fqIyI2KsM2V0Ukw04TTmyRTZvE=">AAACtXicdVFNa9tAEF2rX6n7lTTHXJaalJ6MFNKmPQQCvRRyScGOA44wo9UoWbzaFbsjN0b4R/RW2l/Wf5NdW5QqaQcWHvPezJvZySolHcXx71704OGjx0+2nvafPX/x8tX2zutzZ2orcCyMMvYiA4dKahyTJIUXlUUoM4WTbP458JMFWieNHtGywrSEKy0LKYB8ajLix/x0Np9tD+JhvA5+HyQtGLA2zmY7vR+XuRF1iZqEAuemyUFFaQOWpFC46l/WDisQc7jCqYcaSnRps553xfd9JueFsf5p4uvs3xUNlM4ty8wrS6Brd5cLyX9x05qKj2kjdVUTarExKmrFyfCwPM+lRUFq6QEIK/2sXFyDBUH+i/odm1IKa0LRiv+J/Y7ZKEmbMH9w6hDeUaUN4Q0JU1Z+im5njd+qm8D+t/NiATbL0o2yXbYjcAIU5sfx8NP7sK4w2hkFBEHnb5ncvdx9cH4wTD4Mk6+Hg5O37VW32B57w96xhB2xE/aFnbExE2zOvrOf7Fd0FKVRHhUbadRra3ZZJyJzC1pQ03Q=</latexit>

) = :

fully connected

That said, we show that a useful sparsification is possible if we relax to approximating
the rooted vertex connectivity, and qualify the lemma by the assumption that no singleton
cut already represents a good approximation. To this end, let u, v ∈ V . We say that u

is an in-neighbor of v if (u, v) ∈ E. We denote the set of in-neighbors of a vertex v by
N−(v) def= {u ∈ V : (u, v) ∈ E}. The definition of in-neighbors naturally extends to sets of
vertices; for S ⊂ V we define N−(S) = (∪v∈SN−(v)) \ S. The weighted in-degree of v is
defined as the total weight of all in-neighbors of v. Similarly we define the set of out-neighbors
of a vertex v, denoted N+(v), as N+(v) def= {u ∈ V : (u, v) ∈ E}, and the weighted out-degree
of v, denoted deg+(v), as the sum of weights over N+(v).

ICALP 2021

49:10 Faster Algorithms for Rooted Connectivity in Directed Graphs

<latexit sha1_base64="qyz1ClOO+A52uJnaUZuH8Cdthgc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0lE0WPBi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUUP1yxa26c5BV4uWkAjnq/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELuWShqh9rP5oVNyZpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjrZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTcmG4C2/vEpal1Xvuuo2riq18zyOIpzAKVyABzdQg3uoQxMYIDzDK7w5j86L8+58LFoLTj5zDH/gfP4A1geM3g==</latexit>r <latexit sha1_base64="D4RiVxoBINowZLnMubtzgQU1Nf4=">AAAB73icbVA9SwNBEJ2LXzF+RS1tFoNiFe5E0TJgYxnBxEByhL3NXLJkd+/c3RNCyJ+wsVDE1r9j579xk1yhiQ8GHu/NMDMvSgU31ve/vcLK6tr6RnGztLW9s7tX3j9omiTTDBssEYluRdSg4AoblluBrVQjlZHAh2h4M/UfnlAbnqh7O0oxlLSveMwZtU5qdbh0W9B0yxW/6s9AlkmQkwrkqHfLX51ewjKJyjJBjWkHfmrDMdWWM4GTUiczmFI2pH1sO6qoRBOOZ/dOyIlTeiROtCtlyUz9PTGm0piRjFynpHZgFr2p+J/Xzmx8HY65SjOLis0XxZkgNiHT50mPa2RWjByhTHN3K2EDqimzLqKSCyFYfHmZNM+rwWXVv7uo1E7zOIpwBMdwBgFcQQ1uoQ4NYCDgGV7hzXv0Xrx372PeWvDymUP4A+/zBzsRkAE=</latexit>

=) <latexit sha1_base64="qyz1ClOO+A52uJnaUZuH8Cdthgc=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbFU0lE0WPBi8cW7Ae0oWy2k3btZhN2N0IJ/QVePCji1Z/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4bua3n1BpHssHM0nQj+hQ8pAzaqzUUP1yxa26c5BV4uWkAjnq/fJXbxCzNEJpmKBadz03MX5GleFM4LTUSzUmlI3pELuWShqh9rP5oVNyZpUBCWNlSxoyV39PZDTSehIFtjOiZqSXvZn4n9dNTXjrZ1wmqUHJFovCVBATk9nXZMAVMiMmllCmuL2VsBFVlBmbTcmG4C2/vEpal1Xvuuo2riq18zyOIpzAKVyABzdQg3uoQxMYIDzDK7w5j86L8+58LFoLTj5zDH/gfP4A1geM3g==</latexit>r

Figure 3 An example of the Rooted Sparsification Lemma for vertex connectivity in action. In
the input graph on the left, minimum vertex r-cut has size 2 and the sink component (circled) has
4 vertices. The minimum in-degree (other than r) is 5. On the right hand side, all vertices with
in-degree ≥ 9 have all their incoming edges replaced with a single edge from r. The minimum vertex
r-cut is again 2 and the sink-component of the minimum r-cut remains unchanged.

Our first lemma gives an approximate relationship between the weight of the minimum
weight rooted vertex cut and the weight of the sink component of the minimum weight rooted
vertex cut.

▶ Lemma 9. Let ϵ > 0 be fixed. Let G = (V, E) be a directed graph with m edges, n vertices,
and vertex weights w : V → [1, ∞). Let r ∈ V be a fixed root vertex. Let κ be the rooted
vertex connectivity from r. Suppose the in-neighborhood of every non-root vertex has total
weight greater tha (1 + ϵ)κ. Then the minimum vertex r-cut has more than ϵκ weight in the
sink component.

Proof. Let the minimum r-cut be of the form N−(S), where S ⊆ V − r. To prove the claim
it suffices to show that w(S) > ϵκ.

For any vertex v ∈ S, by assumption, total weight of in-neighbors is more tha (1 + ϵ)κ.
At most κ weight of these in-neighbors are in the minimum vertex r-cut, N−(S). This implies
that v has more than ϵκ weight of in-neighors in S, and hence

∑
s∈S w(s) > ϵκ + 1 (where

the extra 1 is for the weight of v). ◀

▶ Lemma 10. Let ϵ > 0 be fixed. Let G = (V, E) be a directed graph with m edges, n vertices,
and vertex weights w : V → [1, ∞). Let r ∈ V be a fixed root vertex. Let κ be the rooted
vertex connectivity from r. Suppose every vertex (excluding r) has weighted in-degree greater
than (1 + ϵ)κ. Let k ∈ N. Consider the graph Ḡ obtained by replacing, for each vertex v ∈ V

with weighted in-degree ≥ (1 + 1/ϵ)k, all of the in-coming edges to v with a single edge from
r to v. Then we have the following.
1. Ḡ has maximum weighted in-degree at most (1 + 1/ϵ)nk.
2. Ḡ has at most (1 + 1/ϵ)nk edges.
3. If the sink component of a minimum vertex r-cut in G has weight ≤ k, then the minimum

vertex r-cut in G and Ḡ are the same.

Proof. Let T be the sink component of a minimum rooted r-vertex cut, of minimum weight
among such sink components. Suppose T has weight less than or equal to k. By Lemma 9,
κ < k/ϵ. Therefore any vertex v with weighted in-degree greater than (1 + 1/ϵ)k cannot be in
T of the minimum rooted r-vertex cut. We claim that replacing the incoming edges to v does
not decrease rooted vertex connectivities for r. As a thought experiment, suppose we make
the replacement over two steps, where we first add the edge from r to v, and then remove
the other incoming edges to v. The first step does not decrease vertex connectivities, and
forces the rooted vertex connectivity from r to v to be +∞. Removing the other incoming

C. Chekuri and K. Quanrud 49:11

edges to r does not effect the connectivity from r to v, so no other vertex connectivities from
r are effected either. Over the two steps, then, we see that no rooted connectivities from r

decrease.
On the other hand, since v is not in the sink of the minimum vertex r-cut, the rooted

vertex connectivity of r does not change. ◀

3.2 Rooted vertex connectivity parametrized by sink component size
We now give an algorithm for rooted vertex connectivity parametrized by the weight of
the vertices in the sink component of the minimum rooted cut. More precisely, we take as
additional input two weights k1 ≤ k2 and assume the sink component has weight between k1
and k2.

In the following, let VC(m, n) be the running time for vertex (s, t)-cut.

▶ Lemma 11. Let ϵ > 0 be fixed. Let G = (V, E) be a directed graph with m edges, n vertices,
and vertex weights w : V → [1, ∞). Let r ∈ V be a fixed root vertex. Let κ be the rooted
vertex connectivity from r. Let W =

∑
v∈V w(v) be the total weight in the graph. Suppose

every vertex (excluding r) has weighted in-degree greater than (1 + ϵ)κ. Let k1, k2 ∈ N with
0 < k1 < k2. Suppose also that the sink component of the minimum r-cut has between k1
and k2 total weight. Then the minimum r-cut can be computed with constant probability in

O

(
m +

(
W − κ

k1

)
VC

(
min

{
m,

k2n

ϵ

}
, n

))
randomized time.

Proof. By Lemma 10, in O(m) time, we can reduce the number of edges to at most
O(k2n/ϵ) without decreasing the rooted vertex connectivity. We sample vertices from
V ′ = V \ ({r} ∪ N+(r)). Note that V ′ has weight at most W − deg+(r) ≤ W − κ.

We sample O
(
(W − deg+(r))/k1

)
≤ O((W − κ)/k1) vertices t ∈ V ′ independently in

proportion to their weight. For each sampled vertex t, we compute the minimum (r, t)-vertex
cut in the sparsified graph. With constant probability, one of these vertices t is in the sink
component of the minimum vertex r-cut, and the minimum vertex (r, t)-cut is the minimum
vertex r-cut. ◀

▶ Remark 12. The simple observation that the weight of N+(r) is at least κ is from [13].

3.3 Rooted vertex connectivity for small sink components
This section develops an approximation algorithm for rooted vertex connectivity specifically
for the case where the sink component has small weight. The algorithm takes an upper
bound k on the weight of the sink component, and guarantees an approximate minimum cut
when there is a minimum rooted vertex cut where the sink component has weight at most k.
The approach is inspired by the recent local connectivity algorithm of [6], and also integrates
the rooted sparsification lemma. This algorithm is developed in two steps. The first step is
a local cut algorithm that, given a vertex t ∈ V , searches for a small (r, t)-cut around t in
time proportional to a given upper bound on the weight of the sink component. The second
step first applies the rooted sparsification lemma, finds a vertex t in the sink component by
random sampling, and runs the local cut algorithm for this choice of t.

ICALP 2021

49:12 Faster Algorithms for Rooted Connectivity in Directed Graphs

The following lemma, which describes the local cut algorithm, is nearly identical to [6]
except for two small modifications. First, we work with integral capacities, which does not
change any arguments. Second is the inclusion of the root r which we want to keep on the
opposite side of the local cut. The proof is included for the sake of completeness. In the
following, the in-volume of a set of vertices T in a directed, edge-capacitated graph is the
sum of weighted in-degrees over all vertices in T . Similarly the out-volume is defined as the
sum of weighted out-degrees.

▶ Lemma 13. Let G = (V, E) be a directed graph with integral edge capacities. We assume
that G is already available in memory in adjacency list format. Let r, t ∈ V , and let λ, ℓ > 0
be given parameters. Then there is a randomized algorithm that runs in O(ℓλ/ϵ) time with
the following guarantee.

Let λ∗ be the minimum capacity of all (r, t) cuts where the sink component has in-volume
at most ℓ. If λ∗ < λ, then with constant probability, the algorithm returns an (r, t)-cut of
capacity at most (1 + ϵ)λ∗.

Proof. Let T be the sink component of a minimum (r, t)-edge cut among those where the
sink component has in-volume at most ℓ. We run a randomized variation of augmenting
paths in the reversed graph Grev where t is the source. Note that T now has out-volume at
most ℓ in Grev. We run the following subroutine for at most 1 + (1 + ϵ)λ iterations, where
each iteration routes one unit of flow from t to some chosen v.

Each iteration i runs DFS from t in the residual graph, until it either (a) visits r, (b) has
traversed edges of total capacity at least O(ℓ/ϵ), or (c) has explored all the edges reachable
from t while failing to satisfy either (a) or (b). In event (a), we route one unit of flow to r.
In event (b), we select one of the visited edges randomly in proportion to their capacity, and
route one unit of flow to the endpoint of that edge. In either case, after routing, we update
the residual graph by reverse (one unit of capacity) of each edge on the path from t to the
selected sink. In event (c), we return the entire component of vertices reachable from t which
induces an (r, t)-cut in the original graph. If, after 1 + (1 + ϵ)λ iterations, we never reach
event (c), then the algorithm terminates with failure.

We first argue that we return a (1 + ϵ)-approximate (r, t)-cut with constant probability.
We first point out that the total out-volume of T in the residual graph never increases, as
we are reversing edges along edges along a path starting from t. Next, we observe that in
each instance of event (b), where we randomly sample the endpoint of a visited edge as a
sink, there is less than ϵ/2 probability that this endpoint lies in T . This is because the graph
search has traversed a total capacity of at least O(ℓ/ϵ), and T has out-volume at most ℓ.
That is, the out-volume of T represents at most an (ϵ/2)-fraction of the searched edges.

Now, over the first (1 + ϵ)λ∗ iterations, we expect to sample less than ϵλ∗/2 sinks from
T . By Markov’s inequality, we sample less than ϵλ∗ sinks from T over the first (1 + ϵ)λ∗

iterations with probability at least 1/2. In this event, if the algorithm did not find an
(r, t)-cut within the first λ∗ iterations, then we must have routed more than λ∗ units of flow
out of T – a contradiction. Thus the algorithm finds an (r, t)-cut within (1 + ϵ)λ∗ iterations
with probability at least 1/2. Since this cut was obtained as the reachable set of t after
routing at most (1 + ϵ)λ∗ units of flow, the cut has capacity ≤ (1 + ϵ)λ∗.

It remains to prove the running time. Each iteration takes O(ℓ/ϵ) time to traverse at
most O(ℓ/ϵ) edges. The algorithm runs for at most O(λ) iterations. ◀

The next lemma presents the approximate rooted vertex cut algorithm that uses Lemma
13 as a subroutine. It also uses the rooted sparsification lemma to reduce the size of the
graph and give stronger bounds on the volume of the sink component of the desired vertex
cut.

C. Chekuri and K. Quanrud 49:13

▶ Lemma 14. Let ϵ > 0 be fixed. Let G = (V, E) be a directed graph with m edges, n vertices,
and integer vertex weights w : V → N. Let r ∈ V be a fixed root vertex. Let k ∈ N and suppose
that the sink component of the minimum r-cut has weight ≤ k. Then a (1 + ϵ)-approximate
minimum r-cut can be computed with high probability in O

(
m + (W − κ)k2 log(n) log(k)/ϵ3)

randomized time.

Proof. By Lemma 9, either a (1 + ϵ)-approximate minimum cut is induced by a singleton, or
the minimum r-vertex cut has weight at most O(k/ϵ). The former is addressed by inspecting
all singleton cuts. For the rest of the proof, let us assume the latter. By Lemma 10, we
can sparsify the graph to have maximum weighted in-degree O(k/ϵ), hence at most O(nk/ϵ)
total edges.

Let T be the sink component of the minimum r-cut, which has total vertex weight at
most O(k), and induces an r-cut with capacity κ ≤ O(k/ϵ). Recall the standard auxiliary
“split-graph” where vertex capacities are modeled as edge capacities. The high-level idea is
to find a vertex t ∈ T by random sampling and then apply Lemma 13 to the appropriate
auxiliary vertices of r and t in the split graph.

To this end, we first bound the volume of the sink-component corresponding to T in the
split-graph. We recall that the split graph splits each vertex v into an auxiliary “in-vertex”
v− and an auxiliary “out-vertex” v+. For each v there is a new edge (v−, v+) with capacity
equal to the vertex capacity of v. Each edge (u, v) is replaced with an edge (u+, v−) with
capacity3 equal to the vertex capacity of u. As a sink component, T maps to a vertex set T ′

in the split-graph consisting of (a) both copies v− and v+ of each vertex v ∈ T , and (b) the
out-vertex v+ of each vertex v in the vertex in-cut N−(T). For each vertex v ∈ T , v− has
(edge-)weighted in-degree equal to the vertex-weighted in-degree of v in the original graph,
which is at most O(k/ϵ). This sums to O(|T |k/ϵ) over all v ∈ T . For each v ∈ T , v+ has
weighted in-degree equal to the vertex weight of T , which sums to the total vertex weight of
T . Lastly, for each v ∈ N−(T), v+ has weighted in-degree equal to the vertex weight of v.
This sums to κ ≤ O(k/ϵ) over all v ∈ N−(T). All summed up, the total in-volume of T ′ in
the split-graph is at most O(k/ϵ) times the total vertex weight of T .

Suppose we had a constant factor estimate ℓ for the total vertex weight of T . Then
we can sample O

(
(W − deg+(r)) log(n)/ℓ

)
≤ O((W − κ) log(n)/ℓ) vertices by weight from

V \ ({r} ∪ N+(r)). With high probability, we sample O(log n) vertices from T . For each
sampled vertex t we invoke Lemma 13 to find an (r, t)-cut, with upper bound O(ℓk/ϵ) on
the volume of the sink component and O(k/ϵ) as the upper bound on the cut. With high
probability, one of these calls returns a (1 + ϵ)-approximate cut. The total time, over all
calls, would be O

(
(W − κ) log(n)k2/ϵ3)

.
Of course, we do not know the vertex weight of T a priori. However, we know that it is

upper bounded by k, and let ℓ enumerate all powers of 2 between 1 and k. For each ℓ, run
the process described above under the hypothesis that ℓ is a constant factor estimate for the
total vertex weight of T . Each choice of ℓ takes O

(
(W − κ) log(n)k2/ϵ3)

time. There are
O(log(k)) choices of ℓ. One of these choices of ℓ is a constant factor for the total volume of
T and produces a (1 + ϵ)-approximate minimum (r, t)-cut with high probability. ◀

3.4 Rooted vertex connectivity
We now present the algorithm for approximate rooted vertex connectivity and prove Theorem
2. The algorithm combines the subroutine in Lemma 11 for logarithmically many ranges of
weights, and Lemma 14 for sufficiently small weights. We restate Theorem 2 for the sake of
convenience.

3 Usually, this edge is set to capacity ∞, but either the weight of u or the weight of v are also valid.

ICALP 2021

49:14 Faster Algorithms for Rooted Connectivity in Directed Graphs

▶ Theorem 2. Let G = (V, E) be a directed graph with m edges, n vertices, and integer
vertex weights w : V → N. Let r ∈ V be a fixed root vertex. Let κ be the rooted vertex
connectivity from r. Let W =

∑
v∈V w(v) be the total weight of the graph. For any ϵ > 0

a (1 + ϵ)-approximate rooted minimum vertex cut can be computed with high probability
in Õ(m + n(W − κ)/ϵ) randomized time; for unit weights this is Õ(m + n(n − κ)/ϵ). The
rooted connectivity can be computed with high probability in Õ(m + κn(W − κ)) time.

Proof. Let κ0 = ϵ
√

n. Let i0 = ⌊log κ0⌋, and let i1 = max{⌈log ϵm/n⌉, i0 + 1} For each
i = ⌊log κ0⌋, ⌊log κ0⌋ + 1, . . . , i1 − 1, let ki = 2i. Let ki1 = W − deg+(r) where we recall that
deg+(r) is the weighted out-degree of r. For each i, we apply Lemma 11 with lower bound
ki and upper bound ki+1 on the weight of the sink component of the minimum vertex r-cut.
We repeat this subroutine O(log n) times for each i to amplify the success probability from
constant to high probability. We use VC(m, n) = Õ

(
m + n1.5)

[29]. We also apply Lemma
14 with ϵκ0 has an upper bound on the sink component size. The set of all cuts obtained by
these methods includes a (1 + ϵ)-approximate minimum r-cut with high probability, and we
return the minimum of these cuts. The combined running time is

Õ

(
m + (W − κ)n

ϵ
+ (W − κ)n1.5

κ0
+ (W − κ)κ2

0/ϵ3
)

≤ Õ(m + (W − κ)n/ϵ),

as desired. The exact bound follows by first using the approximation algorithm to obtain a
constant factor estimate for κ, and then setting setting ϵ ≤ 1/κ. ◀

3.5 Global vertex connectivity

We now shift to global vertex connectivity and prove Corollary 3, which we address by
reduction to the algorithm for rooted vertex connectivity above. We note that obtaining a
root is slightly non-trivial because many vertices may be in the minimum weight vertex cut.
We restate Corollary 3 for the sake of convenience.

▶ Corollary 3. Let G = (V, E) be a directed graph with m edges, n vertices, and integer
vertex weights w : V → N. Let W =

∑
v∈V w(v) be the total vertex weight of the graph. Let

κ be the global vertex connectivity of G. There is a randomized algorithm that for any ϵ > 0
outputs a (1 + ϵ)-approximate minimum vertex cut with high probability in time Õ(nW/ϵ).
There is a Õ(κnW) time randomized algorithm that computes the (exact) minimum vertex
cut with high probability. In particular, for unit weights, the running time is Õ

(
κn2)

.

Proof. Let κ denote the global vertex connectivity. If we sample a single vertex r in
proportion to its weight, then with probability 1 − κ/W , r is not in the minimum vertex
cut. Then either the rooted vertex connectivity from r, or to r (i.e., from r in the graph G′

with all the edges reversed), will give the rooted vertex cut. In principle we would like to
apply Theorem 2 with root r in both orientations, which conditional on r not being in the
minimum cut, succeeds with high probability. We amplify by repeating L = O(W

W −κ log n)
times to obtain the high probability bound. Observe that the running time, via Theorem
2, is

Õ(mL + nW/ϵ).

We would like to remove the mL factor.

C. Chekuri and K. Quanrud 49:15

To this end, observe that the m term arises from applying the rooted sparsification lemma
for various estimates k of the weight of the sink component. Recall that for fixed k and
ϵ, the sparsification lemma replaces, for every vertex v with in-degree > O(k/ϵ), all the
incoming edges to v with a single edge from the root. Note that much of the sparsification
lemma can be executed without r. In particular, we can remove all incoming edges to the
high in-degree vertices without knowing r; once r is given, we add an edge from r to each of
these vertices. The key point is that the first part, which takes O(m) time, can be done once
for all L sampled roots for each value of k. Thereafter, each of the L roots takes O(n) to
complete the sparsification for that root. This replaces the Õ(mL) term with Õ(nL), which
is dominated by Õ(nW/ϵ).

For the exact algorithm, we first apply the approximation algorithm with ϵ = 1/2
obtain a factor-2 approximation to κ within the claimed running time. We then apply the
approximation algorithm again with 1/(2κ) ≤ ϵ ≤ 1/κ. ◀

References
1 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix

multiplication. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 522–539.
SIAM, 2021.

2 Ruoxu Cen, Jason Li, Danupon Nanongkai, Debmalya Panigrahi, and Thatchaphol Saranurak.
Minimum cuts in directed graphs via

√
n max-flows. CoRR, abs/2104.07898, 2021. arXiv:

2104.07898.
3 Joseph Cheriyan and John H. Reif. Directed s–t numberings, rubber bands, and testing

digraph k-vertex connectivity. Comb., 14(4):435–451, 1994.
4 Jack Edmonds. Submodular functions, matroids, and certain polyhedra. In R. Guy, H. Hanani,

N. Sauer, and J. Schönheim, editors, Combinatorial Structures and Their Applications (Pro-
ceedings Calgary International Conference on Combinatorial Structures and Their Applications,
Calgary, Alberta, 1969; , eds.), pages 69–87. Gordon and Breach, New York, 1970.

5 Shimon Even and Robert Endre Tarjan. Network flow and testing graph connectivity. SIAM
J. Comput., 4(4):507–518, 1975.

6 Sebastian Forster, Danupon Nanongkai, Liu Yang, Thatchaphol Saranurak, and Sorrachai
Yingchareonthawornchai. Computing and testing small connectivity in near-linear time and
queries via fast local cut algorithms. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January
5-8, 2020, pages 2046–2065. SIAM, 2020.

7 András Frank. Connections in Combinatorial Optimization. Oxford University Press, 2011.
8 Harold N. Gabow. A matroid approach to finding edge connectivity and packing arborescences.

J. Comput. Syst. Sci., 50(2):259–273, 1995.
9 Harold N. Gabow. Using expander graphs to find vertex connectivity. J. ACM, 53(5):800–844,

2006.
10 Yu Gao, Yang P. Liu, and Richard Peng. Fully dynamic electrical flows: Sparse maxflow faster

than goldberg-rao. CoRR, abs/2101.07233, 2021. arXiv:2101.07233.
11 Andrew V. Goldberg and Satish Rao. Beyond the flow decomposition barrier. J. ACM,

45(5):783–797, 1998.
12 Jianxiu Hao and James B. Orlin. A faster algorithm for finding the minimum cut in a directed

graph. J. Algorithms, 17(3):424–446, 1994.
13 Monika Rauch Henzinger, Satish Rao, and Harold N. Gabow. Computing vertex connectivity:

New bounds from old techniques. J. Algorithms, 34(2):222–250, 2000.
14 Tarun Kathuria, Yang P. Liu, and Aaron Sidford. Unit capacity maxflow in almost o(m4/3)

time. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020,
Durham, NC, USA, November 16-19, 2020, pages 119–130. IEEE, 2020.

ICALP 2021

http://arxiv.org/abs/2104.07898
http://arxiv.org/abs/2104.07898
http://arxiv.org/abs/2101.07233

49:16 Faster Algorithms for Rooted Connectivity in Directed Graphs

15 Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving linear
programs in Õ(

√
rank) iterations and faster algorithms for maximum flow. In 55th IEEE

Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia, PA, USA,
October 18-21, 2014, pages 424–433. IEEE Computer Society, 2014.

16 Jason Li, Danupon Nanongkai, Debmalya Panigrahi, Thatchaphol Saranurak, and Sorrachai
Yingchareonthawornchai. Vertex connectivity in poly-logarithmic max-flows. To appear in
ACM STOC„ 2021.

17 Jason Li and Debmalya Panigrahi. Deterministic min-cut in poly-logarithmic max-flows.
In IEEE 61st Annual Symposium on Foundations of Computer Science, FOCS 2020. IEEE
Computer Society, 2020.

18 Yang P. Liu and Aaron Sidford. Faster energy maximization for faster maximum flow. In
Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia
Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 803–814. ACM, 2020.

19 Aleksander Madry. Navigating central path with electrical flows: From flows to matchings,
and back. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2013, 26-29 October, 2013, Berkeley, CA, USA, pages 253–262. IEEE Computer Society, 2013.

20 Aleksander Madry. Computing maximum flow with augmenting electrical flows. In Irit Dinur,
editor, IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016,
9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 593–602. IEEE
Computer Society, 2016.

21 Yishay Mansour and Baruch Schieber. Finding the edge connectivity of directed graphs. J.
Algorithms, 10(1):76–85, 1989.

22 David W. Matula. Determining edge connectivity in o(nm). In 28th Annual Symposium on
Foundations of Computer Science, Los Angeles, California, USA, 27-29 October 1987, pages
249–251. IEEE Computer Society, 1987. doi:10.1109/SFCS.1987.19.

23 Danupon Nanongkai, Thatchaphol Saranurak, and Sorrachai Yingchareonthawornchai. Break-
ing quadratic time for small vertex connectivity and an approximation scheme. In Proceedings
of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 241–252, 2019.

24 James B. Orlin. Max flows in o(mn) time, or better. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC’13, Palo
Alto, CA, USA, June 1-4, 2013, pages 765–774. ACM, 2013.

25 V. D. Podderyugin. An algorithm for finding the edge connectivity of graphs. Vopr. Kibern.,
2:136, 1973.

26 Kent Quanrud. Fast approximations for rooted connectivity in weighted directed graphs.
CoRR, abs/2104.06933, 2021. arXiv:2104.06933.

27 Alexander Schrijver. Combinatorial Optimization - Polyhedra and Efficiency. Springer, 2003.
28 Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, Aaron Sidford, Zhao

Song, and Di Wang. Minimum cost flows, mdps, and ℓ1-regression in nearly linear time for
dense instances. CoRR, abs/2101.05719, 2021. arXiv:2101.05719.

29 Jan van den Brand, Yin Tat Lee, Danupon Nanongkai, Richard Peng, Thatchaphol Saranurak,
Aaron Sidford, Zhao Song, and Di Wang. Bipartite matching in nearly-linear time on moderately
dense graphs. CoRR, abs/2009.01802, 2020. arXiv:2009.01802.

https://doi.org/10.1109/SFCS.1987.19
http://arxiv.org/abs/2104.06933
http://arxiv.org/abs/2101.05719
http://arxiv.org/abs/2009.01802

	1 Introduction
	1.1 Key ideas

	2 Edge connectivity
	2.1 The Rooted Sparsification Lemma for Edge Connectivity
	2.2 Rooted connectivity for a fixed range of component sizes
	2.3 Rooted connectivity for small sink components
	2.4 Algorithm for rooted edge connectivity

	3 Rooted and global vertex connectivity
	3.1 Rooted sparsification for approximate vertex connectivity
	3.2 Rooted vertex connectivity parametrized by sink component size
	3.3 Rooted vertex connectivity for small sink components
	3.4 Rooted vertex connectivity
	3.5 Global vertex connectivity

