
Relaxed Locally Correctable Codes with Improved
Parameters
Vahid R. Asadi # Ñ

Simon Fraser University, Burnaby, Canada

Igor Shinkar #Ñ

Simon Fraser University, Burnaby, Canada

Abstract
Locally decodable codes (LDCs) are error-correcting codes C : Σk → Σn that admit a local decoding
algorithm that recovers each individual bit of the message by querying only a few bits from a noisy
codeword. An important question in this line of research is to understand the optimal trade-off
between the query complexity of LDCs and their block length. Despite importance of these objects,
the best known constructions of constant query LDCs have super-polynomial length, and there is a
significant gap between the best constructions and the known lower bounds in terms of the block
length.

For many applications it suffices to consider the weaker notion of relaxed LDCs (RLDCs), which
allows the local decoding algorithm to abort if by querying a few bits it detects that the input is not
a codeword. This relaxation turned out to allow decoding algorithms with constant query complexity
for codes with almost linear length. Specifically, [2] constructed a q-query RLDC that encodes a
message of length k using a codeword of block length n = Oq(k1+O(1/

√
q)) for any sufficiently large

q, where Oq(·) hides some constant that depends only on q.
In this work we improve the parameters of [2] by constructing a q-query RLDC that encodes

a message of length k using a codeword of block length Oq(k1+O(1/q)) for any sufficiently large q.
This construction matches (up to a multiplicative constant factor) the lower bounds of [14, 23]
for constant query LDCs, thus making progress toward understanding the gap between LDCs and
RLDCs in the constant query regime.

In fact, our construction extends to the stronger notion of relaxed locally correctable codes
(RLCCs), introduced in [13], where given a noisy codeword the correcting algorithm either recovers
each individual bit of the codeword by only reading a small part of the input, or aborts if the input
is detected to be corrupt.

2012 ACM Subject Classification Theory of computation → Error-correcting codes

Keywords and phrases Algorithmic coding theory, consistency test using random walk, Reed-Muller
code, relaxed locally decodable codes, relaxed locally correctable codes

Digital Object Identifier 10.4230/LIPIcs.ICALP.2021.18

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://eccc.weizmann.ac.il/report/2020/142/ [1]

Acknowledgements We are thankful to Tom Gur for many fruitful discussions on this topic, and
we are grateful to the anonymous referees for their valuable suggestions that helped improve the
presentation of the paper.

1 Introduction

Locally decodable codes (LDCs) are error-correcting codes that admit a decoding algorithm
that recovers each specific symbol of the message by reading a small number of locations
in a possibly corrupted codeword. More precisely, a locally decodable code C : Fk → Fn

with local decoding radius τ ∈ [0, 1] is an error-correcting code that admits a local decoding

EA
T
C
S

© Vahid R. Asadi and Igor Shinkar;
licensed under Creative Commons License CC-BY 4.0

48th International Colloquium on Automata, Languages, and Programming (ICALP 2021).
Editors: Nikhil Bansal, Emanuela Merelli, and James Worrell; Article No. 18; pp. 18:1–18:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vasadi@sfu.ca
https://vrasadi.com/
mailto:ishinkar@sfu.ca
https://www.cs.sfu.ca/~ishinkar/index.html
https://doi.org/10.4230/LIPIcs.ICALP.2021.18
https://eccc.weizmann.ac.il/report/2020/142/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Relaxed Locally Correctable Codes with Improved Parameters

algorithm DC , such that given an index i ∈ [k] and a corrupted word w ∈ Fn which is τ -close
to an encoding of some message C(M), reads a small number of symbols from w, and outputs
Mi with high probability. Similarly, we have the notion of locally correctable codes (LCCs),
which are error-correcting codes that not only admit a local algorithm that decodes each
symbol of the message, but are also required to correct an arbitrary symbol from the entire
codeword. Indeed, note that for systematic codes the notion of LCC is strengthening of LDC.
Locally decodable and locally correctable codes have many applications in different areas
of theoretical computer science, such as complexity theory, coding theory, property testing,
cryptography, and construction of probabilistically checkable proof systems. For details, see
the surveys [26, 18] and the references within.

Despite the importance of LDCs and LCCs, and the extensive amount of research studying
these objects, the best known construction of constant query LDCs has super-polynomial
length n = exp(exp(logΩ(1)(k))), which is achieved by the highly non-trivial constructions
of [25] and [9]. For constant query LCCs, the best known constructions are of exponential
length, which can be achieved by some parameterization of Reed-Muller codes. It is important
to note that there is a huge gap between the best known lower bounds for the length of
constant query LDCs and the length of best known constructions. Currently, the best known
lower bound on the length of LDCs says that for q ≥ 3 it must be at least k1+Ω(1/q), where q

stands for the query complexity of the local decoder. See [14, 17, 23] for the best general
lower bounds for constant query LDCs.

Motivated by applications to probabilistically checkable proofs (PCPs), Ben-Sasson,
Goldreich, Harsha, Sudan, and Vadhan introduced in [2] the notion of relaxed locally decodable
codes (RLDCs). Informally speaking, a relaxed locally decodable code is an error-correcting
code which allows the local decoding algorithm to abort if the input codeword is corrupt,
but does not allow it to err with high probability. In particular, the decoding algorithm
should always output the correct symbol, if the given word is not corrupted. Formally, a
code C : Fk → Fn is an RLDC with decoding radius τ ∈ [0, 1] if it admits a relaxed local
decoding algorithm DC which given an index i ∈ [k] and a possibly corrupted codeword
w ∈ Fn, makes a small number of queries to w, and satisfies the following properties.
Completeness: If w = C(M) for some M ∈ Fk, then Dw

C(i) should output Mi.
Relaxed decoding: If w is τ -close to some codeword C(M), then Dw

C(i) should output either
Mi or a special abort symbol with probability at least 2/3.

This relaxation turns out to be very helpful in terms of constructing RLDCs with better
block length. Indeed, [2] constructed of a q-query RLDC with block length n = k1+O(1/

√
q).

The notion of relaxed LCCs (RLCCs), recently introduced in [13], naturally extends the
notion of RLDCs. These are error-correcting codes that admit a correcting algorithm that is
required to correct every symbol of the codeword, but is allowed to abort if noticing that the
given word is corrupt. More formally, the local correcting algorithm gets an index i ∈ [n],
and a (possibly corrupted) word w ∈ Fn, makes a small number of queries to w, and satisfies
the following properties.
Completeness: If w ∈ C, then Dw

C(i) should output wi.
Relaxed correcting: If w is τ -close to some codeword c∗ ∈ C, then Dw

C(i) should output
either c∗

i or a special abort symbol with probability at least 2/3.
Note that if the code C is systematic, i.e., the encoding of any message M ∈ Fk contains M

in its first k symbols, then the notion of RLCC is stronger than RLDC.
Recently, building on the ideas from [13], [3] constructed RLCCs whose block length

matches the RLDC construction of [2]. For the lower bounds, the only result we are aware of
is the work of Gur and Lachish [12], who proved that for any RLDC the block length must
be at least n = k1+Ω(1/q2).

V. R. Asadi and I. Shinkar 18:3

Given the gap between the best constructions and the known lower bounds, it is natural
to ask the following question:

What is the best possible trade-off between the query complexity and the block length
of an RLDC and RLCC?

In particular, [2] asked whether it is possible to obtain a q-query RLDC whose block
length is strictly smaller than the best known lower bound on the length of LDCs. A positive
answer to their question would show a separation between the two notions, thus proving that
the relaxation is strict. See paragraph Open Problem in the end of Section 4.2 of [2].

In this work we make progress on this problem by constructing a relaxed locally decodable
code C : FK → FN with query complexity O(q) and block length K1+O(1/q). In fact, our
construction gives the stronger notion of a relaxed locally correctable code.

▶ Theorem 1 (Main Theorem). For every sufficiently large q ∈ N there exists an q-query
relaxed locally correctable code C : {0, 1}K → {0, 1}N with constant relative distance and
constant decoding radius, such that the block length of C is

N = qO(q2) · K1+O(1/q) .

Furthermore, the code C is linear and systematic.

Therefore, our construction improves the parameters of the q-query RLDC construction
of [2] with block length N = K1+O(

√
1/q), and matches (up to a multiplicative factor in q)

the lower bound of Ω(K1+ 1
⌈q/2⌉−1) for the block length of q-query LDCs [14, 23].

▶ Remark 2. In this paper we prove Theorem 1 for a code C : FK → FN over a large alphabet.
Specifically, we show a code C : FK → FN satisfying Theorem 1, for a finite field F satisfying
|F| ≥ cq · K1/q, for some cq ∈ N that depends only on q.

Using the techniques from [3] it is not difficult to obtain an RLCC over the binary
alphabet with almost the same block length. Indeed, this can be done by concatenating
our code over large alphabet with an arbitrary binary code with constant rate and constant
relative distance. The concatenation we use slightly differs from how it is usually applied, as
we apply it on the CTRW level, and not on each symbol of the large alphabet separately.
See Section 3 for details.

1.1 Related works
RLDC and RLCC constructions. Relaxed locally decodable codes, were first introduced
by [2], motivated by applications to constructing short PCPs. Their construction has a block
length equal to N = K1+O(1/

√
q). Since that work, there were no constructions with better

block length, in the constant query complexity regime . Recently, [13] introduced the related
notion of relaxed locally correctable codes (RLCCs), and has found applications in efficient
interactive protocols, in particular, in interactive oracle proofs [21].

The work of [13] showed a construction of a q-query RLCCs with block length N =
poly(K). Then, [3] constructed relaxed locally correctable codes with block length matching
that of [2] (up to a multiplicative constant factor that only depends on q). The construction
of [3] had two main components, that we also use in the current work.
Consistency test using random walk (CTRW): Informally, given a word w, and a coordi-

nate i we wish to correct, CTRW samples a sequence of constraints C1, C2, . . . , Ct on w,
such that the domains of Ci and Ci+1 intersect, with the guarantee that if w is close

ICALP 2021

18:4 Relaxed Locally Correctable Codes with Improved Parameters

to some codeword c∗ ∈ C, but wi ̸= c∗
i , then with high probability w will be far from

satisfying at least one of the constraints. In other words, CTRW performs a random walk
on the constraints graph and checks if w is consistent with c∗ in the i’th coordinate. We
introduce this notion in detail in Section 2.1.

Correctable canonical PCPPs (ccPCPP): These are PCPP systems for some specified lan-
guage L satisfying the following properties:

(i) for each w ∈ L there is a unique proof π(w) that satisfies the verifier with probability
1,

(ii) the verifier accepts with high probability only pairs (x, π) that are close to some
(w, π(w)) for some w ∈ L, i.e., only the pairs where x is close to some w ∈ L, and π is
close to π(w), and

(iii) the set {w ◦ πw : w ∈ L} is an RLCC.
Canonical proofs of proximity have been introduced in [11] and have been studied
in [7, 13, 20].

Lower bounds. For lower bounds, the only bound we are aware of is that of [12], who proved
that any q-query relaxed locally decodable code must have a block length N ≥ K

1+Ω(1
q2).

For the strict notion of locally decodable codes, it is known by [14, 23] that for q ≥ 3
any q-query LDC must have block length N ≥ Ω(K1+ 1

⌈q/2−1⌉ / log(K)). For q = 3 a slightly
stronger bound of N ≥ Ω(K2/ log log(K)) is known for linear LDCs [23]. For q = 2 [17]
proved an exponential lower bound of N ≥ exp(Ω(K)). See also [4, 10, 19, 22, 24] for more
related work on lower bounds for LDCs.

2 Proof overview

In this section we informally describe our code construction. Roughly speaking, our construc-
tion consists of two parts:
The Reed-Muller encoding: Given a message M ∈ FK , its Reed-Muller encoding is the

evaluation of an m-variate polynomial of degree at most d over F, whose coefficients are
determined by the message we wish to encode.

Proofs of proximity: The second part of the encoding consists of the concatenation of PCPPs,
each claiming that a certain restriction of the first part agrees with some Reed-Muller
codeword.

Specifically, given a message M ∈ FK , we first encode it using the Reed-Muller encoding
RMF(m, d), where m roughly corresponds to the query complexity of our RLDC, and the
field is large enough so that the distance of the Reed-Muller code, which is equal to 1 − d

|F| , is
some constant, say 3/4. That is, the first part of the encoding corresponds to an evaluation of
some polynomial f : Fm → F of degree at most d. The second part of the encoding consists of
a sequence of PCPPs claiming that the restrictions of the Reed-Muller part to some carefully
chosen planes in Fm are evaluations of some low-degree polynomial.

The planes we choose are of the form Pa⃗,⃗h,⃗h′ = {a⃗ + t · h⃗ + s · h⃗′ : t, s ∈ F}, where a⃗ ∈ Fm,
and h⃗, h⃗′ ∈ Hm for some H subfield of F. We will call such planes H-planes. In order to obtain
the RLDC with the desired parameters, we choose the field H so that F is the extension
of H of degree [F : H] = m. It will be convenient to think of H as a field and think of F
as a vector space of H of dimension m (augmented with the multiplicative structure on F).
Indeed, the saving in the block length of the RLDC we obtain crucially relies on the fact
that we ask for PCPPs for only a small collection of planes, and not all planes in Fm. The
actual constraints required to be certified by the PCPPs are slightly more complicated, and
we describe them next.

V. R. Asadi and I. Shinkar 18:5

The constraints of the first type correspond to H-planes P and points x⃗ ∈ P. For each
such pair (P, x⃗) the code will contain a PCPP certifying that

(i) the restriction of the Reed-Muller part to P is close to an evaluation of some polynomial
of total degree at most d,

(ii) and furthermore, this polynomial agrees with the value of the Reed-Muller part on x⃗.
In order to define it formally, we introduce the following notation.

▶ Notation 3. Let F be a finite field of size n. Fix f : Fm → F, a plane P in Fm, and a point
x⃗ ∈ P. Denote f

(x⃗)
|P = f|P ◦ (f(x⃗))n2 . That is, the length of f

(x⃗)
|P is 2 · n2, and it consists of

f|P concatenated with n2 repetitions of f(x⃗).

Given the notation above, if f is the first part of the codeword, corresponding to the Reed-
Muller encoding of the message, then the PCPP for the pair (P, x⃗) is expected to be the
proof of proximity claiming that f

(x⃗)
|P is close to the language

RM(x⃗)
|P = {Q◦(Q(x⃗))(n2) : Q is the evaluation of a degree-d polynomial on P} ⊆ F2n2

. (1)

Note that by repeating the symbol Q(x⃗) for n2 times, the definition indeed puts weight
1/2 on the constraint that the input f|P is close to some low-degree polynomial Q, and
puts weight 1/2 on the constraint f(x⃗) = Q(x⃗). In particular, if f|P is δ-close to some
bivariate low degree polynomial Q for some small δ > 0, but f(x⃗) ̸= Q(x⃗), then f

(x⃗)
|P is at

least (1 − d
|F| − δ)/2-far from any bivariate low degree polynomial on P.

The constraints of second type correspond to H-planes P and lines ℓ ⊆ P . For each such
pair (P, ℓ) the code will contain a PCPP certifying that

(i) the restriction of the Reed-Muller part to P is close to an evaluation of some polynomial
of total degree at most d,

(ii) and furthermore, the restriction of this polynomial to ℓ is close to f|ℓ.
(In particular, this implies that f|ℓ is close to some low-degree polynomial.)

Next, we introduce the notation analogous to Notation 3 replacing the points with lines.

▶ Notation 4. Let F be a finite field of size n. Fix f : Fm → F, a plane P in Fm, and a line
ℓ ⊆ P. Denote by f

(ℓ)
|P = f|P ◦ (f|ℓ)n. That is, the length of f

(ℓ)
|P is 2 · n2, and it consists of

f|P concatenated with n repetitions of f|ℓ.

If f is the Reed-Muller part of the codeword, corresponding to the Reed-Muller encoding
of the message, then the PCPP for the pair (P, ℓ) is expected to be the proof of proximity
claiming that f

(ℓ)
|P is close to the language

RM(ℓ)
|P = {Q◦(Q|ℓ)n : Q is the evaluation of some degree-d polynomial on P} ⊆ F2n2

. (2)

Again, similarly to the first part, repeating the evaluation of Q|ℓ for n times puts weight 1/2
on the constraint that the input f|P is a close to some low-degree polynomial Q, and puts
weight 1/2 of the constraint f|ℓ is close to Q|ℓ.

With the proofs specified above, we now sketch the local correcting algorithm for the
code. Below we only focus on correcting symbols from the Reed-Muller part. Correcting the
symbols from the PCPP part follows a rather straightforward adaptation of the techniques
from [3], and we omit them from the overview.

Given a word w ∈ FN and an index i ∈ [N] of w corresponding to the Reed-Muller part
of the codeword, let f : Fm → F be the Reed-Muller part of w, and let x⃗ ∈ Fm be the input
to f corresponding to the index i. The local decoder works in two steps.

ICALP 2021

18:6 Relaxed Locally Correctable Codes with Improved Parameters

Consistency test using random walk: In the first step the correcting algorithm invokes a
procedure we call consistency test using a random walk (CTRW) for the Reed-Muller
code. This step creates a sequence of H-planes of length (m + 1), where each plane defines
a constraint checking that the restriction of w to the plane is low-degree. Hence, we get
m + 1 constraints, each depending on n2 symbols.

Composition using proofs of proximity: Then, instead of reading the entire plane for each
constraint, we use the PCPPs from the second part of the codeword to reduce the arity
of each constraint to O(1), thus reducing the total query complexity of the correcting
algorithm to q = O(m). That is, for each constraint we invoke the corresponding PCPP
verifier to check that the restrictions of f to each of these planes is (close to) a low-degree
polynomial. If at least one of the verifiers rejects, then the word f must be corrupt, and
hence the correcting algorithm returns ⊥. Otherwise, if all the PCPP verifiers accept,
the correcting algorithm returns f(x⃗).

In particular, if f is a correct Reed-Muller encoding, then the algorithm will always return
f(x⃗), and the main part of the analysis is to show that if f is close to some Q∗ ∈ RMF(m, d),
but f(x⃗) ̸= Q∗(x⃗), then the correcting algorithm catches an inconsistency, and returns ⊥
with some constant probability.

The key step in the analysis says that if f is close to some codeword Q∗ ∈ RM but
f(x⃗) ̸= Q∗(x⃗), then with high probability f will be far from a low degree polynomial on
at least one of these planes, where “far” corresponds to the notion of distances defined by
the languages RM(x⃗)

|P and RM(ℓ)
|P . In particular, if on one of the planes f is far from the

corresponding language, then the PCPP verifier will catch this with constant probability,
thus causing the correcting algorithm to return ⊥. We discuss this part in detail below.

It is important to emphasize that the main focus of this work is constructing a correcting
algorithm for the Reed-Muller part. Using the techniques developed in [3], it is rather
straightforward to design the algorithm for correcting symbols from the PCPPs part of the
code. See the full version for details.

2.1 CTRW on Reed-Muller codes

Below we define the notion of consistency test using random walk (CTRW) for the Reed-Muller
code. This notion is a slight modification of the notion originally defined in [3] for general
codes. In this paper we define it only for the Reed-Muller code. Given a word f : Fm → F and
some x⃗ ∈ Fm, the goal of the test is to make sure that f(x⃗) is consistent with the codeword
of Reed-Muller code closest to f . [3] describe a CTRW for the tensor power C⊗m of an
arbitrary codes C with good distance (e.g., Reed-Solomon). The CTRW they describe works
by starting from the point we wish to correct, and choosing an axis-parallel line ℓ1 containing
the starting point. The test continues by choosing a sequence of random axis-parallel lines
ℓ2, ℓ3, . . . ℓt, such that each ℓi intersects the previous one, ℓi−1, until reaching a uniformly
random coordinate of the tensor code. That is, the length of the sequence t denotes the
mixing time of the corresponding random walk. The predicates are defined in the natural
way; namely, the test expects to see a codeword of C on each line it reads.

In this work, we present a CTRW for the Reed-Muller code, which is a variant of the
CTRW described above. The main differences compared to the description above are that

(i) the test chooses a sequence of planes P1, P3, . . . Pt (and not lines),
(ii) and every two planes intersect on a line (and not on a point).

Roughly speaking, the algorithm works as follows.

V. R. Asadi and I. Shinkar 18:7

1. Given a point x⃗ ∈ Fm the test picks a uniformly random H-plane P0 containing x⃗.
2. Given P0, the test chooses a random line ℓ1 ⊆ P0, and then chooses another random

H-plane P1 ⊆ Fm containing ℓ1.
3. Given P1, the test chooses a random line ℓ2 ⊆ P1, and then chooses another random

H-plane P2 ⊆ Fm containing ℓ2.
4. The algorithm continues for some predefined number of iterations, choosing

P0, P1, P2, . . . Pt. Roughly speaking, the number of iterations is equal to the mixing
time of the corresponding Markov chain. More specifically, the process continues until a
uniformly random point in Pt is close to a uniform point in Fm.

5. The constraints defined for each Pi are the natural constraints; namely checking that the
restriction of f to the entire plane Pi is a polynomial of degree at most d.

One of the important parameters, directly affecting the query complexity of our con-
struction is the mixing time of the random walk. Indeed, as explained above, the query
complexity of our RLDC is proportional to the mixing time of the random walk. We prove
that if [F : H] = m, then the mixing time is upper bounded by m. In order to prove this
we use the following claim, saying that if F is the field extension of H of degree m, and
h⃗1, . . . , h⃗m ∈ Hm and t1, . . . , tm ∈ F are sampled uniformly, independently from each other,
then

∑m
i=1 ti · h⃗i is close to a uniformly random point in Fm. See the full version for the

exact statement.

As explained above, the key step of the analysis is to prove that if f is close to some
codeword Q∗ ∈ RM but f(x⃗) ̸= Q∗(x⃗), then with high probability at least one of the
predicates defined will be violated. Specifically, we prove that with high probability the
violation will be in the following strong sense.

▶ Theorem 5 (informal, see the full version [1]). If f is close to some codeword Q∗ ∈ RM but
f(x⃗) ̸= Q∗(x⃗), then with high probability
1. either f

(x⃗)
|P0

is Ω(1)-far from RM(x⃗)
|P0

,
2. or f

(ℓi)
|Pi

is Ω(1)-far from RM(ℓi)
|Pi

for some i ∈ [m].

Indeed, this strong notion of violation allows us to use the proofs of proximity in order to
reduce the query complexity to O(1) queries for each i ∈ [m]. We discuss proofs of proximity
next.

2.2 PCPs of proximity and composition
The second building block we use in this work is the notion of probabilistic checkable proofs
of proximity (PCPPs). PCPPs were first introduced in [2] and [8]. Informally speaking, a
PCPP verifier for a language L, gets an oracle access to an input x and a proof π claiming
that x is close to some element of L. The verifier queries x and π in some small number of
(random) locations, and decides whether to accept or reject. The completeness and soundness
properties of a PCPP are as follows.
Completeness: If x ∈ L, then there exists a proof causing the verifier accept with proba-

bility 1.
Soundness: If x is far from L, then no proof can make the verifier accept with probability

more than 1/2.
In fact, we will use the slightly stronger notion of canonical PCPP (cPCPP) systems. These
are PCPP systems satisfying the following completeness and soundness properties. For
completeness, we demand that for each w in the language there is a unique canonical proof

ICALP 2021

18:8 Relaxed Locally Correctable Codes with Improved Parameters

π(w) that causes the verifier to accept with probability 1. For soundness, the demand is
that the only pairs (x, π) that are accepted by the verifier with high probability are those
where x is close to some w ∈ L and π is close to π(w). Such proof system have been studied
in [7, 20], who proved that such proof systems exist for every language in P.

Furthermore, for our purposes we will demand a stronger notion of correctable canonical
PCPP systems (ccPCPP). These are canonical PCPP systems where the set {w ◦ π∗(w) :
w ∈ L} is a q-query RLCC for some parameter q, with π∗(w) denoting the canonical proof
for w ∈ L. It was shown in [3] how to construct ccPCPP by combining a cPCPP system
with any systematic RLCC. Informally speaking, for every w ∈ L, and its canonical proof
π(w), we define π∗(w) by encoding w ◦ π(w) using a systematic RLCC. The verifier for the
new proof system is defined in a straightforward manner. See [3] for details.

The PCPPs we use throughout this work, are the proofs of two types, certifying that
1. f

(x⃗)
|P is close to RM(x⃗)

|P for some plane P and some x⃗ ∈ P, and
2. f

(ℓ)
|P is close to RM(ℓ)

|P for some plane P and some line ℓ ⊆ P.

Indeed, it is easy to see that the first type of proofs checks that
(i) the restriction of f to P is close to an evaluation of some polynomial Q∗ of total degree

at most d,
(ii) and f(x⃗) = Q∗(x⃗).

Similarly, the second type proof certifies that
(i) the restriction of f to P is close to an evaluation of some polynomial Q∗ of total degree

at most d,
(ii) and f|ℓ is close to Q∗

|ℓ.

These notions of distance go together well with the guarantees we have for CTRW in
Theorem 5. This allows us to compose CTRW with the PCPPs to obtain a correcting
algorithm with query complexity q = O(m). Informally speaking, the composition theorem
works as follows. We first run the CTRW to obtain a collection of m + 1 constraints on the
planes P0, P1, . . . , Pm. By Theorem 5, we have the guarantee that with high probability
either f

(x⃗)
|P0

is Ω(1)-far from RM(x⃗)
|P0

, or f
(ℓi)
|Pi

is Ω(1)-far from RM(ℓi)
|Pi

for some i ∈ [m]. Then,
instead of actually reading the values of f on all these planes, we run the PCPP verifier on
f

(x⃗)
|P0

to check that it is close to RM(x⃗)
|P0

, and running the PCPP verifier on each of the f
(ℓi)
|Pi

to
check that they are close to RM(ℓi)

|Pi
. Each execution of the PCPP verifier makes O(1) queries

to f and to the proof, and thus the total query complexity will be indeed O(m). As for
soundness, if f

(x⃗)
|P0

is Ω(1)-far from RM(x⃗)
|P0

, or f
(ℓi)
|Pi

is Ω(1)-far from RM(ℓi)
|Pi

for some i ∈ [m],
then the corresponding verifier will notice an inconsistency with constant probability, causing
the decoder to output ⊥.

A detailed discussion of proofs of proximity and the composition is available in the full
version of this work [1].

2.3 Putting it all together
Below we discuss the block length and query complexity of our code.
Query complexity: For the query complexity, the mixing time of the CTRW is upper bounded

by m, and for each step of the random walk, we read O(1) queries from the PCPP part.
Therefore, the total query complexity is bounded by O(m).

Block length: As for the block length of the code, the encoding takes a message of length
K and encodes it first using the Reed-Muller code of degree d over the field F of size
|F| = n = O(d), where O(·) depends on m, so that K =

(
m+d

m

)
>

(
d
m

)m. In particular,
the length of the Reed-Muller part is nm ≤ O(K), where, again, O(·) hides a constant
that depends on m.

V. R. Asadi and I. Shinkar 18:9

The total number of predicates (of both types) defined for the CTRW is upper bounded
by B ≤ 2nm · |H|2m · n2 = 2nm+4, as [F : H] = m, and hence |H| = n1/m. For each such
predicate, we have a PCPP part of length poly(|F|) = poly(n).
Therefore, the total length of our code N is upper bounded by

N = nm + B · poly(n) = nm+O(1) .

A straightforward computation reveals that this is upper bounded by Cm · K1+O(1/m),
where Cm is a constant that depends on m (but is independent of all other parameters).
See the full version for the exact computation.

2.4 Comparison to the previous work
Despite the high level similarity of our work with [3], we contribute several new and crucial
ideas required in order to improve the parameters of RLCCs. To demonstrate the contribution
of this work, we recall the previous best-known construction of RLCCs, due to [3]. The
construction in [3] consists of two parts. First, they take a message M and encode it using
tensor power of Reed–Solomon code which we denote by C⊗m. Then, for each axis-parallel
line in C⊗m, they append a PCPP proof asserting that restriction of the codeword to the
corresponding line is (close to) a Reed-Solomon code C. The relaxed local decoding procedure
for a word f and a point x⃗ ∈ C⊗m works by running a CTRW as follows. First, the algorithm
starts by choosing an axis-parallel line ℓ1 that passes through x⃗, and invokes a PCPP verifier
on the proof for ℓ1 to check that f|ℓ1 is (close to) a Reed–Solomon codeword. The algorithm
continues by choosing another line ℓ2 that intersects the ℓ1, and checks that f|ℓ2 is (close to)
a Reed–Solomon codeword. The procedure is repeated m times by sampling ℓ3, ℓ4, . . . , ℓm,
where a ℓi+1 intersect ℓi on a uniformly random point on the line. The length of the walk m

is chosen so that a uniformly random point in ℓm is a uniform point in the tensor code. In
particular, with high probability the line ℓm is close to the closest global codeword.

Informally, the main idea of the analysis boils down to the following. Suppose that the
line ℓ1 is far from the closest global codeword Q∗ ∈ C⊗m. That is, either (1) f|ℓ1 is far from
the Reed-Solomon code or (2) it is close to some Reed-Solomon codeword but is inconsistent
with the closest global codeword Q∗

|ℓ1
. In particular, using the fact that Reed-Solomon code

has good distance, it follows that dist(f|ℓ1 , Q∗
|ℓ1

) = Ω(1). Since after m random steps we
reach a line ℓm that is close to the closest global codeword, i.e., dist(f|ℓ1 , Q∗

|ℓ1
) = o(1), then

it must be the case that one of the lines ℓ1, ℓ2, . . . , ℓm−1 is far from a Reed-Solomon, and
thus the PCPP verifier rejects with high probability.

The main barrier in improving the parameters of [3] comes from the fact that ℓi+1 and
ℓi only intersect in a single point, and since we only check that the restrictions to ℓi’s are
Θ(1)-close to the Reed-Solomon code, each random step chooses a non-corrupted point with
some constant probability, which causes the algorithm to fail.

A natural idea to overcome this difficulty is to replace the lines ℓ1, ℓ2, . . . , ℓm in [3] with
the planes P1, P2, . . . , Pm, such that two consecutive planes intersect on a line. Indeed,
using the fact that a random line is a good sampler it will follow that corruption in P1 will
propagate with high probability to Pm.

The key difficulty in implementing this idea is deciding on the collection of the planes for
which we require the PCPPs. For example, if we ask for a PCPP for all planes in Fm, then
the block length becomes at least F4m, which is a lot more than we can afford. On the other
hand, if we ask for a PCPP for all axis-parallel planes, then we will not be able to sample a
uniformly random line in each step of the random walk, as a uniformly random line will not
be axis-parallel with high probability.

ICALP 2021

18:10 Relaxed Locally Correctable Codes with Improved Parameters

We overcome this difficulty by requiring PCPPs for all H-planes, where H is a carefully
chosen subfield of F, and an H-plane is a plane of the form Pa⃗,⃗h,⃗h′ = {a⃗+t · h⃗+s · h⃗′ : t, s ∈ F},
where a⃗ ∈ Fm, and h⃗, h⃗′ ∈ Hm for some H subfield of F.

Specifically, we choose the subfield H to satisfy the following properties:
1. H is sufficiently small, so that the total number of planes is small, which in turn reduces

the block length of the code.
2. Mixing time for CTRW on the planes converges rapidly.
Note that the two requirements are conflicting, as fast mixing implies that the collection
of the planes must be somewhat large. We show a subfield H of F satisfying both of these
properties, thus finding a pseudo-random collection of planes which allows us to improve the
parameters of the entire construction, thus obtaining the main goal of this paper. See the
full version for details.

3 Concluding remarks and open problems

In this section, we first briefly discuss how to obtain a binary RLDC using the code
concatenation technique. Then, we conclude the section by reviewing some open problem
which we leave for future research.

3.1 Code concatenation for binary alphabet

In this paper we constructed an O(q)-query RLDC C : FK → FN with block length N =
qO(q2) · K1+O(1/q), assuming that the field is large enough, namely, assuming that |F| ≥
cq · K1/q. Using standard techniques it is possible to obtain a binary RLDC with similar
parameters. This can be done by concatenating our code with an arbitrary binary code
with constant rate and constant relative distance. Indeed, this transformation appears in [3,
Appendix A], who showed how concatenating CTRW-based RLDC over large alphabet with
a good binary code gives a binary RLDC that essentially inherits the block length and the
query complexity of the RLDC over large alphabet. Below we provide the proof sketch,
explaining how the concatenation works.

Proof sketch. Suppose that we want to construct a short binary RLCC. Let CRLCC : FK →
FN be the RLCC over some field F with the desired block length, and let Cbin : {0, 1}K′ →
{0, 1}N ′ be an error-correcting code with constant rate and constant distance. We also
assume that field F is chosen so that |F| = 2K′ . (To satisfy this condition, one can simply
set H to be a field of characteristic 2.) This assumption will allow us to have a bijection
between each symbol of F and binary string of length K ′.

We construct the binary concatenated code Cconcat : {0, 1}K·K′ → {0, 1}N ·N ′ as follows.
Given a message M ∈ {0, 1}K·K′ , we first convert it to an string in M ′ ∈ FK in the natural
way. Then, we encode M ′ using CRLCC to obtain a codeword c∗ ∈ CRLCC . Finally, we
encode each symbol of c∗ using Cbin to get the final codeword c ∈ {0, 1}N ·N ′ .

To prove that the concatenated code is an RLCC, Chiesa, Gur, and Shinkar proved in
[3, Theorem A.4] that if CRLCC admits an r-steps CTRW with some soundness guarantees,
then Cconcat admits an r-steps CTRW with related soundness guarantees. The CTRW on
the concatenated code Cconcat emulates the CTRW on CRLCC by sampling planes for the
CTRW on the Reed-Muller code, and instead of reading the symbols from F, it reads the
binary encodings of all symbols belonging to these planes.

V. R. Asadi and I. Shinkar 18:11

Indeed, it is not difficult to see that if CRLCC admits an r-steps CTRW with some
soundness guarantees, then so does the concatenated code. We omit the details, and refer
the interested reader to Appendix A in [3]. ◀

3.2 Open problems
We conclude the paper with several open problems we leave for future research.

1. The most fundamental open problem regarding RLDCs/RLCCs is to understand the
optimal trade-off between the query complexity of LDCs and their block length in the
constant query regime. It is plausible that the lower bound of [12] can be improved to
K1+Ω(1/q), although we do not have any evidence for this.

2. As discussed in the intoduction, [2] asked whether it is possible to prove a separation
between LDCs and RLDCs. Understanding the trade-off between the query complexity
and the block length is one possible way to show such separation.

3. Another interesting open problem is to construct an RLDC/RLCC with constant rate and
small query complexity. In particular, it is plausible that there exist polylog(N)-query
RLDCs with N = O(K). It should be noted that [13] constructed constant-rate RLCCs
(in fact with a rate approaching 1) and query complexity log(N)O(log log(N)).

4. Also, it would be interesting to construct RLDCs/RLCCs using high-dimensional ex-
panders [15, 6, 5, 16]. Since there are several definitions of high-dimensional expanders,
it would be interesting to state the sufficient properties of high-dimensional expanders
required for RLDCs. We believe this approach can be useful in constructing constant
rate RLDCs with small query complexity.

References
1 Vahid R. Asadi and Igor Shinkar. Relaxed locally correctable codes with improved parameters.

Electron. Colloquium Comput. Complex., 2020. URL: https://eccc.weizmann.ac.il/report/
2020/142.

2 Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil P. Vadhan. Robust
PCPs of proximity, shorter PCPs, and applications to coding. SIAM Journal on Computing,
36(4):889–974, 2006.

3 Alessandro Chiesa, Tom Gur, and Igor Shinkar. Relaxed locally correctable codes with
nearly-linear block length and constant query complexity. In Proceedings of the Fourteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1395–1411, 2020.

4 A. Deshpande, R. Jain, T. Kavitha, S. V. Lokam, and J. Radhakrishnan. Better lower bounds
for locally decodable codes. In Proceedings 17th IEEE Annual Conference on Computational
Complexity, pages 184–193, 2002.

5 Yotam Dikstein, Irit Dinur, Yuval Filmus, and Prahladh Harsha. Boolean Function Analysis
on High-Dimensional Expanders. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM 2018), Leibniz International
Proceedings in Informatics (LIPIcs), pages 38:1–38:20, 2018.

6 I. Dinur and T. Kaufman. High dimensional expanders imply agreement expanders. In 2017
IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages 974–985,
2017.

7 Irit Dinur, Oded Goldreich, and Tom Gur. Every set in P is strongly testable under a suitable
encoding. Electron. Colloquium Comput. Complex., 2018. URL: https://eccc.weizmann.ac.
il/report/2018/050.

8 Irit Dinur and Omer Reingold. Assignment testers: Towards a combinatorial proof of the PCP
theorem. In Proceedings of the 45th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2004, pages 155–164, 2004.

ICALP 2021

https://eccc.weizmann.ac.il/report/2020/142
https://eccc.weizmann.ac.il/report/2020/142
https://eccc.weizmann.ac.il/report/2018/050
https://eccc.weizmann.ac.il/report/2018/050

18:12 Relaxed Locally Correctable Codes with Improved Parameters

9 Klim Efremenko. 3-query locally decodable codes of subexponential length. SIAM J. Comput.,
41(6):1694–1703, 2012.

10 O. Goldreich, H. Karloff, L. J. Schulman, and L. Trevisan. Lower bounds for linear locally
decodable codes and private information retrieval. In Proceedings 17th IEEE Annual Conference
on Computational Complexity, pages 175–183, 2002.

11 Oded Goldreich and Madhu Sudan. Locally testable codes and pcps of almost-linear length. J.
ACM, 53(4):558–655, 2006.

12 Tom Gur and Oded Lachish. A lower bound for relaxed locally decodable codes. In 31st
ACM-SIAM Symposium on Discrete Algorithms, SODA 2020, 2020.

13 Tom Gur, Govind Ramnarayan, and Ron D. Rothblum. Relaxed locally correctable codes.
In 9th Innovations in Theoretical Computer Science Conference, ITCS ’18, pages 27:1–27:11,
2018.

14 Jonathan Katz and Luca Trevisan. On the efficiency of local decoding procedures for error-
correcting codes. In Proceedings of the Thirty-Second Annual ACM Symposium on Theory of
Computing, pages 80–86, 2000.

15 Tali Kaufman and David Mass. High Dimensional Random Walks and Colorful Expan-
sion. In 8th Innovations in Theoretical Computer Science Conference (ITCS 2017), Leibniz
International Proceedings in Informatics (LIPIcs), pages 4:1–4:27, 2017.

16 Tali Kaufman and Izhar Oppenheim. High Order Random Walks: Beyond Spectral Gap. In
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM 2018), Leibniz International Proceedings in Informatics (LIPIcs), pages
47:1–47:17, 2018.

17 Iordanis Kerenidis and Ronald de Wolf. Exponential lower bound for 2-query locally decodable
codes via a quantum argument. In Journal of Computer and System Sciences, pages 106–115,
2003.

18 Swastik Kopparty and Shubhangi Saraf. Local testing and decoding of high-rate error-correcting
codes. Electron. Colloquium Comput. Complex., 2017. URL: https://eccc.weizmann.ac.il/
report/2017/126.

19 Kenji Obata. Optimal lower bounds for 2-query locally decodable linear codes. In Randomiza-
tion and Approximation Techniques in Computer Science, pages 39–50, 2002.

20 Orr Paradise. Smooth and strong pcps. In Proceedings of the 11th Innovations in Theoretical
Computer Science Conference, ITCS 2020, 2020.

21 Noga Ron-Zewi and Ron Rothblum. Local proofs approaching the witness length. Electron.
Colloquium Comput. Complex., 2019. URL: https://eccc.weizmann.ac.il/report/2019/
127.

22 Stephanie Wehner and Ronald de Wolf. Improved lower bounds for locally decodable codes
and private information retrieval. In Proceedings of the 32nd International Conference on
Automata, Languages and Programming, ICALP’05, pages 1424—-1436, 2005.

23 David Woodruff. New lower bounds for general locally decodable codes. Electron. Colloquium
Comput. Complex., 2007. URL: https://eccc.weizmann.ac.il/report/2007/006/.

24 David P. Woodruff. A quadratic lower bound for three-query linear locally decodable codes
over any field. In Proceedings of the 14th International Workshop on Randomized Techniques
in Computation, RANDOM 10, pages 766–779, 2010.

25 Sergey Yekhanin. Towards 3-query locally decodable codes of subexponential length. J. ACM,
55(1):1:1–1:16, 2008.

26 Sergey Yekhanin. Locally decodable codes. Foundations and Trends in Theoretical Computer
Science, 6(3):139–255, 2012.

https://eccc.weizmann.ac.il/report/2017/126
https://eccc.weizmann.ac.il/report/2017/126
https://eccc.weizmann.ac.il/report/2019/127
https://eccc.weizmann.ac.il/report/2019/127
https://eccc.weizmann.ac.il/report/2007/006/

	1 Introduction
	1.1 Related works

	2 Proof overview
	2.1 CTRW on Reed-Muller codes
	2.2 PCPs of proximity and composition
	2.3 Putting it all together
	2.4 Comparison to the previous work

	3 Concluding remarks and open problems
	3.1 Code concatenation for binary alphabet
	3.2 Open problems

