
Accelerating Object-Sensitive Pointer Analysis by
Exploiting Object Containment and Reachability
Dongjie He #

University of New South Wales, Sydney, Australia

Jingbo Lu #

University of New South Wales, Sydney, Australia

Yaoqing Gao
Huawei, Toronto, Canada

Jingling Xue #

University of New South Wales, Sydney, Australia

Abstract
Object-sensitive pointer analysis for an object-oriented program can be accelerated if context-
sensitivity can be selectively applied to some precision-critical variables/objects in the program.
Existing pre-analyses, which are performed to make such selections, either preserve precision but
achieve limited speedups by reasoning about all the possible value flows in the program conservatively
or achieve greater speedups but sacrifice precision (often unduly) by examining only some but not
all the value flows in the program heuristically. In this paper, we introduce a new approach, named
Turner, that represents a sweet spot between the two existing ones, as it is designed to enable
object-sensitive pointer analysis to run significantly faster than the former approach and achieve
significantly better precision than the latter approach. Turner is simple, lightweight yet effective due
to two novel aspects in its design. First, we exploit a key observation that some precision-uncritical
objects can be approximated based on the object-containment relationship pre-established (by
applying Andersen’s analysis). This approximation introduces a small degree yet the only source of
imprecision into Turner. Second, leveraging this initial approximation, we introduce a simple DFA
to reason about object reachability for a method intra-procedurally from its entry to its exit along all
the possible value flows established by its statements to finalize its precision-critical variables/objects
identified. We have validated Turner with an implementation in Soot against the state of the art
using a set of 12 popular Java benchmarks and applications.

2012 ACM Subject Classification Theory of computation → Program analysis

Keywords and phrases Object-Sensitive Pointer Analysis, CFL Reachability, Object Containment

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2021.16

Supplementary Material Software (ECOOP 2021 Artifact Evaluation approved artifact):
https://doi.org/10.4230/DARTS.7.2.12

Funding This work is supported by an ARC DP grant (DP180104069) and a UNSW-Huawei research
grant (YBN2019105002).

Acknowledgements We thank the reviewers for their constructive comments.

1 Introduction

Pointer analysis is a significant static program analysis that approximates the potential
runtime values (memory locations) for the pointer variables in a program. It plays an
important role in a wide range of real-world applications, including security analysis [2, 10],
program verification [8], program understanding [36, 20], and bug detection [25, 11].

For object-oriented languages like Java, context sensitivity, which distinguishes the
variables declared and objects allocated locally in a method under different calling contexts,
is widely enforced in developing highly precise pointer analyses. In general, a context is
represented by a sequence of k context elements (under k limiting). There are two common

ECOOP
2021Functional V

1.
1

Ar
tif

act
s EvaluatedECOOP
2021

Ar
tif

acts Available

ECOOP
2021

© Dongjie He, Jingbo Lu, Yaoqing Gao, and Jingling Xue;
licensed under Creative Commons License CC-BY 4.0

35th European Conference on Object-Oriented Programming (ECOOP 2021).
Editors: Manu Sridharan and Anders Møller; Article No. 16; pp. 16:1–16:31

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dongjieh@cse.unsw.edu.au
mailto:jlu@cse.unsw.edu.au
mailto:jingling@cse.unsw.edu.au
https://doi.org/10.4230/LIPIcs.ECOOP.2021.16
https://doi.org/10.4230/DARTS.7.2.12
https://doi.org/10.4230/DARTS.7.2.12
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Accelerating Object-Sensitive Pointer Analysis

forms of context-sensitivity: k-call-site-sensitivity [29] (which distinguishes the contexts of a
method by its k-most-recent call sites) and k-object-sensitivity [23] (which distinguishes the
contexts of a method by its receiver object’s k-most-recent allocation sites). The latter is
widely regarded as a better abstraction in achieving precision and efficiency [31, 39, 41, 12, 22].

However, k-object-sensitive pointer analysis (with k-object-sensitivity as its context
abstraction), denoted kobj, still does not scale well for reasonably large programs when
k ⩾ 3 and is often time-consuming when it is scalable [31, 39, 41, 12]. As k increases, blindly
applying a k-limiting context abstraction uniformly to a program can cause the number of
contexts handled to blow up exponentially (often without improving precision much).

In this paper, we address the problem of developing a pre-analysis for a Java program to
enable kobj to apply context-sensitivity (i.e, a k-limited context abstraction) only to some
of its variables/objects selected and context-insensitivity to all the rest in the program.

▶ Definition 1. A variable/object n in a program is precision-critical if kobj loses precision
in terms of the points-to information obtained (for some value of k) when n is analyzed by
kobj context-insensitively instead of context-sensitively.

A pre-analysis is said to be precision-preserving if it can identify the precision-critical
variables/objects in a program precisely or over-approximately as being context-sensitive, and
non-precision-preserving otherwise. Unfortunately, making such selections precisely is out of
question as solving kobj without k-limiting is undecidable [27]. When designing a practical
pre-analysis, which aims to select the set of context-sensitive variables/objects, Cideal, in the
program, the main challenge are to ensure that (1) Cideal includes as many precision-critical
variables/objects as possible but as few precision-uncritical variables/objects as possible, (2)
Cideal results in no or little precision loss, and (3) Cideal is found in a lightweight manner to
ensure that the pre-analysis overhead introduced is negligible (relative to kobj).

Recently, several pre-analyses have been proposed [32, 13, 9, 19, 22, 21]. Broadly speaking,
two approaches exist. Eagle [22, 21] represents a precision-preserving acceleration of kobj
by reasoning about CFL (Context-Free-Language) reachability in the program. Designed
to be precision-preserving, Eagle analyzes conservatively and often efficiently the value
flows reaching a variable/object and selects the set of context-sensitive variables/objects as a
superset of the set of precision-critical variables/objects in the program over-approximately,
thereby limiting the potential speedups achieved. On the other hand, Zipper [19], as a
non-precision-preserving representative of the remaining pre-analyses [32, 13, 9, 19], examines
the value flows reaching a variable/object heuristically and often efficiently by selecting the
set of context-sensitive variables/objects to include some but not all the precision-critical
variables/objects and also some precision-uncritical variables/objects in the program. As a
result, Zipper can sometimes improve the efficiency of kobj more significantly than Eagle
but at the expense of introducing a substantial loss of precision for some programs.

In this paper, we introduce a new approach, named Turner, that represents a sweet
spot between Eagle and Zipper: Turner enables kobj to run significantly faster than
Eagle while achieving significantly better precision than Zipper. Despite losing a small
precision in the average points-to set size (#avg-pts), Turner achieves exactly the same
precision for the other three commonly used precision metrics [31, 39, 41, 12, 22, 21], call
graph construction (#call-edges), may-fail casting (#may-fail-casts) and polymorphic call
detection (#poly-calls), for a set of 12 popular Java benchmarks and applications evaluated.
Turner is simple, lightweight yet effective due to two novel aspects in its design. First, we
exploit a key observation that some precision-uncritical objects can be approximated initially
based on the object-containment relationship that is inferred from the points-to information
pre-computed by Andersen’s analysis [1]. This approximation turns out to be practically

D. He, J. Lu, Y. Gao, and J. Xue 16:3

accurate, as it introduces a small degree yet the only source of imprecision into the final
points-to information computed. Second, leveraging this initial approximation, we introduce
a simple DFA (Deterministic Finite Automaton) to reason about object reachability across
a method (from its entry to its exit) intra-procedurally along all the possible value flows
established by its statements to finalize all its precision-critical variables/objects selected.

We have validated Turner with an implementation in Soot against Eagle and Zipper
using a set of 12 Java benchmarks and applications. In general, Turner enables kobj
to run significantly faster than Eagle due to fewer precision-uncritical variables/objects
analyzed context-sensitively and achieve significantly better precision than Zipper due to
more precision-critical variables/objects analyzed context-sensitively than Zipper.

In summary, our paper makes the following contributions:
We introduce a new approach, Turner, that can accelerate k-object-sensitive pointer
analysis (i.e., kobj) for Java programs significantly with negligible precision loss.
We propose to first approximate the precision-criticality of the objects in a program based
on object containment and then decide whether the variables/objects in the program
should be context-sensitive or not by conducting an object reachability analysis intra-
procedurally with a DFA, which turns out to be simple, lightweight and effective.
Turner enables kobj to run significantly faster than Eagle and achieve significantly
better precision than Zipper for a set of 12 popular Java benchmarks and applications
evaluated in terms of four common precision metrics, #avg-pts, #call-edges, #may-fail-
casts, and #poly-calls (with Turner losing no precision for the last three metrics).

The rest of this paper is organized as follows. Section 2 motivates our Turner approach.
Section 3 gives a version of kobj that supports selective context-sensitivity. Section 4
formalizes our Turner approach. In Section 5, we evaluate Turner against the state of
the art. Section 6 discusses the related work. Finally, Section 7 concludes the paper.

2 Motivation

We motivate Turner in the context of the two state-of-the-art pre-analyses, Eagle [22, 21]
and Zipper [19]. Eagle supports partial context-sensitivity as it enables kobj to analyze
only a subset of variables/objects in a method context-sensitively. On the other hand, Zipper
allows kobj to analyze a method either fully context-sensitively or fully context-insensitively.
Like Eagle, Turner also supports partial context-sensitivity in order to maximize the
potential speedups attainable. As in Eagle and Zipper, Turner also relies on the points-to
information in a program pre-computed by Andersen’s analysis [1] (context-insensitively).

In Section 2.1, we give some background information. In Section 2.2, we examine the
main challenges faced in developing a pre-analysis for accelerating kobj and discuss the
methodological differences between Turner and two existing approaches, Eagle and Zipper.
In Section 2.3, we introduce a motivating example abstracted from real code by highlighting
the effects of these differences on the context-sensitivity selectively applied to kobj. In
Section 2.4, we describe the basic idea behind Turner (including our insights and trade-offs).

2.1 Background
In object-sensitive pointer analysis [23], the calling contexts of a method are distinguished by
its receiver objects. Let each allocation site be abstracted by one unique object. In kobj, an
object o1 is modeled context-sensitively by a heap context of length k − 1, [o2, ..., ok], where
oi is the receiver object of a method in which oi−1 is allocated. As a result, a method with

ECOOP 2021

16:4 Accelerating Object-Sensitive Pointer Analysis

o1 as its receiver object will be analyzed context-sensitively multiple times, once for each of
o1’s heap contexts [o2, ..., ok], i.e., once under every possible method context [o1, ..., ok] of
length k. Thus, kobj can be specified by either heap or method contexts alone.

Given a variable v analyzed under a method context c, its context-sensitive points-to
set is expressed as pts(v, c) = {(o1, c1),⋯, (on, cn)}, where each pointed-to object oi is
identified by its heap context ci. Let Mv be the set of method contexts under which v

is analyzed. Then the context-insensitive points-to set for v can be found as pts(v) =

⋃c∈Mv
{o ∣ (o, c

′) ∈ pts(v, c)}. When comparing different context-sensitive pointer analyses
precision-wise, the context-insensitive points-to information thus obtained is used, as is done
in the literature [32, 12, 13, 39, 19, 21].

2.2 Challenges
A variable/object n in a program is precision-critical if kobj loses precision when it analyzes
n context-insensitively instead of context-sensitively (Definition 1). In the case of a precision
loss, there must exist some variable v in the program such that its context-insensitive
points-to information becomes less precise. In this case, pts(v) will contain not only the
pointed-to objects found before (when n is analyzed context-sensitively) but also some
spurious pointed-to objects introduced now (when n is analyzed context-insensitively). As n

and v can be further apart in the program, separated by a long sequence of method calls
(with complex field accesses on n along the way), designing a practical pre-analysis P , which
selects a set of variables/objects in a program for kobj to analyze context-sensitively, is
challenging (since solving kobj without k-limiting is undecidable [27]). For a program, let
Cideal be the set of precision-critical variables/objects specified by Definition 1 and CP the set
of context-sensitive variables/objects selected by P . The main challenges lie in how to ensure
that (1) ∣Cideal − CP ∣ is minimized (so that as many precision-critical variables/objects are
selected) and ∣CP −Cideal∣ is minimized (so that as few precision-uncritical variables/objects
are selected), (2) CP causes kobj to lose no or little precision, and (3) CP is selected in a
lightweight manner (so that P introduces negligible overhead relative to kobj).

A pre-analysis for kobj relies on the following fact to identify a precision-critical vari-
able/object, with its accesses possibly triggered by statements outside its containing method.
Without loss of generality, a method is assumed to contain only one return statement of the
form “return r”, where r a local variable in the method (referred to as its return variable).

▶ Fact 2. Consider a program being analyzed object-sensitively with the parameters and the
return variable of a method modeled as its (special) fields as in [22, 21]. A variable/object n

in a method M in the program is considered to be precision-critical only if, during program
execution, there is a value flow entering and leaving M via a parameter or the return variable
of M , by passing through n (i.e., by first writing into n via an access path and then reading
it from the same access path), where n may be the parameter or the return variable itself.

In this case, analyzing n context-sensitively will allow several such value flows to be tracked
separately based on their calling contexts. Otherwise, some precision may be potentially lost.

A pre-analysis, as illustrated in Figure 1, should identify a (local) variable x as precision-
critical by considering a total of four possible value-flow patterns passing through x (classified
according to whether the two end points of a value-flow are a parameter or the return variable
of its containing method [34, 22]). The same four patterns are also applicable to a locally
allocated object. In “param-return” (Figure 1(a)), the pre-analysis should recognize that the
object created in line 8 will flow into x in id() via its parameter p and then out of id()
via a return variable, which happens to be x itself. In “return-param” (Figure 1(b)), the

D. He, J. Lu, Y. Gao, and J. Xue 16:5

(a) param-return

 1. class B {
 2. Object id(Object p) {
 3. = p;
 4. return ;
 5. }
 6. static void main() {
 7. B b = new B(); // B
 8. Object o1 = new Object();
 9. Object o2 = b.id(o1);
10. }}

 1. class A { Object f; }
 2. class B {
 3. Object id(Object p) {
 4. = p;
 5. return ;
 6. }
 7. static void main() {
 8. A a1 = new A(); // A
 9. B b = new B(); // B
10. A a2 = (A) b.id (a1);
11. a2.f = new Object(); // O
12. Object o = a2.f;
13. }}

 1. class A { Object f; }
 2. class B {
 3. A create() {
 4. A = new A(); // A
 5. return ;
 6. }
 7. static void main() {
 8. B b = new B(); // B
 9. A a = b.create();
10. a.f = new Object(); // O
11. Object o = a.f;
12. }}

 1. class A { Object f; }
 2. class B {
 3. void foo(A q, A p) {
 4. = p;
 5. .f = q;
 6. }
 7. static void main() {
 8. A a1 = new A(); // A1
 9. A a2 = new A(); // A2
10. B b = new B(); // B
11. b.foo(a1, a2);
12. Object o = a2.f;
13. }}

(b) return-param (c) param-param (d) return-return

xx

param

return

xx xx

xx

xx
xx

xx

xx

Figure 1 A total of four possible value-flow patterns for determinng whether a variable x should
be precision-critical or not.

pre-analysis, when checking whether the object created in line 11 will flow into o in line 12 or
not, will first need to find out what a2 points to. This will entail reasoning about the value
flow of a2 in reverse order, by entering id() via its return statement (variable) and leaving
id() from its parameter p. In “param-param” (Figure 1(c)), the object A1 created in line 8
will flow into x (or x.f precisely) in foo() via its parameter q and then out of foo() via its
parameter p. In “return-return” (Figure 1(d)), the pre-analysis, when checking whether the
object created in line 10 can flow into o in line 11 or not, will need to find what a points to,
by entering and exiting create() from its return variable and visiting x in between.

We can now discuss how Turner differs from Eagle [22, 21] and Zipper [19] methodo-
logically. To start with, all the three are relatively lightweight with respect to kobj. Below
we examine these pre-analyses in terms of their efficiency and precision tradeoffs made on
approximating Cideal. There are two caveats. First, Cideal is conceptual but cannot be found
exactly in a program. Second, some precision-critical variables/objects affect the precision
and/or efficiency of kobj more profoundly than others, but they cannot be easily identified.
How to do so approximately can be an interesting research topic in future work.

Eagle is precision-preserving, since it accounts for all the four value-flow patterns
given in Figure 1 by reasoning about CFL reachability in the program inter-procedurally
to ensure that Cideal − CEagle = ∅. For some programs, Eagle may conservatively mis-
classify many precision-uncritical variables/objects as being precision-critical, thereby causing
CEagle − Cideal to be unduly large, and consequently, limiting the speedups attainable.

Zipper is not precision-preserving (implying that Cideal − CZipper ≠ ∅, in general), since
it considers only the “param-return” and “return-param” patterns in Figure 1 heuristically
by pattern-matching and ignores “param-param” (according to its authors [19]) and “return-
return” (according to its open-source implementation). For some programs, Zipper can
achieve greater speedups than Eagle (under certain configurations that dictate how certain
objects should be analyzed) but at a precision loss, since it has misclassified some precision-
yet performance-critical variables/objects as context-insensitive.

In this paper, Turner is designed to strike a good balance between Eagle and Zipper.
We aim to ensure that ∣CTurner−Cideal∣ < ∣CEagle−Cideal∣ so that Turner can enable kobj to
run significantly faster than Eagle (due to fewer precision-uncritical variable/objects selected

ECOOP 2021

16:6 Accelerating Object-Sensitive Pointer Analysis

 1. class Entry {
 2. Object key, value;
 3. Entry(Object p, Object q) {
 4. this.key = p;
 5. this.value = q;
 6. }}

 7. class HashMap {
 8. Entry[] table;
 9. Object get(Object k){
10. int idx = k.hashCode;
11. Entry[] t = this.table;
12. Entry e = t[idx];
13. Object r = e.value;
14. return r;
15. }
16. void put(Object k, Object v) {
17. int idx = k.hashCode;
18. Entry e = new Entry(k, v); // E
19. Entry[] t = this.table;
20. t[idx] = e;
21. }

22. HashMap() {
23. Entry[] t = new Entry[16]; // @
24. this.table = t;
25. }}

26. class A {
27. void foo(Object k) {
28. HashMap map1 = new HashMap(); // M1
29. HashMap map2 = new HashMap(); // M2
30. Object v1 = new Object(); // O1
31. Object v2 = new Object(); // O2
32. map1.put(k, v1);
33. map2.put(k, v2);
34. Object w1 = map1.get(k);
35. Object w2 = map2.get(k);
36. }
37. public static void main(String args[]) {
38. Object k = new Object(); // O
39. A ai = new A(); // Ai

40. ai.foo(k);

41. …
42. }}

1 ≤ i ≤ n

Figure 2 A Java program abstracted from real code using the standard JDK library.

for kobj to analyze context-sensitively). At the same time, we aim to ensure that ∣Cideal −
CTurner∣ < ∣Cideal − CZipper∣ so that Turner can also enable kobj to achieve significantly
better precision than Zipper (due to more precision-critical variable/objects selected for
kobj to analyze context-sensitively). We accomplish this by exploiting object containment to
approximate the precision-criticality of objects and then reasoning about object reachability
by considering all the four value-flow patterns in Figure 1 intra-procedurally.

2.3 Example
Figure 2 gives a Java program abstracted from real code developed based on JDK. In
lines 1-25, a simplified HashMap class is defined. In lines 26-42, class A represents a use
case of HashMap. In foo(), two instances of HashMap, M1 and M2, and two instances of
java.lang.Object, O1 and O2, are created. Afterwards, O1 (O2), pointed to by v1 (v2), is
deposited into M1 (M2), pointed to by map1 (map2), with O (received from its parameter k) as
the corresponding key, and later retrieved and saved in w1 (w2). In main(), n instances of A,
A1, ..., An, are created (where n > 1) and then used as the receivers for invoking foo().

Table 1 lists the contexts used for analyzing this program by the four main analyses, 2obj,
E-2obj, Z-2obj, and T-2obj. Here, P -2obj denotes the version of 2obj that adopts the select-
ive context-sensitivity prescribed by P ∈ {E (for Eagle), Z (for Zipper), T (for Turner)}.
Eagle is always precision-preserving. For this program, Zipper happens to be also precision-
preserving since Z-2obj behaves exactly as 2obj does. Turner also happens to be precision-
preserving but T-2obj differs from 2obj/Z-2obj and E-2obj substantially. Below we focus
on examining how the context-insensitive points-to information for w1 and w2 in foo(),
pts(w1) = {O1} and pts(w2) = {O2}, is obtained by each of the four main analyses. For
reasons of symmetry, Figure 3 illustrates only how pts(w1) = {O1} is obtained.

D. He, J. Lu, Y. Gao, and J. Xue 16:7

Table 1 The contexts used for analyzing the variables/objects in Figure 2 by 2obj, E-2obj,
Z-2obj, and T-2obj (where i in each context containing Ai/ai ranges over [1, n]).

Method Variables/Objects 2obj/ Z-2obj E-2obj T-2obj
Entry p, q, this [E, M1], [E, M2] [E, M1], [E, M2] [E, M1], [E, M2]

get k [M1, Ai], [M2, Ai]
[] []

e, r, this, t [M1, Ai], [M2, Ai] [M1], [M2]

put k, v, e, this, t [M1, Ai], [M2, Ai] [M1, Ai], [M2, Ai] [M1], [M2]E [M1], [M2] [M1], [M2]

HashMap this, t [M1, Ai], [M2, Ai] [M1, Ai], [M2, Ai] [M1], [M2]@ [M1], [M2] [M1], [M2]

foo

v1, v2, w1, w2

[Ai]
[]

[]O1, O2
k, map1, map2 [Ai]M1, M2

main k, ai [] [] []O, Ai

First of all, 2obj analyzes foo() for a total of n times by identifying its variables/objects
under the i-th invocation with its receiver Ai (Figure 3(a)). Thus, ∀ 1 ⩽ i ⩽ n ∶ pts(w1, [Ai]) =
{O1, [Ai]} ∧ pts(w2, [Ai]) = {O2, [Ai]} context-sensitively. By projecting out all the contexts,
2obj obtains pts(w1) = {O1} and pts(w2) = {O2} context-insensitively, as desired.

For this particular program, Z-2obj is equivalent to 2obj (Table 1 and Figure 3(a)).
However, it is easy to modify it slightly so that Z-2obj will behave differently while suffering
from a loss of precision (as it does not consider the last two patterns given in Figure 1).

E-2obj enables 2obj to support partial context-sensitivity without losing any precision.
The variables/objects in {v1, v2, w1, w2, O1, O2} in foo() and variable k in get() will now
be context-insensitive. In the case of foo(), however, k, map1, map2, M1 and M2 must still be
analyzed context-sensitively due to a spurious “param-return” pattern established by the
facts that (1) k is a parameter, (2) put() can write into M1/M2, and (3) get() can read
from M1/M2. As a result, as illustrated in Figure 3(b), E-2obj will still need to analyze
foo() for a total of n times, since it must distinguish the two HashMap objects M1 and M2
created in foo() context-sensitively as in 2obj, except that it can now analyze the two
objects, O1 and O2, created in foo() context-insensitively. Thus, E-2obj obtains directly that
pts(w1, []) = {O1, []} and pts(w2, []) = {O2, []}, i.e., pts(w1) = {O1} and pts(w2) = {O2}.

T-2obj, as illustrated in Figure 3(c), goes beyond E-2obj (for this particular program)
by modeling M1 and M2 also context-insensitively. As a result, foo() is analyzed context-
insensitively only once. As in the case of E-2obj, T-2obj also obtains directly that
pts(w1, []) = {O1, []} and pts(w2, []) = {O2, []}, i.e., pts(w1) = {O1} and pts(w2) = {O2}.

2.4 Our Approach
Turner is designed to accelerate kobj with partial context-sensitivity at a negligible loss
of precision. Unlike Eagle [22, 21] and Zipper [19], Turner works by exploiting both
object containment and object reachability to enable kobj to strike a better balance between
efficiency and precision. In principle, Turner may lose precision in its first stage only but
will always preserve precision in its second stage if it does not lose precision in its first stage.

2.4.1 Object Containment
To start with, we exploit a key insight stated below to identify some precision-uncritical
objects approximately based on the object containment relationship that is inferred from the
points-to information pre-computed (context-insensitively) by Anderson’s analysis [1].

ECOOP 2021

16:8 Accelerating Object-Sensitive Pointer Analysis

(O1, [A1])

(v1, [A1])

(M1, [A1])

(w1, [A1])

(map1, [A1])

(O1, [An])

(v1, [An])

(M1, [An])

(w1, [An])

(map1, [An])

…

(O1, [A1])

(v1, [A1])

(M1, [A1])

(w1, [A1])

(map1, [A1])

(O1, [An])

(v1, [An])

(M1, [An])

(w1, [An])

(map1, [An])

…

(O1, [])

(v1, [])

(M1, [])

(w1, [])

(map1, [])

(O1, [])

(v1, [])

(M1, [])

(w1, [])

(map1, [])

(a) 2OBJ/Z-2OBJ (b) E-2OBJ (c) T-2OBJ

(O1, [])

(v1, [])

(M1, [A1])

(w1, [])

(map1, [A1])

(M1, [An])

(map1, [An])

…

(O1, [])

(v1, [])

(M1, [A1])

(w1, [])

(map1, [A1])

(M1, [An])

(map1, [An])

…

Figure 3 Computing pts(w1) = {O1} for Figure 2 by 2obj, E-2obj, Z-2obj and T-2obj.

▶ Observation 3. A top container is an object that is pointed to by neither (1) another
object (which may be the container itself) via a field of a declared type of C or C[], where C

is a class type nor (2) the return variable of the method in which the container is allocated.
A bottom container is an object that does not point to another object (which may be the

container itself) via a field of a declared type of C or C[], where C is a class type.
Given a program, its top and bottom containers are considered as being precision-uncritical.

▶ Definition 4. Observation 3 is said to be precision-preserving for a program if kobj does
not lose precision when it analyzes the precision-uncritical objects identified in the program
context-insensitively and the remaining variables/objects exactly as before.

Therefore, an object created by a factory method (regarded here as a method that returns
its own allocated objects via its return variable) is not a top container. Such an object will
be considered as being precision-uncritical iff it is a bottom container. For a program, the
precision-uncritical objects identified here will be analyzed by kobj context-insensitively
(for the reasons given below) and the remaining objects will be further classified as either
precision-critical or precision-uncritical by an object reachability analysis (Section 2.4.2).

Consider create() in Figure 1(d). The object A created inside is not regarded as a top
container, since it is pointed to by its return variable. In object-sensitive pointer analysis,
when create() called on receiver object B in line 9 is analyzed, returning A to this caller
is actually modeled as this.ret = x (line 5) and a = b.ret (line 9), where both this
and b point to B, and ret can be understood as a special return variable introduced for
create() (Section 4.2.2.2) [22, 21]. Conceptually, A is not a top container. In this example,
A is not a bottom container either, since A.f = O in line 10, where O is an instance of
java.lang.Object. As a result, A is considered as being precision-critical. However, if lines
10-11 were not present, then A would be deemed as being precision-uncritical as it is now a
bottom container.

Consider Figure 2 (which is free of factory methods), where a total of n + 7 objects can
be found: E, @, M1, M2, O1, O2, O, A1, ..., An. According to the object containment relationship
inferred from Andersen’s analysis, M1 and M2 contain @, which contains E, which contains O1,
O2 and O. By Observation 3, the set of top containers is given by {M1, M2, A1, ...An} and the set
of bottom containers is given by {O1, O2, O, A1, ...An}. Note that both sets of containers are
not necessarily disjoint. Thus, the n + 5 objects in {M1, M2, O1, O2, O, A1, ...An} are considered
as being precision-uncritical and will thus be analyzed by kobj context-insensitively.

D. He, J. Lu, Y. Gao, and J. Xue 16:9

In our approach, Observation 3 (made based on object containment) represents the only
source of imprecision in Turner, which may propagate into its object reachability analysis.
Turner will suffer only a slight loss of precision in #avg-pts computed by T-kobj when
some top or bottom containers that should be context-sensitive are mis-classified as being
precision-uncritical, and consequently, analyzed by T-kobj context-insensitively. However,
this does not affect the precision of #call-edges, #may-fail-casts, and #poly-calls for the set
of 12 popular Java programs evaluated (at least). The set of top containers consists of the
objects that are allocated and used locally in a method, such as M1 and M2 (two HashMap
objects) in foo() in Figure 2. These objects do not require context-sensitivity, since their
encapsulated data does not usually flow out of its containing methods via their parameters
or return variables. On the other hand, a bottom container also does not usually require
context-sensitivity, as it represents an object that typically encapsulates its primitive data
(if any), including arrays of primitive types if it ever contains pointers, such as O, O1 and
O2 (three field-less java.lang.Object objects) in Figure 2. In Section 5.3, we will examine
two examples to explain why Turner loses some small precision in #avg-pts but preserves
precision in #call-edges, #may-fail-casts, and #poly-calls in real code.

2.4.2 Object Reachability
Given a program, Turner relies on a simple DFA to reason about implicitly the four value-
flow patterns in Figure 1 in a method to select its variables/objects to be analyzed by T-kobj
context-sensitively. By design, the precision-uncritical objects identified by Observation 3 in
the program are deemed context-insensitive. The remaining objects in the program will be
classified by the DFA as either precision-critical (context-sensitive) or precision-uncritical
(context-insensitive). Simultaneously, the variables in the program are classified. Turner’s
intra-procedural analysis will be precision-preserving if Observation 3 is precision-preserving,
as it is designed to over-approximate the precision-critical variables/objects in the program.

For our example in Figure 2, Table 1 gives the contexts selected by Turner for kobj,
i.e., T-2obj. We discuss only their differences with the contexts selected by Eagle for kobj,
i.e., E-2obj. By exploiting object containment as discussed in Section 2.4.1, M1, M2, O1, O2,
and O have been identified as being precision-uncritical and will thus be analyzed context-
insensitively. Given that M1 and M2, are now context-insensitive, k, map1, and map2 will also
be identified as being context-insensitive by our DFA, as the spurious “param-param” pattern
that causes Eagle to flag M1, M2, k, map1, and map2 in foo() as being context-sensitive no
longer exists (Section 2.3). As M1 and M2 are context-insensitive, the contexts [M1, Ai] and
[M2, Ai] listed under E-2obj have been shortened to [M1] and [M2] under T-2obj (Table 1).

3 Preliminaries

We take a standard formalization of kobj [23] from [35] and adapt it to support selective
context-sensitivity. This gives a formal basis to understand our pre-analysis introduced.

3.1 A Simplified Object-Oriented Language
We consider a simplified object-oriented language, i.e., a subset of Java, in which a program
consists of a set of classes, where each class consists of static/instance fields and methods.
Table 2 gives six kinds of statements, which are labeled by their line numbers, in the language
operated on by kobj. Note that “x = new T (...)” in Java is modeled as “x = new T ;
x.⟨init⟩(...)”, where ⟨init⟩() is the corresponding constructor invoked. Section 5 discusses
how to handle other complex language features such as reflection and native code.

ECOOP 2021

16:10 Accelerating Object-Sensitive Pointer Analysis

Table 2 Six types of statements analyzed by kobj.

Kind Statement Description
new l ∶ v = new T v is a local variable and T is a class type

assign l ∶ v = v
′

v and v
′ are local variables

assignglobal l ∶ v = v
′

v or v
′ is a global variable

load l ∶ v = v
′
.f v and v

′ are local variables and f is a field name
store l ∶ v.f = v

′
v and v

′ are local variables and f is a field name
call l ∶ b = a0.m(a1, ..., ar) b and ai are local variables and m is an instance method

As kobj is context-sensitive but flow-insensitive, the control flow statements in a program
are irrelevant. As is standard with several recent implementations of kobj [31, 39, 41, 12],
static fields are analyzed context-insensitively as global variables, but static methods can
be analyzed context-sensitively as instance methods as follows. For a static method m()
defined in class C, a call to m() can be interpreted as this.m() by proceeding as if m() were
an instance method defined in java.lang.Object and inherited by C. Given this.m(), m()
can then be analyzed context-sensitively under the receiver object pointed to by this, which
is the receiver object of m’s closest (instance) caller method, if any, on the call stack.

Finally, every method is assumed to have one single return statement of the form
“return r”, where r is a local variable (referred to as its return variable). Note that a return
statement in a method is not listed explicitly in Table 2, as it will be handled implicitly at a
call statement where the method is invoked (as shown in Figure 4).

3.2 Selective Object-Sensitive Pointer Analysis
Given a program, let M, F, H, V, G and L be its sets of methods, fields, allocation sites,
local variables, global variables, and statements (identified by their labels, e.g., line numbers),
respectively.

Let C = H∗ be the universe of contexts. Given a context ctx = [o1, ..., on] ∈ C and a
context element o, we write o ++ ctx for [o, o1, ..., on] and ⌈ctx⌉k for [o1, ..., ok].

The rules used for performing kobj will make use of the following functions:
methodOf ∶ L↦M
methodCtx ∶ M↦ ℘(C)
dispatch ∶ M ×H↦M
len ∶ V ∪G ∪H↦ N
pts ∶ (V ∪H × F) × C↦ ℘(H × C)

where methodOf gives the containing method of a statement, methodCtx keeps track of the
(method) contexts used for analyzing a method, dispatch resolves a virtual call to its target
method, len defines the length of contexts used for analyzing a variable/object, and pts
records the points-to information found for a variable or an object’s field.

Figure 4 gives five rules used by kobj for analyzing six kinds of statements in Table 2 with
two kinds of assignments processed together in one rule. In [New], v points to the object
ol uniquely identified by its allocation site l. Note that ⌈ctx⌉len(ol) is the heap context of ol

(Section 2.1). In [Assign/AssignGlobal], two kinds of assignments, where v and v
′ are

either local or global variables, are handled as copies. In [Store] and [Load], field accesses are
analyzed in the standard manner. In [CALL], a call to an instance method b = a0.m(a1, ..., ar)
is analyzed. We write this

m
′

, p
m

′

i and ret
m

′

for the “this” variable, i-th parameter and return
variable of m

′, respectively, where m
′ is a target method resolved. Frequently, we also write

D. He, J. Lu, Y. Gao, and J. Xue 16:11

l ∶ v = new T M = methodOf(l) ctx ∈ methodCtx(M)
(ol, ⌈ctx⌉len(ol)) ∈ pts(v, ⌈ctx⌉len(v))

[New]

l ∶ v = v
′

M = methodOf(l) ctx ∈ methodCtx(M)
pts(v′

, ⌈ctx⌉len(v′)) ⊆ pts(v, ⌈ctx⌉len(v))
[Assign/AssignGlobal]

l ∶ v.f = v
′

M = methodOf(l) ctx ∈ methodCtx(M) (o, hctx) ∈ pts(v, ⌈ctx⌉len(v))
pts(v′

, ⌈ctx⌉len(v′)) ⊆ pts(o.f, hctx)
[Store]

l ∶ v = v
′
.f M = methodOf(l) ctx ∈ methodCtx(M) (o, hctx) ∈ pts(v′

, ⌈ctx⌉len(v′))
pts(o.f, hctx) ⊆ pts(v, ⌈ctx⌉len(v))

[Load]

l ∶ b = a0.m(a1, ..., ar) M = methodOf(l) ctx ∈ methodCtx(M)
(o, hctx) ∈ pts(a0, ⌈ctx⌉len(a0)) m

′
= dispatch(m, o) ctx

′
= o ++ hctx

ctx
′
∈ methodCtx(m′) (o, hctx) ∈ pts(this

m
′

, ⌈ctx
′⌉len(thism′))

∀i ∈ [1, r] ∶ pts(ai, ⌈ctx⌉len(ai)) ⊆ pts(pm
′

i , ⌈ctx
′⌉len(pm′

i)) pts(ret
m

′

, ⌈ctx
′⌉len(retm′)) ⊆ pts(b, ⌈ctx⌉len(b))

[Call]

Figure 4 Rules for kobj formalized to support selective context-sensitivity.

p
m

′

0 for this
m

′

. In the conclusion of this rule, ctx
′
∈ methodCtx(m′) reveals how the method

contexts of a method are introduced. Initially, methodCtx(“main”) = {[]}.
kobj represents a k-object-sensitive pointer analysis with a (k − 1)-context-sensitive heap

(by handling global variables context-insensitively as is standard) [31, 39, 41, 12]. Thus, kobj
selects the context lengths for different entities e in V ∪G ∪H differently as follows:

lenkobj(e) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0 e ∈ G
k e ∈ V
k − 1 e ∈ H

(1)

As a pre-analysis, Turner will select a subset CITurner ⊆ V∪H so that kobj will analyze
CITurner context-insensitively but (V ∪H) \ CITurner context-sensitively as follows:

lenTurner(e) = {0 e ∈ CITurner

lenkobj(e) e ∈ (V ∪G ∪H) \ CITurner
(2)

As discussed earlier, Eagle [22] will also enable kobj to analyze only a subset of variables/ob-
jects in a method context-sensitively but Zipper [19] will require a method (i.e., all its
variables/objects) to be analyzed either fully context-sensitively or fully context-insensitively.

4 Turner: Our Approach

We describe the two stages of Turner, object containment (Section 4.1) and reachability
(Section 4.2), by focusing predominantly on formalizing our object reachability analysis.

4.1 Object Containment
In this first stage on object containment analysis, we identify some precision-uncritical objects
in a program based on the points-to information pre-computed by Andersen’s analysis [1]
according to Observation 3. For an object o, we write reto to denote the return variable in
the method where o is allocated. For two objects o1 and o2, we write o1

class−type(f)
−−−−−−−−−−→ o2 if

o1.f = o2 for some field f whose declared type is either C or C[], where C is some class type.

ECOOP 2021

16:12 Accelerating Object-Sensitive Pointer Analysis

As a result, the set of precision-uncritical objects in a program can be found by:

CIOBS
Turner = TopCon ∪ BotCon (3)

where the sets of top and bottom containers in the program are identified as follows:

TopCon = {o
»»»»»»»»
(∄ (o′, f) ∈ H × F ∶ o

′ class−type(f)
−−−−−−−−−−→ o) ∧ reto does not point to o}

BotCon = {o
»»»»»»»
∄ (o′, f) ∈ H × F ∶ o

class−type(f)
−−−−−−−−−−→ o

′}
(4)

4.2 Object Reachability

In this second stage on object reachability analysis, we make use of a DFA to determine
intra-procedurally whether a variable/object requires context-sensitivity or not. Let CITurner
be the set of context-insensitive variables/objects that are finally selected by Turner to
support selective context-sensitivity required in (2). By design, CIOBS

Turner ⊆ CITurner, i.e.,
the precision-uncritical objects selected earlier will always be analyzed context-insensitively.
The remaining objects and all the variables in the program will be further classified as either
context-sensitive or context-insensitive according to the DFA, by leveraging CIOBS

Turner.
We first review a standard formulation for performing pointer analysis intra-procedurally

based on CFL (Context-Free Language) reachability (Section 4.2.1). We then evolve it
incrementally into a DFA-based intra-procedural reachability analysis (Section 4.2.2).

4.2.1 Standard CFL-Reachability-based Pointer Analysis

A parameterless method that contains no calls inside can be represented by a directed graph
G, known as PAG (Pointer Assignment Graph), with its nodes drawn from V∪G∪H and its
five types of edges added according to the rules given in Figure 5 [37, 28]. Loads and stores
to the elements of an array are modeled by collapsing all the elements into a special field arr

of the array. For each PAG edge x
ℓ
−→ y with its label ℓ, its inverse edge is denoted as y

ℓ
−→ x.

l ∶ v = new T

ol
new
−−→ v v

new
−−→ ol

[P-New]
v = v

′
.f

v
′ load[f]
−−−−→ v v

load[f]
−−−−→ v

′

[P-Load]
v.f = v

′

v
′ store[f]
−−−−→ v v

store[f]
−−−−→ v

′

[P-Store]

v = v
′

v
′ assign
−−−−→ v v

assign
−−−−→ v

′
[P-Assign]

v = v
′

v
′ assignglobal
−−−−−−−→ v v

assignglobal
−−−−−−−→ v

′
[P-AssignGlobal]

Figure 5 Rules for creating the PAG edges for a method containing no calls inside.

Let L be a CFL over Σ formed by the edge labels in G. Each path p in G has a string
L(p) in Σ∗ formed by concatenating in order the labels of edges in p. A node v in G is
L-reachable from a node u in G if there exists a path p from u to v, known as L-path and
denoted by L(u, v), such that L(p) ∈ L. For a node n in G, we write L(u, v)n if n appears
on L(u, v). For a path p in G such that its label is L(p) = ℓ1,⋯, ℓr in L, the inverse of p,
i.e., p has the label L(p) = ℓr,⋯, ℓ1.

D. He, J. Lu, Y. Gao, and J. Xue 16:13

We start with a standard grammar that defines the following language L0 [37, 28]:

L0 ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

flowsto⟶ new flows∗

flows⟶ assign ∣ assignglobal ∣ store[f] alias load[f]

flowsto⟶ flows∗ new

flows⟶ assign ∣ assignglobal ∣ load[f] alias store[f]

alias⟶ flowsto flowsto

(5)

1. u = new O(); // O
2. p = new A(); // A
3. q = p;
4. p.f = u;
5. v = q.f;

(a) Code (b) PAG

O A

u

q

p
store[f]

new new

load[f]
v

assign

O A

u

q

p
store[f]

new new

load[f]
v

assign

Figure 6 The PAG for a code snippet.

If o flowsto v, then v is L0-reachable from o, i.e., L0(o, v). To handle aliases, flowsto is
introduced as the inverse of the flowsto relation. A flowsto path p can be inverted to obtain
its corresponding flowsto path p using its inverse edges, and vice versa. Thus, o flowsto x iff
x flowsto o. This means that flowsto actually represents the standard points-to relation. As
a result, x alias y iff x flowsto o flowsto y for some object o, so that field accesses are handled
precisely by solving a balanced parentheses problem. For the code snippet (consisting of local
variables only), together with its PAG, depicted in Figure 6, we know that L0(O, v), i.e.,
O flowsto v, implying that v points to O, which holds due to the following flowsto path:

O
new
−−→ u

store[f]
−−−−→ p

new
−−→ A

new
−−→ p

assign
−−−−→ q

load[f]
−−−−→ v (6)

By inverting all the edges in this flowsto path, a flowsto path showing v flowsto O is obtained.

4.2.2 Turner’s Context-Sensitivity-Deciding Reachability Analysis
We will now over-approximate L0 incrementally to obtain a regular grammar, i.e., a DFA to
decide intra-procedurally whether a variable/object requires context-sensitivity or not.

4.2.2.1 Ignoring Context-Insensitive Value Flows

Instead of computing points-to information in a program directly, Turner is designed to
analyze the context-sensitive value flows across the parameters or return variables of its
methods (Fact 2). Thus, we will ignore the assignglobal statements and the precision-uncritical
objects in CIOBS

Turner, as all the value-flows passing through them are context-insensitive.

l ∶ v = new T ol ∉ CIOBS
Turner

ol

cs-likely
−−−−−→ ol

[P-Object]

Figure 7 Rule for treating all the objects in CIOBS
Turner as context-insensitive.

To handle the objects in CIOBS
Turner context-insensitively as global variables, as shown in

Figure 7, we have added a self-loop edge label, named cs-likely, for each object that is not in

ECOOP 2021

16:14 Accelerating Object-Sensitive Pointer Analysis

CIOBS
Turner to indicate that it is currently treated as being potentially context-sensitive but will

be classified later as being either context-sensitive or context-insensitive by our reachability
analysis. By deleting the two terminals assignglobal and assignglobal from and adding one
new terminal cs-likely to the grammar for defining L0, we obtain:

L1 ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

flowsto⟶ new flows∗

flows⟶ assign ∣ store[f] alias load[f]

flowsto⟶ flows∗ new

flows⟶ assign ∣ load[f] alias store[f]

alias⟶ flowsto cs-likely flowsto

(7)

We will discuss how to handle method parameters and method calls shortly below.
Let us consider Figure 6 again by making two independent changes to the code snippet:
If q is a global variable, then p

assign
−−−−→ q will become p

assignglobal
−−−−−−−→ q. As a result, L1(O, v)

can no longer be established as in (6) earlier (due to the absence of assignglobal in L1).
if A is a cs-likely object, then L1(O, v) can also be established as before, since we have:

O
new
−−→ u

store[f]
−−−−→ p

new
−−→ A

cs-likely
−−−−−→ A

new
−−→ p

assign
−−−−→ q

load[f]
−−−−→ v (8)

Otherwise, L1(O, v) will no longer be possible due to the absence of A
cs-likely
−−−−−→ A.

To simplify matters, returning values from a method can be treated identically as passing
parameters for the method. In object-sensitive pointer analysis [31, 39, 41, 12, 22, 21], a
method M is analyzed context-sensitively under different receiver objects. Thus, its return
statement “return r” can be modeled as “this.ret = r”, where ret is a fresh local variable
(interpreted now as the return variable of M) and the return values in “this.ret” can be
retrieved by its callers via its receiver objects. Given this simple transformation, the four
value-flow patterns given in Figure 1 can be unified as one “param-param” pattern.

▶ Lemma 5. A variable/object n in a method M requires context-sensitivity only if n lies on
a sequence of statements, s1, ..., sr, such that (1) si and si+1 form a def-use chain involving
only local variables and cs-likely objects, (2) s1 represents a use of either a cs-likely object or
a parameter of M , and (3) sr represents a definition of P.f , where P is a parameter of M

(including this) and f is a field of the objects pointed by P (including M ’s return variable
(ret)).

Proof. Follows directly from Fact 2 and the definition of cs-likely objects. ◀

In this case, n should be context-sensitive, since the modification effects of different definitions
of n on P.f under different calling contexts of M must be separated context-sensitively.

4.2.2.2 Approximating the Value Flows Spanning across Method Calls

We now consider how to handle a method call made in a method being analyzed. Turner
will over-approximate the context-sensitive value flows spanning across a call site without
analyzing its invoked methods. With L1, we can only reason about CFL reachability starting
from an object. With L2 given below, we can also start from a variable (Lemma 5):

L2 ∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

flows⟶ (new ∣ assign ∣ store[f] alias load[f])∗

flows⟶ (new ∣ assign ∣ load[f] alias store[f])∗

alias⟶ flows cs-likely flows

(9)

D. He, J. Lu, Y. Gao, and J. Xue 16:15

▶ Lemma 6. Let G be the PAG built by the rules in Figures 5 and 7. L2 ⊇ L1.

Proof. Follows simply from examining the structural differences in their productions. ◀

In both languages, the aliases between two variables are established in exactly the same way.
Next, we over-approximate L2 to obtain L3 by abstracting the field accesses with 1-limited

access paths and handling aliases more conservatively (as explained shortly below):

L3 ∶

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

flows⟶ (new ∣ assign ∣ load ∣ store alias)∗

flows⟶ (new ∣ assign ∣ load ∣ alias store)∗

alias⟶ flows cs-likely flows

(10)

Thus, the fields in loads and stores are ignored, and loads and assignments become indis-
tinguishable, but stores are treated differently (i.e., unsymmetrically as loads) in order to
keep track of aliases as desired. Note that L3 is is still a CFL, since (1) a store is required to
match a new, assign or load, and (2) a store is required to match a new, assign or load. This
balanced-parentheses property is somehow hidden in the alias-production.

For the code given in Figure 6, L3(O, v) will still hold even if, say, v = q.f is replaced by
v = q.g due to the existence of the following flowsto path:

O
new
−−→ u

store
−−−→ p

new
−−→ A

cs-likely
−−−−−→ A

new
−−→ p

assign
−−−−→ q

load
−−→ v (11)

▶ Lemma 7. Let G be the PAG built by the rules in Figures 5 and 7. L3 ⊇ L2.

Proof. In L3, the first two productions can be expressed equivalently as flows ⟶ (new ∣
assign ∣ load ∣ store alias load?)∗ and flows ⟶ (new ∣ assign ∣ load ∣ load? alias store)∗.
Here, (s)? indicates that s is optional, where ‘(’ and ‘)’ can be omitted if s represents one
symbol. We can conclude that L3 ⊇ L2 by noting that the field access paths in L3 are
1-limited. ◀

In L3, a store can now also be matched with a store when looking for aliases:

flows⟹+
... store flows cs-likely flows store ... (12)

For the code given in Figure 6, L3(O, v) will thus still hold if we (1) replace v = q.f by q.g
= v and (2) add v = new V(), where the allocated object, V, is assumed to be cs-likely:

O
new
−−→ u

store
−−−→ p

new
−−→ A

cs-likely
−−−−−→ A

new
−−→ p

assign
−−−−→ q

store
−−−→ v

new
−−→ V

cs-likely
−−−−−→ V

new
−−→ v (13)

We discuss below how to exploit this property to avoid analyzing the methods invoked at a
call site while still keeping track of all context-sensitive value flows spanning the call site.

b = a0.m(a1, ..., ar)

∀ i ∶ ai

store[pm
′

i]
−−−−−−→ a0 ∀ i ∶ a0

store[pm
′

i]
−−−−−−→ ai a0

load[ret
m

′
]

−−−−−−−→ b b
load[ret

m
′
]

−−−−−−−→ a0

[P-Call]

Figure 8 Rule for analyzing a method call.

Consider how kobj analyzes a method call b = a0.m(a1, ..., ar), with a target method
m

′ resolved when a0 points to a receiver object O. Let its r + 1 parameters be p
m

′

0 , ..., p
m

′

r ,
where p

m
′

0 represents this
m

′

. Let its return variable ret
m

′

be introduced as described in
Section 4.2.2.1. Object-sensitively, p

m
′

0 , ..., p
m

′

r and ret
m

′

are handled as if they were special

ECOOP 2021

16:16 Accelerating Object-Sensitive Pointer Analysis

fields of O [22, 21]: ∀ i ∶ a0.p
m

′

i = ai for passing parameters and b = a0.ret
m

′

(for retrieving
return values). As a result, Figure 8 gives a rule, [P-Call], for adding the PAG edges required
for a method call according to [P-Load] and [P-Store]. When m

′ is analyzed by kobj, where
its this

m
′

variable points to O, its parameters will be initialized as ∀ i ∶ p
m

′

i = this
m

′

.p
m

′

i

and its return values will be made available in this
m

′

.ret
m

′

.
Given how b = a0.m(a1, ..., ar) is modeled above, we can determine whether or not a

context-sensitive value flow that enters one of its invoked methods via a parameter can
also exit it via another parameter without actually analyzing the invoked method itself, by
enforcing L3(ai, aj) conservatively, i.e., ensuring that whatever flows into ai flows also into
aj , if necessary. As will be clear in Section 4.2.2.3 below, b = a0.m(a1, ..., ar) needs to be
approximated this way if a0 may point to at least one cs-likely object and can be ignored
otherwise.

▶ Lemma 8. Let G be the PAG built by the rules in Figures 5, 7 and 8 for a method M (where
how its parameters are modeled is irrelevant here). When analyzing a call b = a0.m(a1, ..., ar)
contained in M , L3(ai, aj) is established iff a0 points to at least one cs-likely object.

Proof. Let O be an object pointed by a0. By [P-Call], passing ai and aj to a target method
m

′ at the call site is modeled by two stores a0.p
m

′

i = ai and a0.p
m

′

i = aj . Thus, we have:

flows⟹+
... ai

store
−−−→ a0 flows O ⋯ O flows a0

store
−−−→ aj ... (14)

As a result, L3(ai, aj) is established (as far as this particular call site is concerned, regardless
of its truthhood established elsewhere) iff O is a cs-likely object, in which case the “⋯” that
sits between the two occurrences of O can be replaced by

cs-likely
−−−−−→. ◀

4.2.2.3 Approximating the Incoming Value Flows from Parameters

We discuss now how to handle the parameters of a method when it is analyzed. It is
not computationally feasible to formulate our pre-analysis for a method in terms of L3
directly (even after its parameters are modeled in a certain way). As L3 is a CFL (with
balanced parentheses), the worst-time complexity for finding the points-to set of a variable is
O(N3Γ3

L3), where N is the number of nodes in the PAG and ΓL3 is the size of L3 [26, 15].
We now over-approximate L3 by turning it into a regular language L4 defined by:

L4 ∶ {
flows⟶ (new ∣ assign ∣ load)∗((store ∣ store) flows)?
flows⟶ (new ∣ assign ∣ load)∗(cs-likely flows)?

(15)

▶ Lemma 9. Let G be the PAG built by the rules in Figures 5, 7 and 8. L4 ⊇ L3.

Proof. L4 is regularized from L3 by no longer distinguishing store and store. ◀

Thus, we are now even more conservative in abstracting aliases in L4 than in L3. If we
replace p.f = u with u.f = p in Figure 6, L3(O, v) will not hold but L4(O, v) will, since

O
new
−−→ u

store
−−−→ p

new
−−→ A

cs-likely
−−−−−→ A

new
−−→ p

assign
−−−−→ q

load
−−→ v (16)

We are now ready to describe our final regular language L5 used to decide if a variable/ob-
ject in a method should be context-sensitive or not. By exploiting the fact that store and

D. He, J. Lu, Y. Gao, and J. Xue 16:17

p is a parameter

p
param
−−−−→ p p

param
−−−−→ p

[P-Param]

Figure 9 Rule for adding the PAG edges for parameters.

store are treated identically in L4, we have obtained L5, requiring the two self-loop edges to
be added for each parameter of a method according to a rule, [P-Param], given in Figure 9:

L5 ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s⟶ param flows

flows⟶ (new ∣ assign ∣ load)∗((store ∣ store) flows)?
flows⟶ (new ∣ assign ∣ load)∗(cs-likely flows)?
flows⟶ param e

e⟶ ϵ

(17)

We can now analyze a method without knowing what its parameters may point to, by treating
it effectively as a parameterless method, so that all the results developed so far are applicable.

▶ Lemma 10. Let G be the PAG built for a method by the rules in Figures 5 and 7–9. Let P1
and P2 be its two (not necessarily different) parameters. Then L4(P1, P2) ⟺ L5(P1, P2).

Proof. Follows straightforwardly by noting the minor differences in their productions. ◀

As discussed in Section 4.2.1, if L is a CFL, L(u, v)n holds if L(u, v) holds due to an
L-path that contains a node n. Thus, CITurner that appears in (2) can now be defined as:

CITurner = {n ∣ M ∈ M, n is a node in GM ,∄P1, P2 ∈ param(M) ∶ L
GM

5 (P1, P2)n} (18)

where param(M) is the set of parameters of a method M and L5 is superscripted with the
PAG, GM , built for M . By construction, CIOBS

Turner ⊆ CITurner holds due to the absence of a
self-loop edge, labeled cs-likely, around each object in CIOBS

Turner. In addition, G ⊆ CITurner.
However, all the global variables will be context-insensitive according to (1) regardless.

Let us apply Turner to the four examples in Figure 1 to see how it has successfully
selected x to be context-sensitive (where “return x” in each example has been replaced by
“this.ret = x” and the object A created in Figure 1(d) is assumed to be a cs-likely object):

Figures 1(a) and 1(b): L5(p, this)x: p
assign
−−−−→ x

store
−−−→ this.

Figure 1(c). L5(p, q)x: p
assign
−−−−→ x

store
−−−→ q.

Figure 1(d): L5(this, this)x: this
store
−−−→ x

new
−−→ A

cs-likely
−−−−−→ A

new
−−→ x

store
−−−→ this.

Finally, we show that Turner is precision-preserving if Observation 3 is precision-
preserving. The basic idea is to show that if a variable/object is context-sensitive according
to Lemma 5, i.e., Fact 2 (Figure 1), then it must reside on an L5-path.

▶ Theorem 11. Suppose Observation 3 is precision-preserving. Let G be the PAG built for a
method M (Figures 5 and 7–9). If a variable/object n in M is context-sensitive by Lemma 5,
then L5(P1, P2)n, where P1 and P2 are two (not necessarily different) parameters of M .

Proof. Our proof proceeds in the following three steps:
1. We assume that M is analyzed equivalently under one cs-likely receiver object, OM . Let

M
′ be obtained from M by augmenting it with (1) “this

M
= new T // OM ” and (2)

“P = this
M

.P ” for every parameter P of M . Let G
′ be the resulting PAG augmented from

ECOOP 2021

16:18 Accelerating Object-Sensitive Pointer Analysis

G. For every parameter P of M , we now have P
assign
−−−−→ this

M new
−−→ OM

cs-likely
−−−−−→ OM

new
−−→

this
M assign

−−−−→ P . Thus, L5(P1, P2)n holds over G, where P1 and P2 are two parameters of
M iff L5(P ′

, P
′)n holds over G

′, where P
′ is a parameter of M . In L5, every variable will

now be guaranteed to point to at least one object, which can be OM .
2. We show now that all the context-sensitive value flows that enter M under its different

calling contexts are tracked in L5 if they pass through a method call b = a0.m0(a1, ..., ar)
(via a0, ..., ar). Thus, it suffices to consider each call site in M in isolation. Note that the
loads and stores in a program can always be modeled as getters and setters.
By Lemmas 9 and 10, Lemma 8 applies also to L5: L5(ai, aj) is established in analyzing
b = a0.m0(a1, ..., ar) iff a0 points to at least one cs-likely object. Thus, we only need
to argue that if a0 points to only context-insensitive objects, recorded in Fa0 , then
each invoked method at this call site can be ignored in this sense. In this case (where
OM ∉ Fa0 as OM is context-sensitive by construction), if some pointed-to objects of
a0 are missing in Fa0 (as our pre-analysis is intra-procedural), then there must exist a
call chain, a0 = x1.m1(...), x1 = x2.m2(...), ..., xt−1 = xt.mt(...) (modeled effectively as
a0 = x1 = ... = xt in L5), where all the pointed-to objects of xt in the program are found
intra-procedurally (under the assumption that all the receiver objects of M are abstracted
by one single context-sensitive object, OM , as explained in Step 1).
Since Observation 3 is assumed to be precision-preserving, the value flows that enter
M under its different calling contexts (i.e., receiver objects) need not be tracked, i.e.,
separated context-sensitively at each call site mi(). To prove this claim inductively,
let us write x−1 = x0.m0(...) to represent b = a0.m0(...). Now, let Rmi

be the set of
objects returned by mi() but missed by L5, as mi() is not analyzed. Our claim is true
for xt−1 = xt.mt(...), since all the objects pointed to by xt in the program are context-
insensitive. This also implies that the objects in Rmt

are all conflated under different
calling contexts of M . Suppose that our claim holds for mi(), in which case, the objects
in Rmi

are all conflated. Let us consider xi−2 = xi−1.mi−1(...). As xi−1 can only point
to either some context-insensitive objects in Fa0 found intra-procedurally by L5 or the
conflated objects in Rmi

, our claim must also be true for mi−1().
3. If a variable n is context-sensitive by Lemma 5, there must exist a cs-likely O due to

Step 1 such that L1(O, P)n ∶ O flows n
′ store
−−−→ P , which contains n, where n

′ is a variable
(which may be n) and P is a parameter of M . By applying Lemmas 6 – 10 and the result
established in Step 2, we must have L5(O, P)n ∶ O flows n

′ store
−−−→ P (passing through n).

As a result, L5(P, P)n ∶ P
store
−−−→ n

′ flows O
cs-likely
−−−−−→ O flows n

′ store
−−−→ P holds. If an

object n is context-sensitive by Lemma 5, L5(P, P)n can be established similarly. ◀

4.2.2.4 Computing CITurner with a DFA

We give an efficient algorithm for computing CITurner with a DFA (Figure 10) obtained
equivalently from the regular grammar for L5. Our algorithm proceeds in linear time of the
number of nodes in the PAG by exploiting an antisymmetric property in our DFA.

The DFA is a quintuple A = (Q, Σ, δ, s, e), where Q = {s, flows, flows, e} is the set
of states, Σ = {param, param, new, new, assign, assign, load, load, store, store, cs-likely} is the
alphabet, δ ∶ Q × Σ ↦ Q is the state transition function, s is the start state, and e is the
accepting, i.e., final state.

▶ Definition 12. Given a PAG edge n1
σ
−→ n2 with a corresponding state transition δ(q1, σ) =

q2, we define (n1, q1) ↣ (n2, q2) as a one-step transition. The transitive closure of ↣,
denoted by ↣+, represents a multiple-step transition.

D. He, J. Lu, Y. Gao, and J. Xue 16:19

sstart flows flows e
param

new ∣ assign ∣ load store ∣ store
new ∣ assign ∣ load

param

cs-likely

Figure 10 The DFA as an equivalent representation of the grammar for defining L5.

We describe an antisymmetric property of our DFA in Lemmas 13 and 14 below.

▶ Lemma 13. Let n1 and n2 be two PAG nodes. We have (1) (n1, s) ↣+ (n2, flows) ⟹
(n2, flows)↣+ (n1, e) and (2) (n1, s)↣+ (n2, flows) ⟹ (n2, flows)↣+ (n1, e).

Proof. To prove (1), we note that n1 flows n2 ⟹ n2 flows n1 in L5. To prove (2), we

note that n1 flows n
store ∣ store
−−−−−−−→ n2 ⟹ n2

store ∣ store
−−−−−−−→ n flows n1 in L5, where n is a PAG

node. ◀

▶ Lemma 14. Let n1 and n2 be two PAG nodes. We have (n2, flows) ↣+ (n1, e) ⟹

(n1, s)↣+ (n2, flows) and (n2, flows)↣+ (n1, e) ⟹ (n1, s)↣+ (n2, flows).

Proof. Proceeds as in the proof of Lemma 13 by noting [P-Param] given in Figure 9. ◀

In (18), we include a variable/object n in a method M (with its PAG denoted by GM) into
CITurner if L

GM

5 (P1, P2)n does not hold for any two parameters P1 and P2 of M . In terms
of our DFA, L

GM

5 (P1, P2)n holds iff (P1, s)↣+ (n, q)↣+ (P2, e), where q ∈ {flows, flows}.
The antisymmetric property of our DFA is exploited below.

▶ Theorem 15. Let n be a variable/object in a method with P1 and P2 as its two parameters.
(P1, s)↣+ (n, q)↣+ (P2, e) ⟺ (P2, s)↣+ (n, q)↣+ (P1, e), where q ∈ {flows, flows}.

Proof. Lemmas 13 and 14. ◀

As a result, we have designed an efficient algorithm for verifying L
GM

5 (P1, P2)n by
verifying n ∈ RM(flows) ∩ RM(flows) for a method M (with GM as its PAG), in which,
R ∶ Q ↦ ℘(V ∪ H) returns a set of nodes in GM reached at a given state q ∈ Q and
R

−1 ∶ V ∪ H ↦ ℘(Q) is the inverse of R. These two functions are computed according to
the two rules given in Figure 11. The two rules are simple: [A-I] performs the initializations
needed while [A-II] computes a fixed point for each function iteratively.

n ∈ NM

n ∈ RM(s) s ∈ R
−1
M (n)

[A-I]

n1
σ
−→ n2 ∈ EM q1 ∈ R

−1
M (n1) δ(q1, σ) = q2 q2 ∉ R

−1
M (n2)

n2 ∈ RM(q2) q2 ∈ R
−1
M (n2)

[A-II]

Figure 11 Rules for computing RM and R
−1
M for a method M with GM = (NM , EM).

Given RM computed above, we can now obtain CITurner efficiently as follows:

CITurner = {n ∣ M ∈ M, n is a node in GM , n ∉ RM(flows) ∩ RM(flows)} (19)

ECOOP 2021

16:20 Accelerating Object-Sensitive Pointer Analysis

4.3 Time Complexity

The worst-case time complexity of Turner in analyzing a program is linear in terms of its
number of statements, for two reasons. First, CIOBS

Turner given in (3) and (4) can be found
in O(∣H∣) based on the points-to information already computed by Andersen’s analysis [1].
Second, RM used in (19) for a method M , with its PAG denoted GM = (NM , EM), can be
computed by the rules in Figure 11 in O(∣EM ∣ × ∣Q∣), where ∣EM ∣ is the number of edges
in GM (constructed linearly based on the number of statements in M according to the rules
in Figures 5 and 7–9) and ∣Q∣, i.e., the number of states in the DFA (Figure 10), is 4.

5 Evaluation

We demonstrate that Turner can accelerate kobj significantly with only negligible precision
loss, by being both substantially faster than Eagle [22] (the currently best precision-
preserving pre-analysis) and substantially more precise than Zipper [19] (the currently best
non-precision-preserving pre-analysis). We address the following three research questions:

RQ1. Is Turner precise?
RQ2. Is Turner efficient?
RQ3. Is Turner effective (by exploiting object containment and reachability)?

We have implemented Turner in Soot [42], a program analysis and optimization
framework for Java, on top of its context-insensitive Andersen’s pointer analysis, Spark
[17], and an object-sensitive version of Spark (i.e., kobj) developed by ourselves. Our
pre-analysis is implemented in under 1000 lines of Java code, which will soon be released as
an open-source tool at http://www.cse.unsw.edu.au/~corg/turner. To compare Turner
with Eagle [22] and Zipper [19], we have implemented Eagle based on its three rules (in
600 lines of Java code) and used Zipper’s latest version (b83b038).

As Zipper is evaluated in Doop [30], we have used an experimental setting that is as close
as possible to its original one in several major aspects. First, objects such as StringBuilder,
StringBuffer and Throwable objects are merged in terms of their dynamic types and then
analyzed context-insensitively as is often done in Doop [6] and Wala [7]. Second, we
perform an exception analysis together with kobj as in Doop by handling exception objects
caught in terms of so-called exception-catch links [5]. Third, for type-filtering purposes
performed on the elements of an array, we use the declared type of its elements instead of
java.lang.Object. Finally, we use the summaries provided in Soot to handle native code.

We have carried out all the experiments on an Intel(R) Xeon(R) CPU E5-2637 3.5GHz
machine with 512GB of RAM. We have selected a set of 12 popular Java programs, including 9
benchmarks from DaCapo2006 [3], and 3 Java applications (checkstyle, JPC and findbugs),
which are commonly used in evaluating kobj [32, 40, 39, 13, 12]. The Java library used is
JRE1.6.0_45 (as the DaCapo2006 benchmarks rely only on an older version of JRE). We
use Tamiflex [4], a dynamic reflection analysis tool, to resolve Java reflection as is often
done in the pointer analysis literature [31, 32, 39, 19, 22, 21].

The time budget used for running each object-sensitive pointer analysis on a program is
set as 24 hours. The analysis time of a program is an average of three runs.

Table 3 presents our main results. We compare Turner with Eagle and Zipper in
terms of their efficiency and precision tradeoffs made on improving kobj. For each k ∈ {2, 3}
considered, kobj is the baseline, Z-kobj, E-kobj and T-kobj are the versions of kobj for
performing selective context-sensitivity under Zipper, Eagle and Turner, respectively.

http://www.cse.unsw.edu.au/~corg/turner

D. He, J. Lu, Y. Gao, and J. Xue 16:21

Table 3 Main results. For a given k ∈ {2, 3}, the speedups of E-kobj, Z-kobj, and T-kobj are
normalized with kobj as the baseline. For all the metrics except “Speedup”, smaller is better.

Metrics 2obj E-2obj Z-2obj T-2obj 3obj E-3obj Z-3obj T-3obj
Time (s) 24.5 12.4 12.7 6.8 628.9 570.8 141.4 196.5
Speedup - 2.0x 1.9x 3.6x - 1.1x 4.4x 3.2x
#may-fail-casts 516 516 565 516 456 456 513 456
#call-edges 50975 50975 51203 50975 50948 50948 51176 50948
#poly-calls 1607 1607 1629 1607 1600 1600 1622 1600

an
tlr

#avg-pts 6.110 6.110 6.585 6.125 4.927 4.927 5.427 4.945
Time (s) 412.6 290.9 324.2 138.9 10648.2 6994.7 6878.9 1902.8
Speedup - 1.4x 1.3x 3.0x - 1.5x 1.5x 5.6x
#may-fail-casts 1295 1295 1349 1295 1198 1198 1256 1198
#call-edges 56488 56488 56988 56488 56258 56258 56837 56258
#poly-calls 1549 1549 1587 1549 1535 1535 1577 1535

bl
oa

t

#avg-pts 14.796 14.796 15.672 14.816 13.995 13.995 14.802 14.019
Time (s) 206.2 107.5 28.3 75.1 OoM 12346.4 522.7 7886.1
Speedup - 1.9x 7.3x 2.7x - - - -
#may-fail-casts 1339 1339 1410 1339 - 1239 1316 1239
#call-edges 72426 72426 73009 72426 - 71987 72640 71987
#poly-calls 1988 1988 2011 1988 - 1962 1989 1962

ch
ar

t

#avg-pts 4.905 4.905 5.363 4.971 - 4.149 4.799 4.168
Time (s) 10680.5 5885.3 4122.8 4686.0 OoM OoM OoM OoM

Speedup - 1.8x 2.6x 2.3x - - - -
#may-fail-casts 3551 3551 3718 3551 - - - -
#call-edges 162208 162208 163186 162208 - - - -
#poly-calls 9525 9525 9572 9525 - - - -

ec
lip

se

#avg-pts 17.334 17.334 19.691 17.519 - - - -
Time (s) 18.7 10.2 6.9 5.2 728.1 651.6 123.8 187.3
Speedup - 1.8x 2.7x 3.6x - 1.1x 5.9x 3.9x
#may-fail-casts 414 414 460 414 362 362 416 362
#call-edges 34173 34173 34406 34173 34146 34146 34379 34146
#poly-calls 816 816 841 816 809 809 834 809

fo
p

#avg-pts 3.577 3.577 4.132 3.597 3.359 3.359 3.942 3.383
Time (s) 15.7 9.4 6.3 4.6 596.3 532.6 131.7 185.0
Speedup - 1.7x 2.5x 3.4x - 1.1x 4.5x 3.2x
#may-fail-casts 402 402 455 402 348 348 405 348
#call-edges 33449 33449 33689 33449 33422 33422 33662 33422
#poly-calls 905 905 932 905 898 898 925 898

lu
in

de
x

#avg-pts 3.595 3.595 4.285 3.612 3.352 3.352 4.072 3.374
Time (s) 22.3 15.8 11.1 10.4 1968.0 1736.8 523.5 881.1
Speedup - 1.4x 2.0x 2.1x - 1.1x 3.8x 2.2x
#may-fail-casts 417 417 473 417 366 366 425 366
#call-edges 36247 36247 36485 36247 36220 36220 36458 36220
#poly-calls 1103 1103 1131 1103 1096 1096 1124 1096lu

se
ar

ch

#avg-pts 3.611 3.611 4.229 3.627 3.358 3.358 3.959 3.381
Time (s) 42.1 23.9 23.8 18.3 1504.0 1380.1 358.6 266.2
Speedup - 1.8x 1.8x 2.3x - 1.1x 4.2x 5.7x
#may-fail-casts 1174 1174 1252 1174 1116 1116 1199 1116
#call-edges 59664 59664 59832 59664 59599 59599 59767 59599
#poly-calls 2329 2329 2354 2329 2322 2322 2347 2322

pm
d

#avg-pts 4.943 4.943 6.378 4.954 4.684 4.684 5.973 4.698
Time (s) 243.2 121.8 54.2 90.9 25424.4 6771.9 694.2 1386.4
Speedup - 2.0x 4.5x 2.7x - 3.8x 36.6x 18.3x
#may-fail-casts 569 569 629 569 516 516 582 516
#call-edges 45916 45916 46113 45916 45884 45884 46086 45884
#poly-calls 1589 1589 1611 1589 1582 1582 1604 1582

xa
la

n

#avg-pts 4.253 4.253 5.258 4.272 4.096 4.096 5.014 4.119
Time (s) 1240.6 710.2 484.3 339.3 OoM OoM OoM OoM

Speedup - 1.7x 2.6x 3.7x - - - -
#may-fail-casts 1129 1129 1203 1129 - - - -
#call-edges 66702 66702 67528 66702 - - - -
#poly-calls 2188 2188 2246 2188 - - - -ch

ec
ks

ty
le

#avg-pts 6.380 6.380 10.070 6.491 - - - -
Time (s) 101.9 59.2 31.0 44.0 2371.1 1172.9 175.9 316.8
Speedup - 1.7x 3.3x 2.3x - 2.0x 13.5x 7.5x
#may-fail-casts 1364 1364 1438 1364 1209 1209 1281 1209
#call-edges 81003 81003 81590 81003 79315 79315 79893 79315
#poly-calls 4255 4255 4301 4255 4115 4115 4159 4115

JP
C

#avg-pts 5.050 5.050 5.486 5.065 4.434 4.434 4.752 4.458
Time (s) 1820.6 681.1 128.7 150.9 OoM OoM 2133.8 1947.0
Speedup - 2.7x 14.1x 12.1x - - - -
#may-fail-casts 2037 2037 2100 2037 - - 1884 1650
#call-edges 87532 87532 88134 87532 - - 87289 86599
#poly-calls 3472 3472 3487 3472 - - 3463 3441fin

db
ug

s

#avg-pts 8.011 8.011 8.804 8.058 - - 7.203 6.632

ECOOP 2021

16:22 Accelerating Object-Sensitive Pointer Analysis

Table 4 Context-sensitive facts (in millions). For all the metrics, smaller is better.

Metrics 2obj E-2obj Z-2obj T-2obj 3obj E-3obj Z-3obj T-3obj
#cs-gpts 4.0K 3.8K 4.8K 2.2K 6.6K 6.0K 12.2K 2.8K
#cs-pts 8.7M 4.9M 8.8M 1.5M 83.4M 63.4M 72.4M 33.3M
#cs-fpts 0.4M 0.3M 0.4M 0.2M 10.2M 9.9M 10.3M 8.0M
#cs-calls 2.4M 1.8M 1.0M 0.7M 38.5M 33.5M 6.8M 25.1Man

tlr

Total 11.5M 7.1M 10.2M 2.4M 132.1M 106.7M 89.6M 66.4M
#cs-gpts 3.2K 3.0K 4.0K 2.2K 5.1K 4.3K 11.3K 3.1K
#cs-pts 120.4M 82.4M 111.1M 36.9M 1196.0M 856.5M 1137.5M 230.8M
#cs-fpts 4.0M 4.0M 5.1M 3.7M 35.8M 35.4M 51.3M 30.6M
#cs-calls 35.5M 32.1M 29.5M 15.0M 371.7M 340.5M 298.2M 109.9Mbl

oa
t

Total 159.9M 118.4M 145.7M 55.6M 1603.6M 1232.5M 1487.0M 371.3M
#cs-gpts 14.3K 13.0K 10.8K 8.2K - 34.5K 26.3K 22.0K
#cs-pts 64.3M 36.7M 17.0M 19.9M - 1378.0M 171.2M 1005.7M
#cs-fpts 1.5M 1.1M 0.8M 1.0M - 55.4M 24.8M 48.8M
#cs-calls 20.5M 12.2M 2.5M 8.7M - 356.0M 23.9M 260.8Mch

ar
t

Total 86.4M 49.9M 20.4M 29.7M - 1789.4M 220.0M 1315.3M
#cs-gpts 40.6K 39.9K 28.8K 10.0K - - - -
#cs-pts 991.9M 742.7M 744.5M 565.5M - - - -
#cs-fpts 21.8M 21.4M 20.4M 16.2M - - - -
#cs-calls 609.1M 342.7M 188.6M 296.5M - - - -ec

lip
se

Total 1622.8M 1106.8M 953.6M 878.2M - - - -
#cs-gpts 3.1K 2.9K 3.7K 2.1K 4.5K 3.8K 9.8K 2.7K
#cs-pts 3.7M 2.1M 3.6M 1.0M 70.3M 56.1M 48.8M 33.5M
#cs-fpts 0.2M 0.2M 0.2M 0.2M 9.7M 9.4M 9.4M 7.9M
#cs-calls 1.1M 0.9M 0.5M 0.5M 33.7M 29.8M 4.2M 25.0Mfo

p

Total 5.0M 3.2M 4.2M 1.6M 113.7M 95.3M 62.5M 66.4M
#cs-gpts 2.8K 2.6K 3.8K 1.9K 4.5K 3.9K 11.0K 2.7K
#cs-pts 3.8M 2.2M 4.2M 1.1M 67.6M 54.2M 56.5M 33.2M
#cs-fpts 0.2M 0.2M 0.2M 0.2M 9.7M 9.4M 10.8M 8.0M
#cs-calls 1.1M 0.9M 0.5M 0.5M 33.1M 29.6M 4.7M 25.1Mlu

in
de

x

Total 5.2M 3.3M 4.9M 1.7M 110.4M 93.2M 72.0M 66.3M
#cs-gpts 3.0K 2.7K 3.8K 1.9K 4.2K 3.5K 10.3K 2.5K
#cs-pts 5.8M 3.9M 5.1M 2.2M 167.7M 151.6M 115.3M 92.2M
#cs-fpts 0.3M 0.2M 0.2M 0.2M 11.2M 11.0M 11.0M 9.4M
#cs-calls 2.3M 1.9M 1.0M 1.4M 108.1M 94.9M 40.5M 80.8M

lu
se

ar
ch

Total 8.4M 6.0M 6.4M 3.8M 287.1M 257.5M 166.9M 182.4M
#cs-gpts 3.9K 3.6K 5.9K 2.5K 5.6K 4.9K 23.8K 3.4K
#cs-pts 12.2M 7.6M 15.1M 4.1M 144.6M 108.8M 184.5M 45.5M
#cs-fpts 1.1M 1.0M 1.1M 0.9M 15.9M 15.3M 19.0M 11.7M
#cs-calls 3.6M 2.6M 2.1M 1.7M 58.5M 49.0M 17.0M 33.3Mpm

d

Total 16.9M 11.1M 18.4M 6.7M 219.0M 173.1M 220.5M 90.6M
#cs-gpts 3.9K 3.6K 3.6K 2.4K 15.5K 13.5K 10.3K 6.1K
#cs-pts 99.1M 45.9M 20.1M 14.3M 1795.3M 987.3M 253.0M 104.5M
#cs-fpts 2.5M 2.4M 1.8M 1.9M 70.9M 63.6M 18.8M 27.0M
#cs-calls 26.0M 19.3M 4.7M 17.2M 432.4M 300.8M 35.3M 168.1Mxa

la
n

Total 127.6M 67.6M 26.6M 33.3M 2298.6M 1351.7M 307.1M 299.6M
#cs-gpts 7.8K 7.5K 11.5K 3.9K - - - -
#cs-pts 145.0M 107.2M 118.2M 38.0M - - - -
#cs-fpts 2.5M 2.3M 3.0M 1.6M - - - -
#cs-calls 78.6M 34.5M 23.2M 21.1M - - - -

ch
ec

ks
ty

le

Total 226.1M 144.0M 144.4M 60.7M - - - -
#cs-gpts 7.9K 7.1K 7.7K 5.7K 22.1K 19.5K 17.5K 10.2K
#cs-pts 28.7M 18.8M 13.9M 12.1M 618.1M 319.8M 68.6M 69.1M
#cs-fpts 1.2M 0.9M 1.0M 0.9M 22.8M 20.0M 13.0M 13.0M
#cs-calls 9.6M 7.1M 2.7M 5.8M 95.2M 61.4M 7.2M 38.4MJP

C

Total 39.6M 26.9M 17.6M 18.8M 736.1M 401.3M 88.8M 120.5M
#cs-gpts 33.5K 32.9K 10.7K 4.0K - - 45.6K 6.0K
#cs-pts 326.4M 245.0M 57.2M 37.8M - - 545.9M 183.3M
#cs-fpts 15.7M 15.5M 4.7M 1.1M - - 59.4M 26.6M
#cs-calls 120.0M 58.3M 11.9M 9.6M - - 96.4M 138.5M

fin
db

ug
s

Total 462.0M 318.9M 73.8M 48.5M - - 701.7M 348.5M

5.1 RQ1: Precision
Table 3 lists four common metrics used for measuring the precision of a context-sensitive
pointer analysis [31, 41, 19, 22, 21] in terms of its context-insensitive points-to information
obtained (as described in Section 2.1): (1) #may-fail-casts: the number of type casts that
may fail, (2) #call-edges: the number of call graph edges discovered, (3) #poly-calls: the
number of polymorphic calls discovered, and (4) #avg-pts: the average number of objects
pointed by a variable, i.e., the average points-to set size.

Eagle is designed to be precision-preserving by ensuring that E-kobj produces exactly
the same context-insensitive points-to information as kobj. Thus, E-2obj and E-3obj
achieve trivially the same precision in all the four metrics. Zipper is designed to accelerate

D. He, J. Lu, Y. Gao, and J. Xue 16:23

kobj heuristically as much as possible (by also ignoring the last two value-flow patterns in
Figure 1) while allowing sometimes a significant loss of precision. For 2obj, Z-2obj has
caused its #avg-pts to increase by 18.1% on average, resulting in the average percentage
precision losses of 7.8%, 0.7%, and 1.7% for #may-fail-casts, #call-edges, and #poly-calls,
respectively. For 3obj, Z-3obj has caused its #avg-pts to increase by 16.2% on average,
resulting in the average percentage precision losses of 10.8%, 0.7%, and 2.0% for #may-fail-
casts, #call-edges, and #poly-calls, respectively. In this paper, Turner is designed to trade
only a slight loss of precision for efficiency (by reasoning all the four value-flow patterns in
Figure 1 (implicitly) using a DFA based on object containment and reachability). Despite
some slightly imprecise points-to information produced (with #avg-pts increasing by 0.6%
and 0.5% under T-2obj and T-3obj, respectively), both T-2obj and T-3obj preserve the
precision for #may-fail-casts, #call-edges, and #poly-calls across all the 12 programs.

5.2 RQ2: Efficiency
On average, as shown in Table 3, T-kobj is faster than E-kobj but slower than Z-kobj.
By adopting the context selections prescribed by each of the three pre-analyses, kobj runs
faster under all the configurations. We compare Turner with Eagle and Zipper below.

T-kOBJ vs. E-kOBJ. Both achieve the same precision for #may-fail-casts, #call-edges,
and #poly-calls across the 12 benchmarks for k ∈ {2, 3}, but T-kobj is faster in each
case. For k = 2, the speedups of T-2obj over 2obj range from 2.1x (for lusearch) to
12.1x (for findbugs) with an average of 3.6x. In contrast, the speedups of E-2obj over
2obj range from 1.4x (for bloat and lusearch) to 2.7x (for findbugs) with an average
of 1.8x only. For k = 3, the speedups of T-3obj over 3obj range from 2.2x (for lusearch)
to 18.3x (for xalan) with an average of 6.2x, while the speedups of E-3obj over 3obj
range from 1.1x (for antlr, fop, luindex, lusearch, and pmd) to 3.8x (for xalan) with
an average of 1.6x only. Thus, the speedups of T-kobj over E-kobj are 1.9x when k = 2
and 3.4x (with chart included even though 3obj is unscalable) when k = 3.
In addition, T-kobj exhibits better scalability than E-kobj. For the four benchmarks,
chart, eclipse, checkstyle and findbugs, that are unscalable under 3obj, T-3obj
can now analyze chart and findbugs successfully but E-3obj can analyze chart only.
T-kOBJ vs. Z-kOBJ. Despite its substantially better precision, T-kobj is faster in
seven programs when k = 2 and three when k = 3. Compared with the kobj baseline,
the average speedups achieved by T-kobj and Z-kobj are 3.6x and 3.9x, respectively,
when k = 2, and 6.2x and 9.3x, respectively, when k = 3. As a result, Z-kobj is faster
than T-kobj by 1.1x when k = 2 and 2.7x (with chart and findbugs included) when
k = 3, on average. In terms of scalability, T-kobj is on par with Z-kobj for k ∈ {2, 3}.

Table 4 gives the numbers of context-sensitive facts established by kobj, E-kobj, Z-kobj
and T-kobj, with #cs-gpts, #cs-pts and #cs-fpts representing the numbers of context-
sensitive objects pointed by global variables (i.e., static fields), local variables and instance
fields, respectively, and #cs-calls representing the number of context-sensitive call edges. In
general, the speedups of a pointer analysis over a baseline come from a significant reduction
in the number of context-sensitive facts computed by the baseline. For example, Z-3obj is
significantly faster than T-3obj and E-3obj for chart as its number of context-sensitive
facts is significantly less than the other two. Similarly, T-3obj is also much faster than
E-3obj and Z-3obj for bloat. However, the analysis time of a pointer analysis is not linearly
proportional to the number of context-sensitive facts computed [41]. For example, T-3obj is
faster than 3obj by 3.2x for antlr but achieves a percentage time reduction of only 49.7%.

ECOOP 2021

16:24 Accelerating Object-Sensitive Pointer Analysis

Table 5 Times spent by Spark and the three pre-analyses in seconds.

antlr bloat chart eclipse fop luindex lusearch pmd xalan checkstyle JPC findbugs Avg
Spark 9.0 10.7 17.2 38.6 8.1 7.4 7.9 13.5 9.5 16.8 19.3 19.8 14.8
Eagle 3.5 3.8 9.9 34.6 2.8 2.7 3.0 9.3 6.1 9.2 9.6 12.1 8.9
Zipper 5.4 6.5 17.1 38.9 4.4 4.2 4.6 9.5 9.0 17.9 11.5 17.4 12.2
Turner 0.8 0.9 1.4 2.4 0.5 0.5 0.5 1.1 0.8 1.2 1.2 1.3 1.1

Table 5 gives the times spent by Spark [17] (an implementation of context-insensitive
Andersen’s analysis [1]) and the three pre-analyses, Eagle, Zipper and Turner. As
discussed earlier, each pre-analysis relies on the points-to information computed by Spark
to make its context selection decisions. Turner is significantly faster than Eagle and
Zipper across all the 12 programs. On average, we have 1.1 seconds (Turner), 8.9 seconds
(Eagle) and 12.2 seconds (Zipper). Eagle is a single-threaded pre-analysis, Zipper is
multi-threaded (with 16 threads used in our experiments), Turner is currently single-
threaded but is embarrassingly parallel, as it is intra-procedural. Without any parallelization,
Turner exhibits already negligible analysis times as it runs linearly in terms of the number
of statements in a program.

5.3 RQ3: Effectiveness

antlr bloat chart eclipse fop luindex lusearch pmd xalan checkstyle JPC findbugs Avg
0%

20%

40%

60%

80%

100%

Object Containment Object Reachability

Figure 12 Percentage contributions made by Turner’s two analysis stages for the speedups of
T-2obj over 2obj.

Turner relies on object containment and reachability to make its context selections.
In order to understand roughly their percentage contributions to the speedups achieved by
T-kobj over kobj, let us consider two versions of T-kobj: (1) T-kobjC , where only object
containment is exploited, i.e., the objects in CIOBS

Turner are context-insensitive and all the rest
(the variables/objects in (V ∪G ∪H) \ CIOBS

Turner) are handled as in kobj, and (2) T-kobjR,
where only object reachability is exploited by assuming CIOBS

Turner = ∅. Let T-kobjS
Speedup be

the speedup obtained by T-kobjS over kobj, where S ∈ {C, R, ϵ}, for a program. Certainly,
T-kobjC

Speedup + T-kobjR
Speedup = T-kobjSpeedup is not expected for a program, as the com-

mon contribution made by T-kobjC and T-kobjR towards T-kobjSpeedup cannot be meaning-
fully isolated. Instead, we consider T-kobjS

Speedup/(T-kobjC
Speedup + T-kobjR

Speedup), where
S ∈ {C, R}, as the relative percentage contribution made by T-kobjS towards T-kobjSpeedup
in order to gain a rough understanding about whether both stages are indispensable. Fig-
ure 12 illustrates the case for accelerating 2obj by T-2obj, demonstrating that both object
containment and object reachability are indeed exploited beneficially for real-world programs.

D. He, J. Lu, Y. Gao, and J. Xue 16:25

Our work is largely driven by our insight stated in Observation 3. Therefore, Turner
is designed to exploit both object containment and reachability to classify the objects, and
consequently, the variables in a program as context-sensitive or context-insensitive.

TopCon ∩ BotConTopCon BotCon

CSTurner CI
DFA
Turner

Figure 13 The Venn diagram of the objects in a program.

Figure 13 gives a Venn diagram showing how Turner classifies the containers, i.e., objects
in a program. Based on object containment (Observation 3), CIOBS

Turner = TopCon ∪ BotCon
gives the set of precision-uncritical, i.e., context-insensitive objects identified. Based on
object reachability (performed by our DFA), CI

DF A
Turner ⊆ H \ CIOBS

Turner gives an additional set
of context-insensitive sets identified. Thus, CSTurner = H \ (CIOBS

Turner ∪ CI
DF A
Turner) represents

the set of context-sensitive objects identified. On average, across the 12 programs evaluated,
the ratios of ∣CIOBS

Turner∣, ∣CI
DF A
Turner∣ and ∣CSTurner∣ over ∣H∣ are 61.3%, 4.9%, and 33.8%,

respectively. As the performance benefits of making different objects context-insensitive can
be drastically different (which are hard to measure individually), these ratios, together with
Figure 12, demonstrate again the effectiveness of Turner’s two analysis stages.

Finally, we give two examples abstracted from the JDK library to explain why Turner
does not lose any precision in #call-edges, #may-fail-casts, and #poly-calls even though it
suffers from a small loss of precision in #avg-pts across the 12 programs evaluated. Turner
can render some points-to sets imprecise when some top/bottom containers that are classified
as precision-uncritical in CIOBS

Turner should have been analyzed context-sensitively.
Figure 14 illustrates a case in which whether the object P created in line 4 (a top

container according to Observation 3) is analyzed context-sensitively or not affects pts(str)
obtained in line 23. Consider 2obj, which will analyze P context-sensitively. When analyzing
lines 19–22, we find that pts(ui, []) = {(Ui, [])} ∧ pts(Ui.file, []) = pts(P.path, [Ui]) =

{(Si, [])}, where 1 ⩽ i ⩽ 2. When analyzing line 23, we find that pts(str, []) = {(S1, [])}.
Context-insensitively, 2obj thus obtains pts(str) = {S1}. In the case of T-2obj, however,
P ∈ CIOBS

Turner will be analyzed context-insensitively instead. When analyzing lines 19–22,
we have pts(ui, []) = {(Ui, [])} ∧ pts(Ui.file, []) = pts(P.path, []) = {(S1, []), (S2, [])},
where 1 ⩽ i ⩽ 2. As P is context-insensitive, analyzing line 23 this time will give rise to
pts(str, []) = {(S1, []), (S2, [])}. Thus, context-insensitively, T-2obj obtains pts(str) =
{S1, S2}, which contains a spurious target S2 introduced for str. Despite this loss of precision
in #avg-pts, however, T-2obj does not lose any precision in #may-fail-casts, #call-edges,
and #poly-calls, as both S1 and S2 have exactly the same type, java.lang.String.

Figure 15 illustrates another case in which whether the object D created in line 14
(a bottom container according to Observation 3) is analyzed context-sensitively or not
affects pts(t) obtained in line 7. Consider 2obj, which will analyze D context-sensitively.
When analyzing lines 17–20, we find that pts(vi, []) = {(Vi, [])} ∧ pts(Vi.buffer, []) =

ECOOP 2021

16:26 Accelerating Object-Sensitive Pointer Analysis

 1. class URL {
 2. String file;
 3. URL(String s) {
 4. Parts parts = new Parts(s); // P
 5. this.file = parts.getPath();
 6. }
 7. String getFile() {
 8. return this.file;
 9. }}
10. class Parts {
11. String path;
12. Parts(String p) {
13. this.path = p;
14. }

15. String getPath() {
16. return this.path;
17. }}

18. void main() {
19. String s1 = new String(); // S1
20. String s2 = new String(); // S2
21. URL u1 = new URL(s1); // U1
22. URL u2 = new URL(s2); // U2
23. String str = u1.getFile();
24. InputStream in = new FileInputStream(str);
25. // parse content of the Stream.
26. in.close();
27. }

Figure 14 Imprecise points-to information computed by T-2obj for a top container P.

 1. class DerInputBuffer {
 2. byte[] buf;
 3. DerInputBuffer (byte[] p) {
 4. this.buf = p;
 5. }

 6. Date getTime() {
 7. byte[] t = this.buf;
 8. long l = t[0];
 9. return new Date(l);
10. }}

11. class DerValue {
12. DerInputBuffer buffer;
13. DerValue(byte[] buf) {
14. this.buffer = new DerInputBuffer(buf); // D
15. }}
16. void main() {
17. byte[] b1 = new byte[10]; // B1
18. byte[] b2 = new byte[10]; // B2
19. DerValue v1 = new DerValue(b1); // V1
20. DerValue v2 = new DerValue(b2); // V2
21. Date d1 = v1.buffer.getTime();
22. }

Figure 15 Imprecise points-to information computed by T-2obj for a bottom container D.

{(D, [Vi])} ∧ pts(D.buf, [Vi]) = {(Bi, [])}, where 1 ⩽ i ⩽ 2. When analyzing line 7, we
find that pts(t, [D, V1]) = {(B1, [])}. Context-insensitively, 2obj thus obtains pts(t) =

{B1}. In the case of T-2obj, however, D ∈ CIOBS
Turner will be analyzed context-insensitively

instead. When analyzing lines 17–20, we have pts(vi, []) = {(Vi, [])}∧ pts(Vi.buffer, []) =
{(D, [])}∧pts(D.buf, []) = {(Bi, [])}, where 1 ⩽ i ⩽ 2. As t is context-insensitive, analyzing
line 7 will give rise to pts(t, []) = {(B1, []), (B2, [])}. Thus, context-insensitively, T-2obj
obtains pts(t) = {B1, B2}, which contains a spurious target B2 introduced for t. Despite
this loss of precision in #avg-pts, T-2obj loses no precision in #may-fail-casts, #call-edges,
and #poly-calls, as both B1 and B2 have exactly the same type, java.lang.byte[], and in
addition, each array object pointed by t is used in line 8 for obtaining a long integer only.

6 Related Work

There are two approaches for developing pre-analyses for improving the efficiency and
scalability of object-sensitive pointer analysis (kobj) for Java: the precision-preserving
approach [22, 21] and non-precision-preserving approach [32, 19, 13, 9]. Eagle [22, 21] aims
to improve the efficiency of kobj while preserving its precision by reasoning about all the
four value-flow patterns in Figure 1 implicitly via CFL reachability to make its context
selections conservatively, thereby limiting the speedups achieved. In this paper, Turner
addresses its limitation by trading a slight loss of precision for greater performance speedups.
On the other hand, Zipper [19], as a representative non-precision-preserving pre-analysis
[32, 19, 13, 9], aims to trade precision for efficiency by examining the first two value-flow

D. He, J. Lu, Y. Gao, and J. Xue 16:27

patterns in Figure 1 heuristically to make its context selections, achieving sometimes greater
speedups than Eagle but at a substantial loss of precision for some programs. In this paper,
Turner addresses its limitation by trading a slight loss of efficiency for greater precision
by exploiting object containment (Observation 3) and then reasoning about all the four
value-flow patterns in Figure 1 implicitly via an intra-procedural object reachability analysis.

There are other types of pre-analyses for kobj. Mahjong [39] sacrifices the precision of
alias analysis (by merging objects of the same dynamic type) in order to improve the efficiency
of kobj at a small loss of precision for a class of so-called type-dependent clients, such as call
graph construction, may-fail casting, and polymorphic call detection. In contrast, Turner
is designed to be a general-purpose pointer analysis to support all possible applications
that rely on points-to information, including not only type-dependent clients but also alias
analysis. Jeong et al. [13] apply machine learning to select the lengths of calling contexts for
different methods analyzed by kobj for a particular client (e.g., may-fail-casting). In contrast,
Turner makes its context selections by exploiting object containment and reachability.

There are also research efforts for developing pre-analyses for other programming languages.
For example, Wei and Ryder [43] present an adaptive context-sensitive analysis for JavaScript.
They extract user-specific function characteristics from an inexpensive pre-analysis and then
apply a decision-tree-based machine learning technique to correlate these features with
different types of context-sensitivity, e.g., 1-callsite, 1-object and i-th-parameter, achieving
better precision and efficiency than any single context-sensitive analysis evaluated.

Elsewhere [14, 40, 12], pre-analyses are also applied to improve the precision of kobj at
the expense of its efficiency. This thread of research is orthogonal to ours considered here.

There are other types of approaches for conducting pointer analysis in Java programs.
Thiessen and Lhoták [41] propose to use context transformations rather than context strings
as a new context abstraction for kobj, making it theoretically possible for kobj to run
more efficiently with better precision. Instead of solving kobj as a whole-program analysis
[17, 44, 23, 6, 18] as in this paper, demand-driven pointer analyses [37, 34, 45, 28, 38, 33]
typically compute the points-to information for particular variables of interest, with call-site-
sensitivity instead of object-sensitivity being often used.

Finally, Mohri and Nederhof [24] introduce an approach for over-approximating a context-
free grammar (CFG) by a non-deterministic finite automaton (NFA). Prasanna et al. [16]
adopt this approach to compute the liveness information required by a garbage collector for
functional programs. For object-oriented pointer analysis, however, this is the first paper in-
troducing an intra-procedural pre-analysis for determining selective context-sensitivity, based
on a DFA over-approximated from a CFG that defines pointer analysis inter-procedurally.

7 Conclusion

We have introduced Turner, a simple, lightweight yet effective pre-analysis technique that
can accelerate object-sensitive pointer analysis for Java programs with negligible precision loss.
We exploit a key insight that many precision-uncritical objects in a program can be identified
based on a pre-computed object containment relationship. Leveraging this approximation, we
can reason about object reachability intra-procedurally to determine whether the remaining
objects, together with all the variables, in the program are precision-critical or not. As
a result, we have obtained a novel pre-analysis that can improve the efficiency of object-
sensitive pointer analysis significantly while suffering only a small loss of precision in the
points-to information produced. In particular, Turner is shown to preserve the precision of
object-sensitive pointer analysis for three important clients, call graph construction, may-fail
casting, and polymorphic call detection over a set of 12 popular Java programs evaluated.

ECOOP 2021

16:28 Accelerating Object-Sensitive Pointer Analysis

We see several directions to move forward. First, we can incorporate the object allocation
relationship (exploited earlier [40]) into our framework to mitigate some precision loss incurred
in the scenarios shown in Figures 14 and 15. Second, we can sharpen the precision of CIOBS

Turner
with a more precise yet faster algorithm than Anderson’s analysis [1]. Finally, we can analyze
a method based on the context selections made earlier by exploiting a precision/efficiency
tradeoff made possible by the modularity of our intra-procedural pre-analysis.

References
1 Lars Ole Andersen. Program analysis and specialization for the C programming language. PhD

thesis, University of Cophenhagen, 1994.
2 Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel, Jacques

Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. Flowdroid: Precise context, flow,
field, object-sensitive and lifecycle-aware taint analysis for Android apps. In Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language Design and Implementation,
page 259–269, New York, NY, USA, 2014. Association for Computing Machinery. doi:
10.1145/2666356.2594299.

3 Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley,
Rotem Bentzur, Amer Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin
Hirzel, Antony Hosking, Maria Jump, Han Lee, J. Eliot B. Moss, Aashish Phansalkar,
Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wiedermann. The
DaCapobenchmarks: Java benchmarking development and analysis. In Proceedings of the 21st
annual ACM SIGPLAN conference on Object-oriented programming systems, languages, and
applications, pages 169–190, New York, NY, USA, 2006. Association for Computing Machinery.
doi:10.1145/1167515.1167488.

4 Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira Mezini. Taming reflection:
Aiding static analysis in the presence of reflection and custom class loaders. In Proceedings
of the 33rd International Conference on Software Engineering, pages 241–250, Honolulu, HI,
USA, 2011. IEEE. doi:10.1145/1985793.1985827.

5 Martin Bravenboer and Yannis Smaragdakis. Exception analysis and points-to analysis:
Better together. In Proceedings of the 18th International Symposium on Software Testing
and Analysis, page 1–12, New York, NY, USA, 2009. Association for Computing Machinery.
doi:10.1145/1572272.1572274.

6 Martin Bravenboer and Yannis Smaragdakis. Strictly declarative specification of sophisticated
points-to analyses. In Proceedings of the 24th ACM SIGPLAN conference on Object oriented
programming systems languages and applications, pages 243–262, New York, NY, USA, 2009.
Association for Computing Machinery. doi:10.1145/1639949.1640108.

7 IBM T.J. Watson Research Center. WALA: T.J. Watson Libraries for Analysis, 2020. URL:
http://wala.sourceforge.net/.

8 Stephen J Fink, Eran Yahav, Nurit Dor, G Ramalingam, and Emmanuel Geay. Effective
typestate verification in the presence of aliasing. ACM Transactions on Software Engineering
and Methodology, 17(2):1–34, 2008. doi:10.1145/1348250.1348255.

9 Behnaz Hassanshahi, Raghavendra Kagalavadi Ramesh, Padmanabhan Krishnan, Bernhard
Scholz, and Yi Lu. An efficient tunable selective points-to analysis for large codebases. In
Proceedings of the 6th ACM SIGPLAN International Workshop on State Of the Art in Program
Analysis, page 13–18, New York, NY, USA, 2017. Association for Computing Machinery.
doi:10.1145/3088515.3088519.

10 Dongjie He, Haofeng Li, Lei Wang, Haining Meng, Hengjie Zheng, Jie Liu, Shuangwei
Hu, Lian Li, and Jingling Xue. Performance-boosting sparsification of the IFDS algorithm
with applications to taint analysis. In 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pages 267–279, San Diego, CA, USA, 2019. IEEE.
doi:10.1109/ASE.2019.00034.

https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1145/2666356.2594299
https://doi.org/10.1145/1167515.1167488
https://doi.org/10.1145/1985793.1985827
https://doi.org/10.1145/1572272.1572274
https://doi.org/10.1145/1639949.1640108
http://wala.sourceforge.net/
https://doi.org/10.1145/1348250.1348255
https://doi.org/10.1145/3088515.3088519
https://doi.org/10.1109/ASE.2019.00034

D. He, J. Lu, Y. Gao, and J. Xue 16:29

11 Dongjie He, Lian Li, Lei Wang, Hengjie Zheng, Guangwei Li, and Jingling Xue. Understanding
and detecting evolution-induced compatibility issues in Android apps. In 2018 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE), pages 167–177, New
York, NY, USA, 2018. Association for Computing Machinery. doi:10.1145/3238147.3238185.

12 Minseok Jeon, Sehun Jeong, and Hakjoo Oh. Precise and scalable points-to analysis via data-
driven context tunneling. Proceedings of the ACM on Programming Languages, 2(OOPSLA):1–
29, 2018. doi:10.1145/3276510.

13 Sehun Jeong, Minseok Jeon, Sungdeok Cha, and Hakjoo Oh. Data-driven context-sensitivity
for points-to analysis. Proceedings of the ACM on Programming Languages, 1(OOPSLA):100,
2017. doi:10.1145/3133924.

14 George Kastrinis and Yannis Smaragdakis. Hybrid context-sensitivity for points-to analysis.
In Proceedings of the 34th ACM SIGPLAN Conference on Programming Language Design
and Implementation, page 423–434, New York, NY, USA, 2013. Association for Computing
Machinery. doi:10.1145/2499370.2462191.

15 John Kodumal and Alex Aiken. The set constraint/cfl reachability connection in practice.
In Proceedings of the ACM SIGPLAN 2004 Conference on Programming Language Design
and Implementation, pages 207–218, New York, NY, USA, 2004. ACM. doi:10.1145/996893.
996867.

16 Prasanna Kumar K., Amitabha Sanyal, and Amey Karkare. Liveness-based garbage collection
for lazy languages. In Proceedings of the 2016 ACM SIGPLAN International Symposium on
Memory Management, ISMM 2016, page 122–133, New York, NY, USA, 2016. Association for
Computing Machinery. doi:10.1145/2926697.2926698.

17 Ondřej Lhoták and Laurie Hendren. Scaling Java points-to analysis using spark. In Interna-
tional Conference on Compiler Construction, pages 153–169, Berlin, Heidelberg, 2003. Springer
Berlin Heidelberg. doi:10.5555/1765931.1765948.

18 Lian Li, Cristina Cifuentes, and Nathan Keynes. Boosting the performance of flow-sensitive
points-to analysis using value flow. In Proceedings of the 19th ACM SIGSOFT symposium and
the 13th European conference on Foundations of software engineering, pages 343–353, New
York, NY, USA, 2011. Association for Computing Machinery. doi:10.1145/2025113.2025160.

19 Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. Precision-guided context sensitivity
for pointer analysis. Proceedings of the ACM on Programming Languages, 2(OOPSLA):1–29,
2018. doi:10.1145/3276511.

20 Yue Li, Tian Tan, Yifei Zhang, and Jingling Xue. Program tailoring: Slicing by sequential
criteria. In 30th European Conference on Object-Oriented Programming, pages 15:1–15:27,
Dagstuhl, Germany, 2016. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/
LIPIcs.ECOOP.2016.15.

21 Jingbo Lu, Dongjie He, and Jingling Xue. Eagle: CFL-reachability-based precision-preserving
acceleration of object-sensitive pointer analysis with partial context sensitivity. ACM Transac-
tions on Software Engineering and Methodology, 2021. To appear.

22 Jingbo Lu and Jingling Xue. Precision-preserving yet fast object-sensitive pointer analysis with
partial context sensitivity. Proceedings of the ACM on Programming Languages, 3(OOPSLA):1–
29, 2019. doi:10.1145/3360574.

23 Ana Milanova, Atanas Rountev, and Barbara G Ryder. Parameterized object sensitivity for
points-to analysis for Java. ACM Transactions on Software Engineering and Methodology,
14(1):1–41, 2005. doi:10.1145/1044834.1044835.

24 Mehryar Mohri and Mark-Jan Nederhof. Regular approximation of context-free grammars
through transformation. In Jean-Claude Junqua and Gertjan van Noord, editors, Robustness
in Language and Speech Technology, pages 153–163. Springer Netherlands, Dordrecht, 2001.
doi:10.1007/978-94-015-9719-7_6.

25 Mayur Naik, Alex Aiken, and John Whaley. Effective static race detection for Java. In
Proceedings of the 27th ACM SIGPLAN Conference on Programming Language Design and

ECOOP 2021

https://doi.org/10.1145/3238147.3238185
https://doi.org/10.1145/3276510
https://doi.org/10.1145/3133924
https://doi.org/10.1145/2499370.2462191
https://doi.org/10.1145/996893.996867
https://doi.org/10.1145/996893.996867
https://doi.org/10.1145/2926697.2926698
https://doi.org/10.5555/1765931.1765948
https://doi.org/10.1145/2025113.2025160
https://doi.org/10.1145/3276511
https://doi.org/10.4230/LIPIcs.ECOOP.2016.15
https://doi.org/10.4230/LIPIcs.ECOOP.2016.15
https://doi.org/10.1145/3360574
https://doi.org/10.1145/1044834.1044835
https://doi.org/10.1007/978-94-015-9719-7_6

16:30 Accelerating Object-Sensitive Pointer Analysis

Implementation, pages 308–319, New York, NY, USA, 2006. Association for Computing
Machinery. doi:10.1145/1133255.1134018.

26 Thomas Reps. Program analysis via graph reachability. Information and software technology,
40(11-12):701–726, 1998. doi:10.1016/S0950-5849(98)00093-7.

27 Thomas Reps. Undecidability of context-sensitive data-dependence analysis. ACM Transactions
on Programming Languages and Systems, 22(1):162–186, 2000. doi:10.1145/345099.345137.

28 Lei Shang, Xinwei Xie, and Jingling Xue. On-demand dynamic summary-based points-
to analysis. In Proceedings of the Tenth International Symposium on Code Generation and
Optimization, pages 264–274, New York, NY, USA, 2012. Association for Computing Machinery.
doi:10.1145/2259016.2259050.

29 Micha Sharir and Amir Pnueli. Two approaches to interprocedural data flow analysis. New
York University. Courant Institute of Mathematical Sciences , 1978.

30 Yannis Smaragdakis. Doop-framework for Java pointer and taint analysis (using p/taint),
2021. URL: https://bitbucket.org/yanniss/doop/.

31 Yannis Smaragdakis, Martin Bravenboer, and Ondrej Lhoták. Pick your contexts well:
understanding object-sensitivity. In Proceedings of the 38th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pages 17–30, New York, NY, USA, 2011.
Association for Computing Machinery. doi:10.1145/1925844.1926390.

32 Yannis Smaragdakis, George Kastrinis, and George Balatsouras. Introspective analysis:
context-sensitivity, across the board. In Proceedings of the 35th ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 485–495, New York, NY, USA,
2014. Association for Computing Machinery. doi:10.1145/2594291.2594320.

33 Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric Bodden. Boomerang: Demand-
driven flow-and context-sensitive pointer analysis for Java. In 30th European Conference on
Object-Oriented Programming, pages 22:1–22:26, Dagstuhl, Germany, 2016. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ECOOP.2016.22.

34 Manu Sridharan and Rastislav Bodík. Refinement-based context-sensitive points-to analysis for
Java. In Proceedings of the 27th ACM SIGPLAN Conference on Programming Language Design
and Implementation, page 387–400, New York, NY, USA, 2006. Association for Computing
Machinery. doi:10.1145/1133255.1134027.

35 Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J Fink, and Eran Yahav. Alias
analysis for object-oriented programs. In Aliasing in Object-Oriented Programming. Types,
Analysis and Verification, pages 196–232. Springer, Berlin, Heidelberg, 2013. doi:10.1007/
978-3-642-36946-9_8.

36 Manu Sridharan, Stephen J Fink, and Rastislav Bodik. Thin slicing. In Proceedings of the
28th ACM SIGPLAN Conference on Programming Language Design and Implementation,
pages 112–122, New York, NY, USA, 2007. Association for Computing Machinery. doi:
10.1145/1250734.1250748.

37 Manu Sridharan, Denis Gopan, Lexin Shan, and Rastislav Bodík. Demand-driven points-to
analysis for Java. In Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, page 59–76, New York, NY,
USA, 2005. Association for Computing Machinery. doi:10.1145/1103845.1094817.

38 Yulei Sui and Jingling Xue. On-demand strong update analysis via value-flow refinement.
In Proceedings of the 2016 24th ACM SIGSOFT international symposium on foundations of
software engineering, pages 460–473, New York, NY, USA, 2016. Association for Computing
Machinery. doi:10.1145/2950290.2950296.

39 T. Tan, Y. Li and J. Xue. Efficient and precise points-to analysis: modeling the heap by
merging equivalent automata. In Proceedings of the 38th ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 278–291, New York, NY, USA,
2017. Association for Computing Machinery. doi:10.1145/3140587.3062360.

https://doi.org/10.1145/1133255.1134018
https://doi.org/10.1016/S0950-5849(98)00093-7
https://doi.org/10.1145/345099.345137
https://doi.org/10.1145/2259016.2259050
https://bitbucket.org/yanniss/doop/
https://doi.org/10.1145/1925844.1926390
https://doi.org/10.1145/2594291.2594320
https://doi.org/10.4230/LIPIcs.ECOOP.2016.22
https://doi.org/10.1145/1133255.1134027
https://doi.org/10.1007/978-3-642-36946-9_8
https://doi.org/10.1007/978-3-642-36946-9_8
https://doi.org/10.1145/1250734.1250748
https://doi.org/10.1145/1250734.1250748
https://doi.org/10.1145/1103845.1094817
https://doi.org/10.1145/2950290.2950296
https://doi.org/10.1145/3140587.3062360

D. He, J. Lu, Y. Gao, and J. Xue 16:31

40 Tian Tan, Yue Li, and Jingling Xue. Making k-object-sensitive pointer analysis more precise
with still k-limiting. In International Static Analysis Symposium, pages 489–510, Berlin,
Heidelberg, 2016. Springer Berlin Heidelberg. doi:10.1007/978-3-662-53413-7_24.

41 Rei Thiessen and Ondřej Lhoták. Context transformations for pointer analysis. In Proceedings
of the 38th ACM SIGPLAN Conference on Programming Language Design and Implementation,
page 263–277, New York, NY, USA, 2017. Association for Computing Machinery. doi:
10.1145/3140587.3062359.

42 Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and Vijay
Sundaresan. Soot: A Java bytecode optimization framework. In CASCON First Decade High
Impact Papers, pages 214–224. IBM Corp., USA, 2010. doi:10.5555/781995.782008.

43 Shiyi Wei and Barbara G Ryder. Adaptive context-sensitive analysis for JavaScript. In 29th
European Conference on Object-Oriented Programming, pages 712–734, Dagstuhl, Germany,
2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ECOOP.2015.
712.

44 John Whaley and Monica S Lam. Cloning-based context-sensitive pointer alias analysis
using binary decision diagrams. In Proceedings of the ACM SIGPLAN 2004 conference on
Programming language design and implementation, pages 131–144, New York, NY, USA, 2004.
Association for Computing Machinery. doi:10.1145/996841.996859.

45 Dacong Yan, Guoqing Xu, and Atanas Rountev. Demand-driven context-sensitive alias
analysis for Java. In Proceedings of the 2011 International Symposium on Software Testing and
Analysis, pages 155–165, New York, NY, USA, 2011. Association for Computing Machinery.
doi:10.1145/2001420.2001440.

ECOOP 2021

https://doi.org/10.1007/978-3-662-53413-7_24
https://doi.org/10.1145/3140587.3062359
https://doi.org/10.1145/3140587.3062359
https://doi.org/10.5555/781995.782008
https://doi.org/10.4230/LIPIcs.ECOOP.2015.712
https://doi.org/10.4230/LIPIcs.ECOOP.2015.712
https://doi.org/10.1145/996841.996859
https://doi.org/10.1145/2001420.2001440

	1 Introduction
	2 Motivation
	2.1 Background
	2.2 Challenges
	2.3 Example
	2.4 Our Approach
	2.4.1 Object Containment
	2.4.2 Object Reachability

	3 Preliminaries
	3.1 A Simplified Object-Oriented Language
	3.2 Selective Object-Sensitive Pointer Analysis

	4 Turner: Our Approach
	4.1 Object Containment
	4.2 Object Reachability
	4.2.1 Standard CFL-Reachability-based Pointer Analysis
	4.2.2 Turner's Context-Sensitivity-Deciding Reachability Analysis

	4.3 Time Complexity

	5 Evaluation
	5.1 RQ1: Precision
	5.2 RQ2: Efficiency
	5.3 RQ3: Effectiveness

	6 Related Work
	7 Conclusion

