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Abstract
The occurrences of bugs are not isolated events, rather they may interact, affect each other, and
trigger other latent bugs. Identifying and understanding bug correlations could help developers
localize bug origins, predict potential bugs, and design better architectures of software artifacts to
prevent bug affection. Many studies in the defect prediction and fault localization literature implied
the dependence and interactions between multiple bugs, but few of them explicitly investigate the
correlations of bugs across time steps and how bugs affect each other. In this paper, we perform
social network analysis on the temporal correlations between bugs across time steps on software
artifact ties, i.e., software graphs. Adopted from the correlation analysis methodology in social
networks, we construct software graphs of three artifact ties such as function calls and type hierarchy
and then perform longitudinal logistic regressions of time-lag bug correlations on these graphs. Our
experiments on four open-source projects suggest that bugs can propagate as observed on certain
artifact tie graphs. Based on our findings, we propose a hybrid artifact tie graph, a synthesis of a
few well-known software graphs, that exhibits a higher degree of bug propagation. Our findings shed
light on research for better bug prediction and localization models and help developers to perform
maintenance actions to prevent consequential bugs.
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1 Introduction

Software bugs are not isolated [30, 62], rather they may interact, affect each other, and trigger
consequential bugs over certain software artifacts [38, 54, 56]. Identifying and understanding
bug correlations could help developers localize bug origins, predict future bugs, and design
better architectures to prevent bug propagation. Therefore, the study of bug propagation is
of tremendous importance from both analysis and design points of view.

There has been much work on bug co-occurrence and localities, indirectly implying the
propagation of bugs [24, 30, 48]. For example, Kim et al. [30] found that bugs do not occur in
isolation, but rather in bursts of several related bugs. Zimmermann et al. [62, 63] investigate
bug correlations over software dependency graphs and utilize the correlation effect for defect
prediction. While these studies have shown the evidence of spatial correlation among bugs,
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they do not investigate the existence of bug correlation across time steps. There are many
unanswered questions about temporal correlations among the bugs. More specifically: 1) Do
software bugs propagate over time? 2) How do they propagate? and 3) Why do
they propagate?

In this paper, we investigate the temporal (a.k.a., time-lag) correlations among software
bugs along with software evolution. We adopt the correlation analysis methodology from
social science, which has shown effectiveness in identifying propagation of social phenomena
(such as obesity and suicide) [12, 19]. Like in social network analysis [12], we define temporal
correlation as the correlation between bugs across time steps.

In social science, corrections of social phenomena depends on social ties such as parents,
relatives and friends. These social ties are usually represented as graphs (i.e., friend graph,
neighbor graph, and sibling graph) [12, 50, 51]. Researchers then perform correlation analysis
on these graphs [19, 12] to analyze the temporal correlation phenomenon. Choosing different
graphs may lead to different findings. For example, obesity propagates more significantly on
friend graphs than on sibling graphs [12]. Similar to social ties, there are also a various kinds
of ties among software modules such as dependencies [41, 62, 63], collaborations [25, 45], and
interactions [45]. We call such ties software ties which can be modeled by software graphs.
For example, Zimmermann [62, 63] has built the dependency graph which characterizes data
and call dependence between software artifacts and shows effectiveness in defect prediction.
Pinzger et al. [45] proposed the developer-module network which models the relationships
between developers and their contributions.

To explore the temporal correlation of software bugs on different software ties, we build
graphs of three known artifact ties from the literature such as function calls [7], module
inheritance [22], and file co-change [14, 24]. Nodes in each graph stand for source code
files, while edges refer to software ties such as calling, inheritance, and co-change (CC)
relationships. We build software tie graphs for four open-source projects (HTTPClient,
Jackrabbit, Lucene, and Rhino) and then perform the longitudinal logistic regression [12] on
the bug and metric statistics on these graphs. We measure the temporal correlation among
bugs using the coefficients of the longitudinal logistic regression (LRC) and compare the
results with well-recognized propagation phenomena such as obesity [12] and happiness [19].

Our experimental results show that there are significant temporal correlations among
bugs through the three basic software ties. The logistic regression coefficients (LRC) of the
three basic graphs are 0.19, 0.32 and 0.39, respectively, showing far more compelling results
than the random graph (LRC=0) and are generally more significant than social events such
as happiness (LRC=0.12) and obesity (LRC=0.28) [12, 19]. This answers our questions
raised in the beginning: bugs can propagate along with software evolution, through
common software ties, and the propagation can be significant. Having had more
buggy neighbors among these ties in the past increases the likelihood of being buggy in the
near future.

Based on the experimental results, we propose a hybrid graph (tie) which synthesizes
basic graphs by merging and selecting their edges according to their temporal correlation.
The proposed hybrid graph exhibits a higher degree of temporal correlation than basic graphs,
with an average LRC of 0.66, which is greater than the values of basic graphs. That means,
the hybrid graph provides a more efficient way for identifying temporal correlations among
bugs.

The properties of temporal bug correlation have many benefits for developers. For
example, using the correlation property, developers can link related bug reports, predict
potential consequential bugs, and perform maintenance actions to prevent bug propagation.
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Developers can also improve the quality of software by designing better artifact structures
which have less bug correlation. The software ties between temporal correlated bugs can
facilitate the localizing of correlated bugs and the understanding of their root causes.

Overall, our study makes the following contributions:
We evaluate the temporal correlation of software bugs on three software ties (graphs),
and show that software bugs are indeed temporally correlated over the ties. To our best
knowledge, it is the first work that investigates the phenomenon of temporal correlation
among software bugs.
We design a hybrid graph and show that the graph highlights the bug correlation effects
more significantly.
We discuss reasons to the temporal bug correlations and suggest possible applications of
our findings.

The rest of this paper is organized as follows. Section 2 discusses the background.
Section 4 presents the common setup for bug correlation analysis. Section 5 presents the
results for basic graphs, hybrid graph as well as the reasons of temporal bug correlation,
followed by discussions in Section 6. Section 7 presents the related work, and Section 8
concludes the paper.

2 Background

This section introduces the background of temporal correlation analysis including the concepts,
measures, and applications.

2.1 Temporal Correlation Analysis in Social Science
The temporal correlation analysis aims at identifying the consequential occurrence of a
phenomenon in social science [12, 4]. For example, Christakis and Fowler [12] found that
obesity can be “contagious” among various social ties such as friends and siblings. They
evaluated the spread of the body-mass index in a densely interconnected social network of
12,067 people throughout a 32 year period and found weight gain in one person was associated
with weight gain in his or her friends, siblings, spouses, and neighbors. Being overweight is
also identified to be correlated among friends in schools [53]. Researchers estimated peer
effects for adolescent weight using data from the National Longitudinal Study of Adolescent
Health, and found that mean peer weight is correlated with adolescent weight especially
among females.

Correlation analysis has also shown to be effective in studying online social networks such
as Facebook, MySpace and Flickr [51]. For example, Anagnostopoulos et al. [4] identified
social influence by investigating correlations between individuals in an online social network,
and proposed measures to assess the correlations. Chenhao [50] measured the individual
influence among online friends. They designed a social action tracking algorithm to assess
the quantitative values of influence and utilized them to help predict users’ future actions.
Kempe [29] considered temporal correlation as a way to choose the most influential sets that
can maximize the spread of information.

2.2 Modeling Ties Using Graphs
Graphs, as desirable models to capture ties, are widely used for temporal correlation ana-
lysis [12, 50, 51]. We list several graphs used in different research areas in Table 1. In online
social networks such as Flickr, users are denoted as nodes while ties such as friendships and
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11:4 Do Bugs Propagate?

Table 1 Graphs models for correlation studies in other areas.

Area Graph Node Edge Weight
social science [12] obesity individual friend –
social science [19] happiness individual friend –
data mining [4] Flickr user friend influence

corporations are represented as edges [4]. In the social science literature, subject persons are
denoted as nodes (egos and alters), while social ties such as friends, spouses, and siblings are
represented as edges.

Identifying appropriate ties is critical in temporal correlation analysis. Different social
ties correspond to different graphs and show different degrees of correlation, affecting the
results of correlation analysis. For example, obesity exists in friend graphs but not in
neighbor graphs [12]. Happiness is temporally correlated among neighbors but not among
co-workers [19].

2.3 Measuring Propagation
Most propagation studies identify the propagation of a behavior by measuring temporal
correlations between neighbors and egos in the tie graph. Intuitively, if a behavior propagates
from one node to another, then the neighbor (the affected node) can also influence the ego
(the source node). In that sense, the behavior occurrence between the neighbor and the
ego can have a high correlation [4, 6]. In other words, propagation exists only if there exist
correlations among egos and neighbors.

Such temporal correlation can be identified using the longitudinal logistic regression
(LLR) [9, 12]. The LLR is a logistic regression model for longitudinal data (i.e., data that
tracks the same subjects at multiple points in time). It assumes that the ego’s behavior
status at any given time t is a function of various attributes, including intrinsic features of
the ego (e.g., age, sex and education level), any previous behavior of the ego at time t−1 and
neighbors’ disease status at times t−1 and t. Let nt−1 denote the number of neighbors that
are affected at time t−1, yt denote the ego’s affection status (1=affected, 0=otherwise) at
current time t, and xt

i (i=1...N) denote the ego’s intrinsic metrics at time t. The probability
that the ego is affected at present p(yt) can be estimated as:

ln( p(yt)
1 − p(yt) ) = αnt−1 + β0 + β1xt

1 + ... + βN xt
N (1)

where yt stands for the dependent variable; nt−1 and all xt’s are independent variables. α

and β represent the regression coefficients for each independent variable [4].
The longitudinal regression model is commonly solved by the generalized estimating

equation (GEE) [34, 46] which accounts for multiple observations of the same ego across
examinations and across ego-neighbor pairs. By running GEE on the LLR model, we obtain
the coefficients (e.g., α, β) for Equation 1. The temporal correlation is usually measured
by the first coefficient α which indicates the correlation between yt and nt−1 in Equation 1.
We denote α as LRC (logistic regression coefficient) [9, 12]. The higher the LRC, the more
significant correlation between the two variables. LRC is a widely used measure for temporal
correlations between social behaviors [19]. For example, happiness is shown to propagate
among social ties with an LRC of 0.12 [19], while obesity among social ties shows an LRC of
0.28 [12]. In a random network where behaviors are independently generated, the average
LRC is expected to be 0.
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Table 2 Overview of software tie graphs.

Graph Node Edge Weight
function call graph source files function call # call sites
type hierarchy graph source files inheritance –
co-change graph source files co-change # co-changes

It is worth noting that in some areas, having correlations between behaviors does not
necessarily indicate the existence of propagation [12]. The correlations could come from
homophily or confounding factors (i.e., two nodes share the same characteristics) [4, 6, 12].
For example, in the obesity studies, people may tend to make friends with others who have
the similar weights. This suggests the need to distinguish the homophily and confounding
factors from correlations according to different scenarios. One commonly used method to
address this issue is the edge-reversal test [4, 12]. This test first reverses the direction of all
edges and then run the longitudinal regression on the reversed graph. Since the homophily
and confounding factors are only based on the fact that two nodes often share the same
characteristics. These factors must be independent of the two individuals’ identification of the
other as a neighbor. Therefore reversing the edges will not change the behavior correlation
estimate significantly [4]. In other words, if correlations change significantly by reversing the
graph, we can exclude the homophily and confounding factors.

3 Study Methodologies

This section presents our study methodologies for identifying the temporal correlations among
bugs. We first introduce the software tie graphs where temporal correlations are dependent
on, followed by the measurement of temporal correlations.

3.1 Software Tie Graphs
Similar to common social ties such as friends, siblings, and spouses (Section 2.2), software
artifacts also have a various kinds of ties such as dependencies [41, 62, 63], collaborations [25,
45], and interactions [45]. Graphs, as effective models of social ties, are also widely used
to represent software artifacts’ ties. For example, Zimmermann et al. [62, 63] represented
dependencies between software binaries by introducing the dependency graph. They further
observed a substantial correlation between central binaries and defects on the graph. Pinzger
et al. [45] leveraged graphs to model developer-modules and found correlations between
centrality measures of developer-module networks and failure-prone modules.

We define a tie graph as a directed graph G = (V, E, w) where V denotes the set of
nodes (source files), E ⊆ V × V is the set of edges (artifact ties), and w : E → R represent
the weighting function for each edge. We select three software artifact ties according to
well-known defect factors in the software engineering literature [15, 21, 32, 36, 45, 62, 63], and
build three corresponding graphs: function call graph, type hierarchy graph, and co-change
graph. An overview of all software artifact tie graphs is presented in Table 2.

3.1.1 Function Call Graph
The function call graph models the caller-callee relationship between artifacts. Intuitively,
bugs from the callee could affect the caller since the caller reuse its codes directly. If a
function in file A calls another function in file B, A and B are represented as two nodes in
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11:6 Do Bugs Propagate?

the graph, and a directed edge from node A to node B is added. The weight of each edge is
the number of call sites between nodes.

Figure 1 (a) and (c) illustrate an example of call graph. The class Signature has a function
sampleMethod which calls a function in object of another class JavaTextLabelProvider. Then,
there are two nodes Signature.java and JavaTextLabelProvider.java in the call graph and
an edge from node Signature.java to the node JavaTextLabelProvider.java. The weights
(numbers in the edges) indicate the total numbers of call sites from a file to another file.

3.1.2 Type Hierarchy Graph
The type hierarchy graph captures the inherit relationships among entities. Type hierarchy
indicates the inheritances and implementations among classes. It is not only an important
representation of software design, but also reveals substantial dependencies among artifacts.
Nodes in type hierarchy graphs also stand for files. If a class in file A extends a class in
file B, a directed edge from A to B is added. The weight of each edge is 1 since there is no
multiple inheritances between nodes. Figure 1 (a) and (d) show an example of type hierarchy
graph. The class Signature extends another class AbstractSignature. Then, there are two
nodes Signature.java and AbstractSignature.java in the hierarchy graph and an edge from
node Signature.java to the node AbstractSignature.java.

3.1.3 Co-Change Graph
We also use co-change graphs to capture the co-change relationships among files. Files that
were changed together have implicit couplings [14, 24]. Co-changed files could have relevant
functionality, or be maintained by the same developer. In a co-change graph, nodes stand for
source files. If two files were changed at the same time, an edge weighted with co-changed
times will be connected to both files.

Figure 1 (b) and (e) illustrate an example of co-change graph. The file Signature.java
was changed together with the file SourceMapper.java, therefore, there is an undirected edge
from node Signature.java to node SourceMapper.java. The weights (numbers in the edges)
indicate the total numbers of changes that two files were changed together.

3.2 Measuring Temporal Bug Correlations
We follow the longitudinal logistic regression methodology introduced in Section 3, and
measure bug propagation by estimating the time-lag bug correlations between neighbors and
egos across each consecutive pair of examination points (i.e., time t-1 and t). Specifically, we
perform longitudinal logistic regressions (LLR) (Section 3) on the bug occurrence data and
measure the time-lag bug correlations using the regression coefficient (LRC) (Section 2.3).
Let yt = {yt

l }N
l=1 denote the status of bug for N data instances at examination point t where

yt
l ∈{1, 0} (1=buggy, 0=clean). Let xt = {xt

l}N
l=1 denote the corresponding independent

variables, where xt
l = {xt

1l, xt
2l, ..., xt

Ml} ∈ RM is a collection of common metrics that affect
the presence of bugs such as lines of codes (LOC) and cyclomatic complexity (CYC) for
instance l at examination point t. Let nt = {nt

l}N
l=1 denote the number of buggy neighbors

for each instance l at examination point t. The LLR model fits a logistic regression form [4]:

p(yt
l = 1) = eαnt−1

l
+β0+β1xt

1l+...+βM xt
Ml

1 + eαnt−1
l

+β0+β1xt
1l

+...+βM xt
Ml

(2)

where yt
l represents the dependent variable, nt−1

l and all xt
l ’s denote independent variables,

and M stands for the number of independent variables for controlling. All independent
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public class Signature extends AbstractSignature{
void sampleMethod(String args[]) {

••••••

JavaTextLabelProvider JLP =
new JavaTextLableProvider();

JLP.invoke();
••••••

}
}

(a) sample source code

<logentry revision=“13807”>
<author>oliviert</author>
<date>2016-06-27T17:21:41.000000Z</date>
<paths>

<path action=“M”>org/…/Signature.java</path>
<path action=“M”>org/…/SourceMapper.java</path>

</paths>
<msg> HEAD – Fix for 148010 </msg>

</logentry>

(b) An elephant

Signature.java

JavaTextLableProvider.java

1
3

5

2

(c) call graph

Signature.java

AbstractSignature.java

(d) hierarchy graph

Signature.java

SourceMapper.java

1
3

5

4

2

(e) co-change graph

Figure 1 Examples of source files and artifact tie graphs.

variables we select are shown in Table 3. We collect source code metrics (i.e., LOC, CYS,
and ESS) using the Understand tool [1] and changing metrics (i.e., NOA and NOC) from the
SVN commit logs.

4 Experimental Setup

This section describes the experimental setup. We first present our research questions. Then,
we introduce the data sets, implementations, as well as baseline graphs.

4.1 Research Questions

We design our experiments to address the following research questions:

RQ1: (Temporal bug correlations on known software ties) Do software bugs
propagate through the known software ties? We build graph models for known
software artifact ties such as call, inheritance, and co-changing. They are commonly used
graphs to capture artifact dependencies [41, 62, 63] and collaborations [25, 45]. We perform
longitudinal logistic regressions to measure the time-lag correlations (Section 2.3) between
artifact ties. Then, we compare the results (LRC) with well-recognized conrrelation
results in other research areas.

RQ2: (Temporal correlations on proposed graph) Do software bugs propagate
across the proposed hybrid graph? Based on the observation of basic graphs, we
propose a hybrid graph which synthesizes basic graphs according to their correlation
properties. We measure bug propagation across the proposed hybrid graph.

RQ3:(Casual mechanisms) What are the reasons of the temporal bug correla-
tion phenomenon? To explain the causal mechanism of such temporal correlations, we
conduct a qualitative analysis in real software development and show a few reasons.

ECOOP 2021
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Table 3 A taxonomy of the independent variables.

metric description rationale

controls

LOC [32] Lines of code Large components are more likely to be
defect-prone [32].

CYC [36] Sum of cyclomatic complex-
ity of all nested functions or
methods

More complex components are likely
more defect-prone [36].

ESS [36] Sum of essential complexity
for all nested functions or
methods

NOA [21] Number of authors Components with many unique authors
likely lack strong ownership, which in
turn may lead to more defects [21].

NOC [21] Number of changes The number of changes to code in
the past was a successful predictor of
faults [21].

yt−1
l Number of defects in prior

examination for instance l.
Defects may linger in components that
were recently defective [21].

test nt−1
l Number of neighbor bugs

previously for instance l

Our hypothesis

Table 4 Summary of subject projects.

dataset HTTPClient JCR Lucene Rhino
time span 2007.4–2011.12 2006.12–2011.12 2010.3–2011.12 1999.4–2012.6
# unique files 281 1134 511 388
# total bugs 576 938 696 302

exam. points
(selected releases) 4.0, 4.0.1, 4.1α2,

4.0.2, 4.1.1, 4.1.2,
4.2α1

1.1.1, 1.2.1, 1.3,
1.3.3, 1.4, 1.4.3,
1.4.6, 1.5, 1.5.5,
1.6, 2.0, 2.1, 2.2,
2.2.5, 2.2.7, 2.3,
2.3.3

3.0.1, 3.0.2, 3.0.3,
3.1, 3.2, 3.3, 3.4,
3.5

1_4r3, 1_5r1,
1_5r2, 1_5r4,
1_5r5, 1_6r1,
1_6r6, 1_7r2,
1_7r3, 1_7r4

4.2 Subjects and Data Collection
We collect bug repositories based on Herzig et al.’s manually verified bug database [23]. We
select four projects1 from their data sets: HTTPClient, Jackrabbit (JCR), Lucene, and
Rhino. They are widely used in the software engineering literature, and more importantly
the data sets have been manually verified [27]. Table 4 shows an overview of these data sets.
They have various project periods (from 2 to 13 years) and different scales and bug densities.
The HTTPClient contains only 281 distinct files with 576 bugs in total while Jackrabbit
contains 1134 files with less than 1000 bugs.

Inspired by the study of obesity propagation [12], we separate the whole evolution of
a project (i.e., all revisions) into different time periods by selecting several revisions as
examination points (t = 1, 2, ..., T , where T is the total number of examination points) (see
Figure 2).

1 For one of the five bug datasets, i.e., Tomcat, the source code of corresponding releases is not available.



X. Gu, Y.-S. Han, S. Kim, and H. Zhang 11:9

time

bugs of t bugs of t+1

changes t changes t+1

examination
point t

examination
point t+1

Figure 2 Illustration of examination points.

To make the examination points more reasonable, we select revisions when a release was
published and includes bug fixes according to the release history. Different releases may have
different purposes. For example, HTTPClient 4.2 is just released for enhancement while
HTTPClient 4.1.3 is for bug fix. We cannot identify bugs during periods that contains no
bug fix assignments. Therefore, in this example, we select as examination point the revision
when release 4.1.3 was published. In order to balance the intervals between examination
points, we also remove examination points that are too close to another (i.e., less than one
month). We list all the selected examination points in Table 4.

At each examination point t, we collect JAR files of the corresponding release and capture
a snapshot call graph and a hierarchy graph based on the JAR files. We generate all call and
hierarchy graphs using the WALA tool (1.4.3) [2] with the default options.

We collect co-change information by parsing the commit history. For each examination
revision t, we collect co-changed files in the previous examination periods (t-1 to t). If two
files were committed at the same time during that period, we connect them with an edge in
the corresponding co-change graphs.

Then, we label files at an examination point t by collecting bugs fixed at interval (t to
t+1). For each bug in a data set, we compare the bug id against the messages in SVN
commit logs to get the link between the bug and its fix revision. Then, we link the bug to
files committed at that revision. For each file at each examination point (at time t) we count
the numbers of fixed bugs during the examination period (t to t+1). If the number is more
than zero, we label the file as buggy.

4.3 Implementation Details
We extract artifact metrics such as LOC and CYC using the Understand code analysis
toolkit [1]. We implemented the LLR model using Matlab. The LLR Model is then estimated
by solving a general estimating equation (GEE) with an equicorrelated working covariance
structure [34]. We perform GEE using the GEEBOX tool [46] in Matlab.

4.4 Comparison
We compare the temporal correlation of software bugs in software ties with widely-accepted
results in other research areas. We first compare the correlation value (LRC) to a randomly
constructed graph where bugs are evenly distributed to the nodes. By mathematical defini-
tion [10], the LRC in a random graph is 0.0. LRC= c (c > 0) means that the log odds of
being buggy at time t increase by c times of the number of buggy neighbors increases at
time t-1. For more references, we also compare bug correlation with correlation results from
the social science literature such as obesity and happiness. Obesity is temporally correlated
with the numbers of opposite sex siblings who are obese (LRC=0.28) [12] and happiness is
temporally correlated with the numbers of neighbors who are happy (LRC=0.12) [19].

ECOOP 2021



11:10 Do Bugs Propagate?

Table 5 Results of time-lag bug correlation (‘.’ stands for results with p-values≥0.05).

graphs dataset independent variables
nt−1

(LRC) yt−1 loc cyc ess noa noc

function
call

HTTP 0.38 . . . . . .
JCR 0.13 0.01 0.01 -0.01 0.01 -0.07 0.20
Lucene 0.10 . 0.00 . 0.01 0.26 .
Rhino 0.16 . 0.01 -0.02 . . 0.08
Avg 0.19 0.01 0.01 -0.02 0.01 0.09 0.14

type
hierarchy

HTTP . . . . . . .
JCR 0.23 0.004 0.01 -0.01 . -0.05 0.17
Lucene 0.41 . . . 0.01 0.27 0.06
Rhino . . 0.004 -0.01 . . 0.07
Avg 0.32 0.004 0.01 -0.01 0.01 0.11 0.1

co-change

HTTP 0.51 . . . . . .
JCR . . 0.004 . . . 0.19
Lucene 0.30 . . . 0.01 0.44 -0.19
Rhino 0.36 -1.56 . . . . .
Avg 0.39 -1.56 0.004 . 0.01 0.44 0

5 Results

This section presents our experimental results addressing the research questions (Section 4.1).

5.1 Bug Correlation on Known Software Ties (RQ1)
Table 5 shows the results of the logistic regression coefficients on known software artifact
ties. Values in each row are the coefficients for different independent variables. We note ‘.’
for the values without statistical significance (p≥0.05), since they are meaningless [13]. The
first column of these coefficients is the LRCs. The bold values indicate LRCs that are higher
than that of the baselines. For example, the LRC for Rhino in the co-change graph is 0.36.
That means, having one more buggy neighbor at time t-1, the ego’s risk (i.e., log odds) of
being buggy at time t is 0.36 much higher.

As the results indicate, the call, hierarchy and co-change graphs have high positive LRCs
in most subjects. The average LRCs for them are 0.19, 0.32, and 0.39, respectively. These
values are much greater than the random graph (0.0) and are comparable to typical social
correlations (obesity 0.28 and happiness 0.12). That means that temporal bug correlation is
present on these graphs.

In summary, our results show that on some known ties (calling, extending and co-changing),
software bugs show evidence of temporal correlation. There are correlations between a bug
in one time period and bugs in the neighbors in the next time period.�

�
�
�

Software bugs are temporally correlated in some known ties such
as call, type hierarchy and co-changes.

5.2 Bug Correlation on Hybrid Tie (RQ2)
As the results in Section 5.1 indicate, different graphs may have different degree of bug
correlation. We were wondering it is possible to synthesize a hybrid graph (software tie)
that exhibits higher degree of correlation. Then, with the proposed hybrid graph, developers
could identify subsequent bugs more efficiently. We propose to build a hybrid graph based
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Table 6 Results for the edge-reversal test (‘-’ stands for results with p-values≥0.05; ‘*’ means
that the result shows a significant change after reversing edges.).

graphs dataset independent variables
nt−1

(LRC) yt−1 loc noc noa ess cyc

function
call

HTTP 0.38 - - - - - -
JCR 0.06(*) 0.01 0.01 0.21 -0.06 0.01 -0.01
Lucene 0.16 0.02 - - 0.26 0.01 -
Rhino -(*) - 0.01 0.08 - - -0.02

type
hierarchy

HTTP - - - - - - -
JCR -(*) 0.004 0.01 0.19 - 0.01 -0.01
Lucene -(*) - - 0.08 0.27 0.01 -
Rhino - - 0.004 0.07 - - -0.01

hybrid

HTTP 0.61(*) - - - - - -
JCR -(*) 0.004 0.01 0.19 - 0.01 -0.01
Lucene -(*) - - - 0.29 0.01 -
Rhino 0.44 -0.5 0.01 0.08 - - -

on bug correlation on basic graphs and evaluate temporal bug correlations on the proposed
graph using approaches in Section 3.2.

5.2.1 Synthesizing Hybrid Correlation Graphs

Similar to the process of machine learning, we split all releases of a project into a training
and a test set. We estimate LRCs for basic graphs in the training set. Then, in the test
set, we synthesize a hybrid graph for each release based on the new basic graphs and their
historical LRCs (i.e., LRCs in the training set).

We use a “greedy expansion” strategy when synthesizing the hybrid graph. We initially
select the “best” graph (with the highest LRC) from basic graphs. Then, we “optimize”
edges in the selected graph as follows: for edges in the “best” graph, if an edge appears in
more than one basic graphs, we keep it in the hybrid graph. For edges in other basic graphs,
if an edge appears in more than one basic graph, and the total LRC of other basic graphs is
greater than that of the selected “best” graph, we add this edge in the hybrid graph as well.

Algorithm 1 illustrates the pipeline of constructing the hybrid graph. In the training
stage, we compute LRCs for basic graphs as described in Section 3. In the test phase, we
initially assign weights to edges in the new basic graphs using their historical LRCs (i.e.,
LRCs in the training set). Then, we merge their edges and add up the corresponding edge
weights. Finally, we remove edges whose weights are no more than the maximum LRC in the
merged graph. The remaining merged graph is then returned as the hybrid graph.

Figure 3 shows an example of the synthesis of hybrid graph. The top three graphs are
basic graphs constructed from a project with historical LRCs of 0.6, 0.1, and 0.3, respectively.
We also assign edge weights as 0.6, 0.1, and 0.3. To synthesize the hybrid graph, we first
merge the edges together and add up the corresponding edge weights. Then, we select edges
from the merged graph (bottom left) whose weights are greater than 0.6 (i.e., 0.7 and 0.9).
Finally, these selected edges as well as the original nodes constitute the hybrid graph (bottom
right).

2 The c, h, and cc are short for call graph, hierarchy graph, and co-change graph, respectively
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Algorithm 1 Constructing hybrid bug correlation graph.

Input:
Basic Graphs, Gi = (Ei, V, wi), (i ∈ {c, h, cc})2

Historical LRCs for basic graphs, LRC(Gi)
Output: Hybrid Graph, G∗ = (E∗, V, w∗)

1: Choose the maximum LRC from all Gi

LRCmax = max
Gi∈{Gc,Gh,Gcc}

LRC(Gi); (3)

2: E∗ = Ec ∪ Eh ∪ Ecc

3: for all (u, v) ∈ E∗ do
4: w∗(u, v) = wc(u, v) + wh(u, v) + wcc(u, v)
5: if w∗(u, v) ≤ LRCmax then
6: E∗ = E∗ \ (u, v)
7: end if
8: end for
9: G∗ = (E∗, V, w∗);

10: return G∗

5.2.2 LRC on The Hybrid Graph

After constructing the hybrid graph for each release, we estimate temporal bug correlations
on the proposed graphs using the same methodology (Section 3.2).

Table 7 shows LRCs for hybrid graphs. For each project, we set the first third of releases
for training and the remaining releases for test. Each row shows LRCs of a specific graph for
different datasets. The last column shows the average LRCs (excluding LRCs with p > 0.05)
for each graph.

As shown in the results, the hybrid graph exhibits much higher LRCs in most subjects
(1.09 in HTTPClient, 0.65 in Lucene, and 0.52 in Rhino). The average LRC for the hybrid
graph is 0.66, much higher than those of call, hierarchy, and co-change graphs (0.18, 0.38
and 0.35, respectively). Table 6 shows the results for edge-reversal test. We reverse all the
edges and present the coefficients again. Each line represents coefficients in terms of different
independent variables. The first column shows the new LRCs for hybrid graph. The results
show that after reversing all the edges, the LRCs change significantly in three out of four
subjects.

The hybrid graph in Jackrabbit shows a maximized yet not improved LRC. We find it
is constituted by the call graph and the hierarchy graph since the co-change graph in this
subject shows no significant bug correlation. Then, since hierarchy graphs are relatively
sparse and may have fewer intersections with call graphs. The resulting hybrid graph can
be very sparse. On the other hand, both the call and the hierarchy graphs represent source
code based dependencies. Their small intersections may have no information gain without
combining other category of graphs such as co-change graphs. These could be the main
reasons for such an outlier.

In summary, the degree of temporal bug correlation is much higher in the proposed hybrid
graph than that in other basic software ties. The results indicate that the proposed hybrid
graph can exhibit bug propagation more effectively.
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Figure 3 Hybrid graph construction.

Table 7 Results of temporal bug correlation in the proposed hybrid graph. The bold numbers
mean higher degree of correlation than basic graphs.

Graph HttpClient JCR Lucene Rhino Avg
call . 0.15 0.13 0.27 0.18
hierarchy . 0.36 0.39 . 0.38
co-change 0.45 . 0.30 0.29 0.35
hybrid 1.09 0.36 0.65 0.52 0.66

�
�

�
�

The proposed hybrid graph provides a synthesized software tie
that exhibits a higher degree of temporal bug correlation.

5.3 Casual Mechanisms behind the Temporal Bug Correlation (RQ3)
In this section, we explain the casual mechanisms behind temporal bug correlation through
case studies.

The most fundamental and challenging question here is why bugs propagate. Bugs seem
to be statically created at different times. How do they correlated between different artifacts?

To explain the causal mechanism of such time-lag correlations, we conduct a qualitative
analysis in real software development. Specifically, we select some real bugs from our data
set and analyze how bugs of one code can “propagate” to another piece of code. According
to the bug reports and issue discussions, we identified three mechanisms for bug correlations.

1) Code Reuse: A possible causal mechanism for the temporal correlation could be the
code reuse [47] (e.g., clone, inheritance, components, template, framework) on dependent
artifacts. Dependent artifacts such as method calling and inheritance have high couplings [17].
They may reuse the codes or logics directly. Therefore, bugs can propagate when an artifact
invokes or extends another piece of code directly. For example, the bug LUCENE-3026
was caused by declaring a variable as short in SegGraph.java. This bug spread to its
offspring BiSegGraph.java which reuses the same code, resulting in bug LUCENE-3049. If
the correlated bug could be detected earlier, there would be no need to report the second
bug again.
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2) Bugfix: Bugfix can be another way to propagate bugs on dependent artifacts [43]. A
bugfix for one piece of code may affect a dependent piece of code which has the same
function and appears to invoke or co-change frequently with the ego [40]. For example,
LUCENE-3505 was caused by BooleanScorer2.freq(). But the fix affected a dependent file
DisjunctionSumScorer.java, leading to LUCENE-4401. In the discussion of LUCENE-4401,
the developer mentioned such causality:

“I committed (also backported to 3.x branch, the bug does not affect any
releases but would have affected unreleased 3.6.2 code, as it was caused by
my previous bugfix: LUCENE-3505).”

The same causality happened in LUCENE-3631 and LUCENE-3855. As the developer
mentioned in their discussion of LUCENE-3855:

“I (accidentally!!) caused this with LUCENE-3631, where we moved writable
deletes from SegmentReader into IndexWriter.”

3) Human Factors: Another explanation of temporal bug correlations could be the developer
interactions among artifacts [55, 18]. Bugs might propagate because the same careless
developer makes the same mistake or clones buggy codes to elsewhere [48, 24]. For example,
both LUCENE-2478 and LUCENE-3446 are bugs of missing NullPointerException checking.
The LUCENE-2478 was found on May, 2010. The developer forgot to check null return of
Filter.getDocIdSet() in the CachingWrapperFilter.java. Later, a similar mistake (LUCENE-
3446) by the same developer was found on Sept, 2011. He did not check null return in the
BooleanFilter.java again. We found both files had been changed together in revision 722174
in 2008. If we could predict the correlated bug and carefully test it in the BooleanFilter.java,
the second bug would not happen.

A more sophisticated empirical study on the percentage of each mechanism could be
added in future work.�

�
�
�

The temporal correlation among software bugs can be caused by
code reuse, bugfix, and human factors.

6 Discussion

6.1 Application of Findings
In this section, we discuss potential applications of temporal bug correlations for practitioners.
Our study and findings can inspire several research directions in the future.

Defect Prediction: Traditional defect prediction techniques usually train a machine
learning classifier with artifact metrics and make predictions by classifying new buggy
instances. As Figure 4 summarizes, traditional defect factors include artifact metrics such
as source code metrics (i.e.,size, complexity), churn, authors [15, 32, 36]. These factors
are related to individual artifacts and are time independent. Besides these traditional
factors, researchers also found that bugs can be time-dependent. In other words, defects
may linger in components that were recently defective [21]. We refer to the latter category
of factor as “dependence”. In this paper, we have identified the third factor – temporal
correlation. This means that neighbor bugs at previous time step may influence ego’s
bug status. The temporal bug correlation and hybrid graph suggest a new factor to
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Figure 4 An illustration of factors to software defects. The three graphs from time 1 to time 3
represent three hybrid graphs in consecutive stages. Each circle stands for an artifact. The bold
arrows represent different defect factors.
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Figure 5 An example of the propagation based defect prediction.

software defect prediction. We can enhance existing defect prediction model by combining
temporal correlation with traditional defect metrics (i.e., LOC, Complexity). Besides
simply adding temporal correlation as a new metric, we can apply the graph neural
network (GNN) [31] to the proposed hybrid graph. GNN is a popular deep learning
model for learning graph representations. As our hybrid graph incorporates significant
information about bug correlations, it can be utilized to help the learning of defect
prediction models. For example, a defect prediction model (Figure 5) could be developed,
which runs the graph neural network on the hybrid graph to learn a correlation-aware
representation for each artifact. The learnt representation, together with traditional
metrics, are taken as input to the classifier for the prediction.
Linking Correlated Bug Reports: Another possible application is to link correlated bug
reports. Identifying related bug reports have been a key issue in software maintenance [20,
49, 42, 42]. Researchers have developed a variety of approaches to retrieve semantically
related bug reports [49, 42]. With the property of temporal bug correlation, developers
can link several inter-related bug reports based on both temporal and semantic correlation
of bugs for efficient and effective fault diagnosis. For example, a series of bugs could be
reported due to temporal correlations, where fixing one can help resolve others. Moreover,
the links may represent other types of relevance such as re-occurrence or co-occurrence
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between two bugs. Recently, researchers have developed methods to predict semantically
linkable Stack Overflow posts [57] and identify linked incident reports for online service
systems [11], which have all confirmed the usefulness of linked knowledge.
Bug Localization. Bug localization is one of the core tasks for software maintenance.
Existing bug localization approaches often consider individual bug reports and identify
buggy modules based on text similarities [33]. Some work also consider the historical
similar bug reports [60], co-change histories [52], and the number of previous bugs [16]. The
results of this research can provide more information, especially the temporal correlation
information, to the existing bug localization work. Such information can help track the
causal paths of bug and pinpoint their root cause, thus facilitating bug localization and
triage.
Architecture Refactoring. The proposed hybrid graph provides a new perspective on
software design and quality management. Developers can avoid temporal bug correlation
in architectural design in order to improve the quality and reliability of software. For
example, they can estimate the temporal correlations and then construct the hybrid
correlation graph using our LLR-based analysis tool. Then, they can adjust design
paradigms (e.g., UML graphs) by removing unnecessary artifact connections that have
edges in the hybrid graph.

6.2 Threats to Validity
As a proof of concept, all projects investigated in our experiments are developed as JAVA
open source projects. Although Java is one of the most popular programming languages, it
might not be representative of commercial projects and projects written in other languages.
However, our study is not limited to a certain language as it is conducted on software graphs
which can be extracted from most languages. Investigating temporal bug correlations in
other languages remains our future work.

Another threat lies in the selection of examination points. We selected examination
points according to the selected releases. In fact, in some data sets, the intervals between
releases vary a lot, leading to graphs that are either too dense or too sparse. We mitigated
the threat by removing releases that are too close to others. Yet the intervals are still not
equal. The selection of releases might affect our experimental results, however although the
examination points are not selected with equal intervals, our results are still valid. This
is because examination intervals for different subjects vary a lot but most of the results
show the same trends. This means that altering the examination points does not change the
results significantly.

7 Related Work

7.1 Bug Distribution and Dependence
Besides our work, there have been other studies that investigate bug distributions and
find similar phenomena of this sort. For instance, Zimmerman et al. [61] analyzed the
relationships between failures and dependent neighborhoods on dependence graphs. They
found that depending on a component that has failures does not have an effect on failures of
the dependent component in VISTA. Andersson [5] investigated how faults in large software
systems are distributed over modules and discovered that the distribution of faults over
modules follows the Pareto principle [28]. Zhang [59] found a Weibull distribution of bugs
across packages in Eclipse system. Murgia et al. [40] represented Java software as artifact tie
graphs and analyze the relationship between graph properties, statistic of software metrics,
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and the distribution of bugs in such graphs. They found that the distribution of bugs across
compliant units exhibits a power-law behavior in their tails, suggesting the spread of bugs in
the software system. Mondal et al. [39] investigated bug propagation through code cloning.
They define clone evolution patterns that reasonably indicate bug propagation through code
cloning and found that up to 33% of the clone fragments that experience bug-fix changes can
contain propagated bugs. Ai et al. [3] proposes a new software network model and analyzes
the relationship between nodes or defects distribution and software network parameters, as
well as high-risk module excavation through a defect density analysis.

Different from these studies, we conduct a deeper investigation on the dynamic view of
software bugs across a wider range of software ties. In particular, we investigate time-lag
bug correlations between software ties, design new ties (graph) exhibiting more severe bug
correlation, and discuss the casual mechanisms behind this phenomenon.

7.2 Software Graphs
Besides our work, graph models have been widely used in empirical software engineering [7,
26, 58] especially for defect prediction [62, 63]. A typical use of graph models is in the
analysis of developers’ social networks [25, 55, 35]. Meneely et al. [37] leverage graphs to
model collaborations among developers. They examine the graph metrics in a developers’
collaboration network to predict failures. Pinzger et al. [45] modeled developer-modules as
graphs. They found correlations between centrality measures of developer-module networks
and failure-prone modules, and used such correlations to predict failures.

Dependency in graphs is also an active research topic. Zimmermann [62, 63] focused on
the software dependency graph which considers interactions between software artifacts. They
introduced both ego networks and global networks, using graphical metrics to enhance the
performance of defect prediction. While most graph-based analysis studied social factors
and program dependency information separately, Bird et al. [8] found that task assignment
and dependency structure interact to influence the quality of the resulting software. Their
prediction method combining social networks with dependency structures was able to predict
failure proneness with better accuracy.

In addition to defect prediction, graphs are also widely used in other domains in Software
Engineering such as the research of software evolution. To better observe the evolution of
very large software systems, Pinzger et al. [44] proposed a visualization approach that can
provide condensed graphical views on source codes and release history data for multiple
releases. Bhattacharya [7] analyze the evolution of software using social network and graph
metrics in several prediction tasks. Both these works made use of the dependence between
software artifacts and leveraged the dependence as one of the metrics for defect prediction.

Despite the successful application of graph models in software engineering, these ap-
proaches often use macro-level graph metrics (e.g., degrees, centralities) directly without
analyzing the defect correlations between graph nodes. Our study differs from these works
by providing a deeper insight into micro-level bug correlation and propagation.

8 Conclusion

In this paper we applied correlation analysis from the social science literature to identify
and measure the propagation of software bugs as a source of temporal correlations between
software artifacts. We first investigated temporal bug correlation on known software ties
such as calls, inheritance and co-changes. We performed longitudinal logistic regressions on
the time-lag correlations between neighboring bugs on different artifact ties. Our empirical
study with data from four open source projects showed that software bugs can be temporally
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correlated among some known software ties. Based on our findings, we synthesize a hybrid
graph (tie) which exhibits a higher degree of bug correlation.

All these findings shed light on new insights to software maintenance. In addition to
metrics of individual artifacts, researchers can consider the factor of temporal bug correlation
when designing the bug localization and prediction models.

In the future, we will investigate temporal bug correlations on more graphs. We will also
apply the temporal bug correlation properties to improve related software engineering tasks
such as defect prediction, correlated bug report linking, and bug localization. In particular,
we will use the graph neural network (GNN) [31] on the proposed hybrid graph to learn the
representation of bug correlations.

Our tool and experimental data described in this paper are available at http://github.
com/bugcorrelation/bugcorrelation.
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