
Accelerating Object-Sensitive Pointer Analysis by
Exploiting Object Containment and Reachability
(Artifact)
Dongjie He #

University of New South Wales, Sydney, Australia

Jingbo Lu #

University of New South Wales, Sydney, Australia

Yaoqing Gao
Huawei, Toronto, Canada

Jingling Xue #

University of New South Wales, Sydney, Australia

Abstract
Object-sensitive pointer analysis for an object-
oriented program can be accelerated if context-
sensitivity can be selectively applied to some
precision-critical variables/objects in the program.
Existing pre-analyses, which are performed to make
such selections, either preserve precision but achieve
limited speedups by reasoning about all the pos-
sible value flows in the program conservatively or
achieve greater speedups but sacrifice precision (of-
ten unduly) by examining only some but not all
the value flows in the program heuristically. In
this paper, we introduce a new approach, named
Turner, that represents a sweet spot between the
two existing ones, as it is designed to enable object-
sensitive pointer analysis to run significantly faster
than the former approach and achieve significantly
better precision than the latter approach. Turner

is simple, lightweight yet effective due to two novel
aspects in its design. First, we exploit a key ob-
servation that some precision-uncritical objects can
be approximated based on the object-containment
relationship pre-established (by applying Ander-
sen’s analysis). This approximation introduces a
small degree yet the only source of imprecision into
Turner. Second, leveraging this initial approxima-
tion, we introduce a simple DFA to reason about
object reachability for a method intra-procedurally
from its entry to its exit along all the possible value
flows established by its statements to finalize its
precision-critical variables/objects identified. We
have validated Turner with an implementation in
Soot against the state of the art using a set of 12
popular Java benchmarks and applications.

2012 ACM Subject Classification Theory of Computation → Program Analysis
Keywords and phrases Object-Sensitive Pointer Analysis, CFL Reachability, Object Containment
Digital Object Identifier 10.4230/DARTS.7.2.12
Acknowledgements We thank the reviewers for their constructive comments. This work is supported by
an ARC DP grant DP180104069 and a UNSW-Huawei research grant (YBN2019105002).

Related Article Dongjie He, Jingbo Lu, Yaoqing Gao, and Jingling Xue, “Accelerating Object-Sensitive
Pointer Analysis by Exploiting Object Containment and Reachability”, in 35th European Conference on
Object-Oriented Programming (ECOOP 2021), LIPIcs, Vol. 194, pp. 16:1–16:31, 2021.
https://doi.org/10.4230/LIPIcs.ECOOP.2021.16

Related Conference 35th European Conference on Object-Oriented Programming (ECOOP 2021), July
12–16, 2021, Aarhus, Denmark (Virtual Conference)

ECOOP
2021Functional V

1.
1

Ar
tif

act
s EvaluatedECOOP
2021

Ar
tif

acts Available

ECOOP
2021

© Dongjie He, Jingbo Lu, Yaoqing Gao, and Jingling Xue;
licensed under Creative Commons License CC-BY 4.0

Dagstuhl Artifacts Series, Vol. 7, Issue 2, Artifact No. 12, pp. 12:1–12:3
Dagstuhl Artifacts Series
Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
Dagstuhl Publishing, Germany

mailto:dongjieh@cse.unsw.edu.au
mailto:jlu@cse.unsw.edu.au
mailto:jingling@cse.unsw.edu.au
https://doi.org/10.4230/DARTS.7.2.12
https://doi.org/10.4230/LIPIcs.ECOOP.2021.16
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/darts
https://www.dagstuhl.de


12:2 Accelerating Object-Sensitive Pointer Analysis (Artifact)

1 Scope

This artifact contains a Java pointer analysis framework which is built on top of a context-
insensitive Anderson’s pointer analysis, Spark [2], and its object-sensitive version developed by
ourselves. We have implemented Turner, Eagle [4] and integrated Zipper’s lattest version
(b83b0381) in this framework.

The artifact could be used to reproduce all figures, tables and raw data used in our paper. It
supports the following claims of the paper: (1) Turner can accelerate kOBJ significantly with
only negligible precision loss. (2) Turner-guided kOBJ is significantly faster than Eagle-guided
kOBJ. (3) Turner-guided kOBJ is significantly precise than Zipper-guided kOBJ. (4) Turner, as
a pre-analysis, is significantly faster than Eagle and Zipper [3] as it runs linearly in terms of the
number of statements in a program.

2 Content

The artifact package includes:
a Docker image, which contains

an executable jar file with Turner, Eagle and Zipper packaged,
benchmarks (including 9 benchmarks from DaCaPo2006 [1] and 3 Java applications),
a Java library (i.e., JRE1.6.0_45),
the scripts for running all experiments and extracting results,
the PDF of the artifact manual, and
the PDF of the paper (i.e., Accelerating Object-Sensitive Pointer Analysis by Exploiting
Object Containment and Reachability).

the PDF of the artifact manual, and
a license file.

3 Getting the artifact

The artifact endorsed by the Artifact Evaluation Committee is available free of charge on the
Dagstuhl Research Online Publication Server (DROPS). In addition, the artifact is also available
at: https://hub.docker.com/r/hdjay2013/turner_artifact.

4 Tested platforms

We have carried out all the experiments on an Intel(R) Xeon(R) CPU E5-2637 3.5GHz machine
with 512GB of RAM. The underline operating system is Ubuntu 20.04. The time budget used for
running each object-sensitive pointer analysis on a program is set as 24 hours.

5 License

The artifact is available under license GPL v3.

6 MD5 sum of the artifact

edbb0b5d6eeefa4a17bdf94d1a83ea99

1 https://github.com/silverbullettt/zipper

https://hub.docker.com/r/hdjay2013/turner_artifact
https://github.com/silverbullettt/zipper


D. He, J. Lu, Y. Gao, and J. Xue 12:3

7 Size of the artifact

0.61 GiB

References
1 Stephen M. Blackburn, Robin Garner, Chris Hoff-

mann, Asjad M. Khang, Kathryn S. McKinley, Ro-
tem Bentzur, Amer Diwan, Daniel Feinberg, Daniel
Frampton, Samuel Z. Guyer, Martin Hirzel, Antony
Hosking, Maria Jump, Han Lee, J. Eliot B. Moss,
Aashish Phansalkar, Darko Stefanović, Thomas
VanDrunen, Daniel von Dincklage, and Ben Wie-
dermann. The DaCapobenchmarks: Java bench-
marking development and analysis. In Proceedings
of the 21st annual ACM SIGPLAN conference on
Object-oriented programming systems, languages,
and applications, pages 169–190, New York, NY,
USA, 2006. Association for Computing Machinery.
doi:10.1145/1167515.1167488.

2 Ondřej Lhoták and Laurie Hendren. Scaling Java
points-to analysis using spark. In International
Conference on Compiler Construction, pages 153–
169, Berlin, Heidelberg, 2003. Springer Berlin
Heidelberg. doi:10.5555/1765931.1765948.

3 Yue Li, Tian Tan, Anders Møller, and Yannis
Smaragdakis. Precision-guided context sensitiv-
ity for pointer analysis. Proceedings of the ACM on
Programming Languages, 2(OOPSLA):1–29, 2018.
doi:10.1145/3276511.

4 Jingbo Lu and Jingling Xue. Precision-preserving
yet fast object-sensitive pointer analysis with par-
tial context sensitivity. Proceedings of the ACM on
Programming Languages, 3(OOPSLA):1–29, 2019.
doi:10.1145/3360574.

DARTS

https://doi.org/10.1145/1167515.1167488
https://doi.org/10.5555/1765931.1765948
https://doi.org/10.1145/3276511
https://doi.org/10.1145/3360574

	1 Scope
	2 Content
	3 Getting the artifact
	4 Tested platforms
	5 License
	6 MD5 sum of the artifact
	7 Size of the artifact

