R-enum: Enumeration of Characteristic Substrings
in BWT-runs Bounded Space

Takaaki Nishimoto &
RIKEN Center for Advanced Intelligence Project, Tokyo, Japan

Yasuo Tabei &
RIKEN Center for Advanced Intelligence Project, Tokyo, Japan

—— Abstract

Enumerating characteristic substrings (e.g., maximal repeats, minimal unique substrings, and
minimal absent words) in a given string has been an important research topic because there are a
wide variety of applications in various areas such as string processing and computational biology.
Although several enumeration algorithms for characteristic substrings have been proposed, they are
not space-efficient in that their space-usage is proportional to the length of an input string. Recently,
the run-length encoded Burrows- Wheeler transform (RLBWT) has attracted increased attention
in string processing, and various algorithms for the RLBWT have been developed. Developing
enumeration algorithms for characteristic substrings with the RLBW'T, however, remains a challenge.
In this paper, we present m-enum (RLBWT-based enumeration), the first enumeration algorithm
for characteristic substrings based on RLBWT. R-enum runs in O(nloglog(n/r)) time and with
O(rlogn) bits of working space for string length n and number r of runs in RLBWT. Here, r is
expected to be significantly smaller than n for highly repetitive strings (i.e., strings with many
repetitions). Experiments using a benchmark dataset of highly repetitive strings show that the
results of r-enum are more space-efficient than the previous results. In addition, we demonstrate the
applicability of r-enum to a huge string by performing experiments on a 300-gigabyte string of 100
human genomes.

2012 ACM Subject Classification Theory of computation — Data compression

Keywords and phrases Enumeration algorithm, Burrows-Wheeler transform, Maximal repeats,
Minimal unique substrings, Minimal absent words

Digital Object ldentifier 10.4230/LIPIcs.CPM.2021.21

Supplementary Material Software (Source Code): https://github.com/TNishimoto/renum
archived at swh:1:dir:cde748£235b355d80783d13b86eaa048b7c965ea

Acknowledgements We thank reviewers for their useful comments.

1 Introduction

Enumerating characteristic substrings (e.g., maximal repeats, minimal unique substrings
and minimal absent words) in a given string has been an important research topic because
there are a wide variety of applications in various areas such as string processing and
computational biology. The usefulness of the enumeration of maximal repeats has been
demonstrated in lossless data compression [20], bioinformatics [6, 23] and string classification
with machine learning models [30, 28]. The enumeration of minimal unique substrings and
minimal absent words has shown practical benefits in bioinformatics [24, 1, 14, 16] and data
compression [18, 19]. There is therefore a strong need to develop scalable algorithms for
enumerating characteristic substrings in a huge string.

The Burrows-Wheeler transform (BWT) [13] is for permutation-based lossless data
compression of a string, and many enumeration algorithms for characteristic substrings
leveraging BWT have been proposed. Okanohara and Tsujii [30] proposed an enumeration
algorithm for maximal repeats that uses BWT and an enhanced suffix array [2]. Since their
? Takaaki Nishimotq and Yasuo Tab.ei;

37 icensed under Creative Commons License CC-BY 4.0
32nd Annual Symposium on Combinatorial Pattern Matching (CPM 2021).
Editors: Pawel Gawrychowski and Tatiana Starikovskaya; Article No. 21; pp. 21:1-21:21

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:takaaki.nishimoto@riken.jp
mailto:yasuo.tabei@riken.jp
https://doi.org/10.4230/LIPIcs.CPM.2021.21
https://github.com/TNishimoto/renum
https://archive.softwareheritage.org/swh:1:dir:cde748f235b355d80783d13b86eaa048b7c965ea;origin=https://github.com/TNishimoto/renum;visit=swh:1:snp:8e8103a298022fd2f15bc0a265edff9995656dec;anchor=swh:1:rev:ecc5606f9a9f067ac295f0e45625918d8da7f681
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2

R-enum: Enumeration of Characteristic Substrings in BWT-runs Bounded Space

algorithm takes linear time to the length n of a string and O(nlogn) working space, applying
it to a huge string is computationally demanding. Beller et al. [12] proposed an enumeration
algorithm for maximal repeats that uses a range distinct query on the BWT of a string in
O(nlogo) time and nlogo + o(nlogo) + O(n) bits of working space for alphabet size o of
a string. Since the working space of their algorithm is linearly proportional to the length
n of a string, a large amount of space is expected to be consumed for huge strings. Along
the same line of research, Belazzougui et al. [9, 7] proposed an algorithm for enumerating
characteristic substrings in O(nlogo) time and nlogo + o(nloga) 4+ O(c? log® n) bits of
working space, which resulted in the space usage being linearly proportional to the string
length. Thus, developing a more space-efficient enumeration algorithm for the characteristic
substrings of a string remains a challenging issue.

Run-length BWT (RLBWT) is a recent, popular lossless data compression, and it is
defined as a run-length compressed BWT for strings. Thus, the compression performance
of RLBWT has been shown to be high, especially for highly repetitive strings (i.e., strings
with many repetitions) such as genomes, version-controlled documents, and source code
repositories. Kempa and Kociumaka [26] showed an upper bound on the size of the RLBWT
by using a measure of repetitiveness. Although several compressed data structures and string
processing algorithms that use RLBWT have also been proposed (e.g., [8, 21, 29, 4, 25]), no
previous algorithms for enumerating characteristic substrings based on RLBWT have been
proposed. Such enumeration algorithms are expected to be much more space-efficient than
existing algorithms for highly repetitive strings.

Contribution. We present the first enumeration algorithm for characteristic substrings
based on RLBWT, which we call r-enum (RLBWT-based enumeration). Following the idea
of the previous works [12, 7], r-enum performs an enumeration by simulating traversals of a
Weiner-link tree (e.g., [9]), which is a trie, each node of which represents a right-maximal
repeat in a string T' of length n. Each characteristic substring in 7' corresponds to a
node in the Weiner-link tree of T'. This is made possible in O(nloglog,,(n/r) + occ) time
and O(rlogn) bits of working space for number r of runs in RLBWT, machine word size
w = O(logn), and number occ of characteristic substrings. For a highly repetitive string
such that r = o(nlogo/logn) holds, r-enum is more space-efficient than the best previous
algorithms taking O(nd) time and |RD| + O(n) bits of space, where |RD)| is the size of a
data structure supporting range distinct queries and computing the LF function in O(d)
time; a pair (|[RD|,d) can be chosen as (|[RD|,d) = (nlogo + o(nlogo),O(logo)) [15] or
(|IRD|,d) = (O(nlogo),0(1)) [9, Lemmas 3.5 and 3.17]. Table 1 summarizes the running
time and working space of state-of-the-art algorithms including those by Okanohara and
Tsujii (OT method) [30], Beller et al. (BBO method) [12], and Belazzougui and Cunial (BC
method) [7] in comparison with our r-enum.

Experiments using a benchmark dataset of highly repetitive strings show that r-enum
is more space-efficient than the previous algorithms. In addition, we demonstrate the
applicability of r-enum to a huge string by performing experiments on a 300-gigabyte string
of 100 human genomes, which has not been shown in the previous work so far.

The outline of this paper is as follows. Section 2 introduces several basic notions, including
the Weiner-link tree. In Section 3, we present a traversal algorithm for the Weiner-link tree
of T in O(rlogn) bits. Section 4 presents r-enum for finding the corresponding nodes to
maximal repeats, minimal unique substrings, and minimal absent words. In Section 5, we
slightly modify r-enum such that it outputs each characteristic substring and its occurrences
in T instead of the corresponding node to the characteristic substring. Section 6 shows the
performance of our method on benchmark datasets of highly repetitive strings.

T. Nishimoto and Y. Tabei

Table 1 Summary of running time and working space of enumeration algorithms for (i) maximal
repeats, (ii) minimal unique substrings (MUSs), and (iii) minimal absent words (MAWSs) for each
method. Last column represents main data structure used in each algorithm. Input of each algorithm
is string T of length n or BWT of T', and each outputted characteristic substring is represented by
pointer with O(logn) bits. We exclude inputs and outputs from working space. In addition, o is
alphabet size of T', w = ©(logn) is machine word size, r is the number of runs in RLBWT of T,
and occ = O(no) [17] is the number of minimal absent words for 7. RD means data structure (i)
supporting range distinct queries in O(d) time per output element and (ii) computing LF function
in O(d) time; |RD]| is its size. We can choose (|RD|,d) = (nlogo 4 o(nlogo),O(logo)) [15] or
(JRD|,d) = (O(nlogoc),0(1)) [9, Lemmas 3.5 and 3.17].

(i) Maximal repeats Running time Working space (bits) Data structures
OT method [30] O(n) O(nlogn) Enhanced suffix array
[9, Theorem 7.8] O(n) O(nlogo) BWT and RD
BBO method [12] O(nd) |RD| + O(n) BWT and RD
BC method [7] O(nd) |RD| + O(c?log?n) BWT and RD
r-enum (this study) H O(nloglog,, (n/r)) ‘ O(rlogn) ‘ RLBWT and RD
(ii) MUSs Running time Working space (bits) | Data structures
[9] O(n) O(nlogo) BWT and RD
BC method [7] O(nd) |RD| + O(c?log? n) BWT and RD
r-enum (this study) H O(nloglog,, (n/r)) ‘ O(rlogn) ‘ RLBWT and RD
(iii) MAWSs Running time Working space (bits) | Data structures
[5] O(n + occ) O(nlogn) Suffix array
[9, Theorem 7.12] O(n + occ) O(nlogo) BWT and RD
BC method [7] O(nd + occ) |RD| + O(c? log® n) BWT and RD
r-enum (this study) H O(nloglog,, (n/r) + occ) ‘ O(rlogn) ‘ RLBWT and RD

2 Preliminaries

Let ¥ = {1,2,...,0} be an ordered alphabet, T be a string of length n over ¥, and |T'| be the
length of T'. Let T[i] be the i-th character of T (i.e., T =T[1],T[2],...,T[n]), and Ti..j] be
the substring of T that begins at position ¢ and ends at position j. For two strings T and P,
T < P means that T is lexicographically smaller than P. Occ(T, P) denotes all the occurrence
positions of P in T, i.e., Oce(T,P) ={i|i € [l,n—|P|+1] s.t. P=T[i..(i +|P|—1)]}. We
assume that (i) the last character of T is a special character $ not occurring in substring
T[l.n —1], (ii) |T'| > 2, and (iii) every character in ¥ occurs at least once in T. For two
integers b and e (b < e), interval [b,e] represents the set {b,b+ 1,...,e}. Let substr(T)
denote the set of all the distinct substrings of T' (i.e., substr(T) = {T[i..j] | 1 <i < j < n}).

In this paper, characteristic substrings of a string consist of maximal repeats, min-
imal unique substrings, and minimal absent words. A maximal repeat in T is defined as
a substring P satisfying two conditions: (i) it occurs at least twice in the string (i.e.,
|Oce(T, P)| > 2), and (ii) either of the left or right extended substrings of it occurs fewer
times than it (i.e., |Occ(T, ¢P)|, |Oce(T, Pc)| < |Oce(T, P)| for any ¢ €). A minimal unique
substring is defined as substring P satisfying two conditions: (i) it occurs just once (i.e.,
|Oce(T, P)| = 1), and (ii) all the proper substrings of it occur at least twice in the string (i.e.,
|Oce(T, P[2..|P|])|, | Oce(T, P[1..|P| —1])| > 2). A minimal absent word is defined as string P
satisfying two conditions: (i) it does not occur in a string (i.e., |Occ(T, P)| = 0), and (ii) all the

21:3

CPM 2021

21:4

R-enum: Enumeration of Characteristic Substrings in BWT-runs Bounded Space

Sorted circular strings
L

i |[SA|LCP|LF |F L
11111 0| 2 [$abaabababa
2110/ 0 | 8 |afabaababab
313 1|9 |ajabababa$ab
4|18 | 1 |10|apaSabaabadb
51|13] 1 |apaabababa$
6| 6|3 |11 |apbaba$abaab
714| 5|3 |apbababaS$aba
89| 0| 4 |bpfabaababa
912 | 2| 5 |baabababala
10 7|2 | 6 |[babaSabaaba
1115 4| 7 |bababaSabda

Figure 1 Suffix array, LCP array, LF function, BWT, and circular strings for T' = abaabababa$.

proper substrings of it occur in the string (i.e., |Oce(T, P[2..|P|])|, |Occ(T, P[1..|P|—1])| > 1).
For convenience, a minimal absent word is sometimes called a substring, although the string
is not a substring of T'.

Our computation model is a unit-cost word RAM with a machine word size of w =
O(log, n) bits. We evaluate the space complexity in terms of the number of machine words.
A bitwise evaluation of the space complexity can be obtained with a multiplicative factor
of logs n. We assume the base-2 logarithm throughout this paper when the base is not
indicated.

2.1 Rank and range distinct queries

Let S C {1,2,...,n} be a set of d integers. A rank query rank(S,4) on S returns the number
of elements no more than ¢ in S, i.e., rank(S,7) = |{j | 7 € S s.t. j < i}|. Reank(S) is a rank
data structure solving a rank query on S in O(loglog,,(n/d)) time and with O(dw) bits of
space [10].

A range distinct query, RD(T,b,e) on a string T returns a set of 3-tuples (¢, pe,qc)
that consists of (i) a distinct character ¢ in T'[b..e], (ii) the first occurrence p. of the
character ¢ for a given interval [b..e] in T, and (iii) the last occurrence g, of the character
¢ for [b..e] in T. Formally, let 3(T'[b..€]) be the set of distinct characters in T'[b..e], i.e.,
X(T[b..e]) = {T[i] | © € [b,e]}. Then, RD(T,b,e) = {(¢,pc,qc) | ¢ € (T[b..€])}, where
pe = min(Occ(T, ¢) N [b,€]), and ¢. = max(Oce(T,c)N[b,e]). Rro(T) is a range distinct data
structure solving a range distinct query on T in O(|RD(T, b, e)| + 1) time and with O(nlog o)
bits of space [11].

2.2 Suffix and longest common prefix arrays

The suffiz array [27] SA of string T is an integer array of size n such that SA[i] stores
the starting position of the i-th suffix of T in lexicographical order. Formally, SA is a
permutation of {1,2,...,n} such that T[SA[1]..n] < --- < T[SA[n]..n]. The longest common
prefiz array (LCP array) LCP of T is an integer array of size n such that LCP[1] = 0 and
LCP[i] stores the length of the LCP of the two suffixes T[SA[:]..n] and T[SA[i — 1]..n] for
i €{2,3,...,n}. We call the values in the suffix and LCP arrays sa-values and lcp-values,
respectively. Moreover, let LF be a function such that (i) SA[LF(¢)] = SA[i] — 1 for any integer
i€ ({1,2,...,n}\ {z}) and (ii) SA[LF(z)] = n, where z is an integer such that SA[z] = 1.
Figure 1 depicts the suffix array, LCP array, and LF function for a string.

T. Nishimoto and Y. Tabei

2.3 BWT and RLBWT

The BWT [13] of string T' is an array L built by permuting 7" as follows; (i) all the n rotations
of T are sorted in lexicographical order, and (ii) L[i] for any ¢ € {1,2,...,n} is the last
character at the i-th rotation in sorted order. Similarly, F[i] for any ¢ € {1,2,...,n} is the
first character at the i-th rotation in sorted order. Formally, let L[i] = T[SA[LF(%)]] and
Fli] = T[SA[]].

Since L[i] and L[j] represent two characters T[SA[i] — 1] and T[SA[j] — 1] for two distinct
integers i,j € {1,2,...,n}, the following relation holds between LF(i) and LF(j); LF(3) <
LF(j) if and only if either of two conditions holds: (i) L[i] < L[j] or (ii) L[i]] = L[j] and
i < j. Let C be an array of size o such that Clc] is the number of occurrences of characters

lexicographically smaller than ¢ € ¥ in string T, i.e., C[c] = [{i | i € [1,n] s.t. T[] < c}|.

The following equation holds by the above relation for the LF function on BWT L: LF(i) =
Clc] + Oce(L[1..4], L[i]). We call the equation LF formula.

The RLBWT of T is the BWT encoded by run-length encoding, i.e., RLBWT is a
partition of L into r substrings L[¢(1)..4(2) — 1], L[¢(2)..£(3) — 1],..., L[f(r)..L(r + 1) — 1]
such that each substring L[¢(7)..4(¢ + 1) — 1] is a maximal repetition of the same character
in L called a run. Formally, let r =1+ |{i | i € {2,3,...,n} s.t. L[i] # L[— 1]}, (1) =1,
lr+1)=n+1l,and £(j) =min{i |t € {€(j — 1)+ 1,4(j —1)+2,...,n} s.t. L[i] # L[i —1]}
for j € {2,3,...,7}. Let Ssarr denote the set of the starting position of each run in L, i.e.,
Sstart = {£(1),4(2),...,4(r)}. RLBWT is represented as r pairs (L[¢(1)], £(1)), (L[£(2)],4(2)),

.+, (L[e(r)], £(r)) using 2rw bits. ¢ < r < n holds since we assume that every character in
Y occurs in T'.

LF(i) = LF(i — 1) + 1 holds for an integer i € {2,3,...,n} by LF formula if ¢ is not the
starting position of a run in L (i.e., ¢ & Sstart). Similarly, LCP[LF(¢)] = 1 4+ LCP[¢] holds if
i g Sstart~

Figure 1 depicts two arrays L and F for string T = abaabababa$. Since the BWT of
T = abaabababa$ is abbb$baaaaa, the RLBWT of the string T is (a, 1), (b,2), ($,5), (b,6),
and (a,7). The red and blue characters a are adjacent in a run on the BWT L. Hence,
LF(8) = LF(7) + 1 holds by LF formula. Similarly, LCP[LF(8)] = LCP[8] + 1 = 1 holds.

2.4 Suffix tree

The suffiz tree [3] of T is a trie storing all the suffixes of T. Each node v represents the
concatenated string on the path from the root of the tree to the node v. Let up denote the
node representing a substring P of T'. The depth of node up is defined as the length of its
string P, i.e., the depth of up is |P|. Let children(P) denote the set of strings represented
by the children of up. Formally, children(P) = {Pc | ¢ € ¥ s.t. Pc € substr(T)}. We call

up an explicit node if it has at least two children; otherwise, we call up an implicit node.
The root u. of the suffix tree is explicit because T' contains at least two distinct characters.

Let L4 be the set of substrings represented by all the explicit nodes with depth d. Formally,
Lq={P| P €substr(T) s.t. |P| =d and |children(P)| > 2}.

The suffiz-tree interval (a.k.a. suffiz-array interval) for a substring P of T is an interval
[b, e] on the suffix array of T" such that SA[b..e] represents all the occurrence positions of P
in string T'; that is, for any integer p € {1,2,...,n}, T[p..p+ |P| — 1] = P holds if and only
if p € {SA[b],SA[b+1],...,SA[e]}. The suffix-tree interval of the empty string ¢ is defined
as [1,n]. Let interval(P) = [b, e] denote the suffix-tree interval for P.

The rich representation [9] repr(P) for P is a 3-tuple (interval(P), {(c1, b1, e1), (ca, b2, e2),

.o, (ck,bk,er)}, |P|). Here, Pcy, Pecs,. .., Pcy are strings represented by the children of

node up, and [b;, e;] = interval(Pc¢;) for i € [1,k].

21:5

CPM 2021

21:6

R-enum: Enumeration of Characteristic Substrings in BWT-runs Bounded Space

i SA i?_ I
111 18 a
210 2| a b
313 30 a b a$ b
4138 4 a b
511 |51 a b ab al$
6|6 6| a b
714 71 a a § a
819 8| b a
912 91 b a ba $|a
10] 7 10| b a
1] 5 11 b |] $ a

Figure 2 Left figure illustrates suffix tree of T = abaabababa$ on sorted suffixes of T. We
represent each node by its suffix-tree interval (rectangles) and omit characters on edges. Yellow and
white rectangles are explicit and implicit nodes, respectively. Right figure illustrates Weiner-link tree
of T' and Weiner links on sorted suffixes of T". Tree consists of yellow rectangles and solid arrows. We
omit characters on Weiner links. Solid and dotted arrows represent Weiner links pointing to explicit
and implicit nodes, respectively. Red rectangles are children of node of aba in suffix tree of T.

Figure 2 illustrates the suffix tree of string T' = abaabababa$ (left figure). The three
sets Lo, L1, Lo are {e},{a},{ba}, respectively. The suffix-tree interval for substring
P = aba is [4,7], and children(P) = {aba$, abaa,abab}. The rich representation for P
is ([4,7],{(8,4,4), (a,5,5),(b,6,7)},3).

2.5 Weiner links and Weiner-link tree

Weiner links are directed links on the suffix tree of T'. Let cP be a substring of T', where ¢
is a character, and P is a string. Then, node u.p is the destination of a Weiner link with
character c starting at node up. Hence, every node up must be the destination of exactly
one Weiner link unless node up is the root of the suffix tree (i.e., P = ¢). Node up is always
explicit if u.p is explicit. This is because the explicit node u.p indicates that T has two
substrings cPc; and cPca, where ¢; and ¢y are distinct characters. Let WLink(P) denote the
set of strings such that the node for each string is the destination of a Weiner link starting
at node up (i.e., WLink(P) = {cP | ¢ € ¥ s.t. ¢P € substr(T)}).

The Weiner-link tree (a.k.a. suffiz-link tree) for T is a graph such that (i) the nodes are
all the explicit nodes in the suffix tree of T" and (ii) the edges are all the Weiner links among
the explicit nodes. Since any explicit node is the destination of a Weiner link starting at
another explicit node, the graph results in a tree. Each child of a node up represents a string
in WLink(P) in the Weiner-link tree.

Let p. and ¢. be the first and last occurrences of a character ¢ on the suffix-tree interval
for a substring P in the BWT L of T, respectively. Then, [LF(p.),LF(g.)] is equal to the
suffix-tree interval of ¢P. Hence, we can compute the suffix-tree intervals for the destinations
of all the Weiner links starting at node up using a range distinct query and LF function.
Formally, let [b, e] = interval(P) for a substring P of T'. Then, the following equation holds:

{interval(cP) | ¢cP € WLink(P)} = {[LF(pc), LF(q.)] | (¢, pe,qe) € RD(L, b, e) s.t. ¢ # $} (1)

Let Qp denote an array of size o for a substring P of T such that Qp[c] stores set
{(d,b,e) | cPc € children(cP) and let [b,e] = interval(cPc’)} for a character ¢ € ¥ if cP
is a substring of T; otherwise, Qp[c] = . The array Qp has three properties for any

T. Nishimoto and Y. Tabei

character ¢ € ¥: (i) ¢P € WLink(P) holds if and only if |Qp[c]| > 1 holds, (ii) node u.p is
explicit if and only if |Qp[c]| = 2 holds, and (iii) Qr[c] = Upwechiigren(p)i(c’sb,€) | EPC €
WLink(Pc') s.t. ¢ = c and let [b,e] = interval(cPc’)} holds. In other words, each child of
node u.p is the destination of a Weiner link starting at a child of node up in the suffix tree.
We can compute the children of a node up in the Weiner-link tree using QQp without
explicitly constructing the Weiner-link tree. Formally, the following lemma holds.

» Lemma 1 (Lemma 4.1 in [9]). Let RD be a data structure supporting a range distinct query
on BWT L in O((1 4+ k)trp) time and computing LF function in O(tLg) time. Here, k is the
number of elements output by the range distinct query. We can compute set) = {repr(cP) |
cP € WLink(P)} using (i) repr(P), (ii) data structure RD, and (iii) an empty array X of
size o. After that, we can divide the set Y into two sets for explicit and implicit nodes. The
computation time and working space are O(h(trp + tLr)) and O((o + h')w) bits, respectively,

where b =3~ b cchitdren(py [WLINK(PC)|, and h' = ZcPEWLink(P)r‘w‘le |children(cP)].

Proof. We compute the outputs with the following three steps. At the first step, we
compute set {interval(cP) | ¢cP € WLink(P)} and convert the empty array X into Qp
using Equation 1 and the third property of @Qp. At the second step, we output the rich
representation repr(cP) = (interval(cP), @plc],|P| + 1) for each ¢P € WLink(P) and divide
the rich representations into two sets for explicit and implicit nodes using the second property
of Qp. At the last step, we remove all the elements from Qp|c] for each ¢P € WLink(P) to
recover X from @Qp. We perform the three steps using range distinct queries to the suffix-tree
intervals for node up and its children, and the intervals stored in repr(P). Hence, the running
time is O(h(trp + tLF)) in total.

Next, we analyze the working space. The rich representation for a node up: takes
O(w) bits if ups is implicit because it has at most one child. Otherwise, repr(P’) takes
O(|children(P")|w) bits. Hence, the working space is O((c + h")w) bits in total. <

Figure 2 illustrates the Weiner-link tree of string T' = abaabababa$ (right figure). Since
T contains two substrings aaba and baba, the node of aba has two Weiner links pointing to
the nodes of aaba and baba, i.e., WLink(aba) = {aaba, baba}. The Weiner-link tree contains
the node of baba but not that of aaba because the former and latter nodes are explicit and
implicit, respectively.

The three suffix-tree intervals for aba, aaba, and baba are [4,7], [3,3], and [10,11],
respectively. A range distinct query on interval(aba) in the BWT of T returns the set
{($,5,5),(a,7,7),(b,4,6)}. Hence, interval(aaba) = [LF(7), LF(7)] and interval(baba) =
[LF(4), LF(6)] hold by Equation 1 (See also red and blue characters on two arrays F' and L
in Figure 2). Figure 2 also illustrates the children of the node of aba in the suffix tree and
Weiner links starting from the children. In this example, Qp[$] = 0, Qp[a] = {(b, 3,3)}, and
Qplb) = {(8,10,10), (b,11,11)}, where P = aba. Hence, the node of aaba has one child, and
the node of baba has two children in the suffix tree.

3 Traversing Weiner-link tree in O(rw) bits of space

In this section, we present a breadth-first traversal algorithm for the Weiner-link tree of T'
in O(rw) bits of working space. The traversal algorithm outputs n sets {repr(P) | P € Lo},
{repr(P) | P € Ly}, ..., {repr(P) | P € L,_1} in left-to-right order. Here, each set
{repr(P) | P € L;} represents the set of the rich representations for all the nodes with depth ¢
in the Weiner-link tree. Hence each node up is represented as its rich representation repr(P).

21:7

CPM 2021

21:8

R-enum: Enumeration of Characteristic Substrings in BWT-runs Bounded Space

3.1 Data structures

Let Dif be an array of size r such that Dy g[i] = LF(¢(3)) for i € {1,2,...,r} and L' =
L{¢(1)], L[6(2)],...,L[(r)]. Our traversal algorithm uses six data structures: (i) the RLBWT
of T (i.e., r pairs (L[£(1)],£(1)), (L[€(2)],4(2)), ..., (L[£(r)],£(r)), which are introduced
in Section 2.3), (ii) the rich representation for the root of the Weiner-link tree of T (i.e.,
repr(e)), (iii) Dir, (iv) Rrank(Sstart), (v) Rro(L'), and (vi) an empty array X of size o, where
Rirank(Sstart) is the rank data structure introduced in Section 2.1, and it is built on the
set Sstarr = {€(1),4(2),...,£(r)} introduced in Section 2.3. Similarly, Rgrp(L’) is the range
distinct data structure introduced in Section 2.1, and it is built on the string L’. The six
data structures require O((r + o)w) bits in total. We construct the six data structures
in O(nloglog,,(n/r)) time and O(rw) bits of working space by processing the RLBWT of
T (see Appendix A).

We use the two data structures Dy g and Ryank(Sstart) to compute LF function. Let x be
the index of a run containing the i-th character of BWT L (i.e., z = rank(Sstart,?)) for an
integer ¢ € {1,2,...,n}. LF(i) = LF({(x)) 4+ |Occ(L[¢(x)..i], L[i])| — 1 holds by LF formula,
and |Oce(T'[4(x)..q], L[i])| = i — £(x) + 1 holds because L[{(z)..i] consists of a repetition of
the i-th character L[i]. Hence, LF(i) = Dig[z] + (i — ¢(x)) holds, and we can compute LF
function in O(loglog,, (n/r)) time using D¢ and Ryank(Sstart)-

We use the fifth data structure Rrp(L’) to compute a range distinct query on the BWT
L of T. Let V' and ¢’ be the indexes of the two runs on L containing two characters
L[b] and Lle], respectively (i.e., b’ = rank(Sstart,) and €’ = rank(Sstart, €)), for an interval
[b,e] C {1,2,...,n}. Then the following relation holds between two sets RD(L,b,e) and
RD(L,¥,¢').

> Lemma 2. RD(L,b, ¢) = {(c;max{¢(p), b}, min{((g + 1) — 1,e}) | (¢,p,q) € RD(L/, I/, ')}
holds.

Proof. L[b..e] consists of ¢’ — b’ + 1 repetitions L[b..0(b' + 1) — 1], L[¢(Y/ + 1)..4(0" 4+ 2) — 1],

.., Lie(e! —1)..4(e") — 1], L[¢(¢)..e]. Hence, the following three statements hold: (i) The
query RD(L/,b',¢’) returns all the distinct characters in L[b..e] (i.e., {L[i] | i € [b,e]} =
{L'[i] | i € [¥,€]}). (ii) Let p be the first occurrence of a character ¢ on [b',¢’] in L’. Then,
the first occurrence of a character ¢ on [b,e] in L is equal to £(p) if £(p) > b; otherwise, the
first occurrence is equal to b. (iii) Similarly, let ¢ be the last occurrence of the character
con [b/,e] in L’. Then, the last occurrence of ¢ on [b,e] in L is equal to £(g + 1) — 1 if
£(q+ 1) — 1 < e; otherwise, the last occurrence is equal to e. We obtain Lemma 2 with the
three statements. |

Lemma 2 indicates that we can solve a range distinct query on L using two rank queries on Sgtart
and a range distinct query on L’. The range distinct query on L takes O(loglog,, (n/r) + k)
time, where k is the number of output elements.

We use the empty array X to compute rich representations using Lemma 1. The algorithm
of Lemma 1 takes O((k + 1) loglog,,(n/r)) time using the six data structures since we can
compute LF function and solve the range distinct query on L in O(loglog, (n/r)) and
O((k + 1)loglog,,(n/r)) time, respectively.

3.2 Algorithm

The basic idea behind our breadth-first traversal is to traverse the Weiner-link tree without
explicitly building the tree in order to reduce the working space. The algorithm computes
nodes sequentially using Lemma 1. Recall that the algorithm of Lemma 1 returns the rich

T. Nishimoto and Y. Tabei

iLCP

Lfofl| & (7] SA[LCP[L
2001 @ & 1 1] 0 [a
3[1]| @ & b 2 10/ 0 |b
411 A A 3].\{«0 311 (b

NG

513 a b 4 N8 1 |b
o3|l T ARAIER
715 a a 7 415 |a
810 b $ 8 910 |a
912 a 9 212 |a
10| 2 b 10 712 |a
11]4][] b 1] 504 |a

Figure 3 Left figure illustrates part of suffix tree of T' = abaabababa$ on sorted suffixes of T. Two
colored integers in array 4 are positions in K5 = {4,5}. Similarly, two colored integers in LCP array
correspond to positions in P2 = {5,6}. Right figure illustrates array i, SA, LCP array, and BWT
L for T = abaabababa$. Red integers in array ¢ are integers in set Ssart = {1,2, 5,6, 7}. Similarly,
underlined integers are integers in set P; = {3,4}.

representations for all the children of a given explicit node up in the Weiner-link tree (i.e., it
returns set {repr(cP) | cP € WLink(P) s.t. cP € L|p|41}). This fact indicates that the set
of the rich representations for all the nodes with a depth ¢t > 1 is equal to the union of the
sets of rich representations obtained by applying Lemma 1 to all the nodes with depth ¢ — 1
in the Weiner-link tree, i.e., {repr(P) | P € L} = Upc,, {repr(cP) | cP € WLink(P)}.

Our algorithm consists of (n—1) steps. At each ¢-th step, the algorithm (i) applies Lemma 1
to each representation in set {repr(P) | P € L;_1}, (ii) outputs set {repr(P) | P € L}, and
(iii) removes the previous set {repr(P) | P € £;_1} from working memory. The algorithm
can traverse the whole Weiner-link tree in breadth-first order because we initially store the
first set {repr(P) | P € Ly} for the first step.

3.3 Analysis

The traversal algorithm requires O(H;_; loglog,,(n/r)) computation time at the t-th step.
Here, H; is the number of Weiner links starting from the children of the explicit nodes with
depth t (L.e., Hi = > pcr, 2 pecchildren(r) IWLINK(Pe)[). The running time is O((3°1_, H)
loglog,,(n/r)) in total. The term), , H; represents the number of Weiner links starting
from the children of all the explicit nodes in the suffix tree. Belazzougui et al. showed
that > ;" o Hy = O(n) holds [9, Observation 1]. Hence our traversal algorithm runs in
O(nloglog,,(n/r)) time.

Next, we analyze the working space of the traversal algorithm. Let I; be the set
of the children of all the explicit nodes with depth ¢ in the suffix tree of T (i.e., K; =
Uper, children(P)). Then, the algorithm requires O((r + o + |[K;—1|+ |[K¢[)w) bits of working
space while executing the ¢-th step. Hence our traversal algorithm requires O((r + o +
max{|ol, |[KC1], - - -, |[Kn|})w)) bits of working space while the algorithm runs.

We introduce a set K} to analyze the term |K;| for an integer ¢. The set K} consists of
the children of all the explicit nodes with depth ¢ except for the last child of each explicit
node, i.e., K = Upc,, {Pc | Pc € children(P) s.t. e’ # e}, where [b,e] = interval(P), and
[0/, €e'] = interval(Pc). |Ki| = |K}| + |L£¢| holds because every explicit node has exactly one
last child. |£:] < |K}| also holds because every explicit node has at least two children in the
suffix tree of T. Hence, we obtain the inequality |K;| < 2|K}].

21:9

CPM 2021

21:10

R-enum: Enumeration of Characteristic Substrings in BWT-runs Bounded Space

We also introduce a set P; for an integer t. The set P, consists of positions with lcp-
value t on the LCP array of T except for the first lep-value LCP[1], i.e., Py = {i | i €
{2,3,...,n} s.t. LCP[i] = ¢}. Let P be the longest common prefix of T[SA[¢ — 1]..n] and
T[SA[i]..n] for position i € Py, i.e., P = T[SA[i]..SA[i] + LCP[i] — 1]. Then node up is explicit,
and two nodes up. and up. are adjacent children of up, where ¢ = T[SA[i — 1] + LCP[i]] and
¢’ = T[SA[i] + LCP[é]]. The two adjacent children up. and up. (Pc < Pc’) of an explicit
node up indicate that LCP[i] = | P| holds, where i is the left boundary of interval(Pc¢’). Hence,
there exists a one-to-one correspondence between P; and K}, and |P;| = |K}| holds. We
obtain the inequality |K;| < 2|P;| by |P;| = |K}| and || < 2|K}.

In Figure 3, the left figure represents a part of a suffix tree. In this example, P3 = {5, 6},
and K5 = {4,5}. Obviously, the two positions 5 and 6 in P3 correspond to the two positions
4 and 5 in K} with the adjacent children of explicit node uqpq, respectively.

Next, we introduce two functions LF, and dist(i) to analyze |P¢|. The first function LF, (%)
returns the position obtained by recursively applying LF function to ¢ x times, i.e., LFy(i) = ¢
and LF; (i) = LF,_1(LF(¢)) for > 1. The second function dist(¢) > 0 returns the smallest
integer such that LFgis(;)(7) is the starting position of a run on L (i.e., LFgist(s)(7) € Sstart)-
Formally, dist(¢) = min{x | x > 0 s.t. LF,(¢) € Sstart}. The following lemma holds.

» Lemma 3. LFgg(;)(7) # LFgist(j)(J) holds for two distinct integers i,j € Py, where t > 0 is
an integer.

Proof. We show that LCP[i] = LCP[LFis(;)(i)] — dist(¢) holds for an integer i € {1,2,...,n}.
Let ¢ be an integer in [0, dist(¢)—1]. Since LF;(7) & Sstart, LCP[LF4(¢)] = LCP[LF;41(2)]—1 holds
by LF formula. The LF formula produces dist(¢) equations LCP[LF(z)] = LCP[LF;(4)] — 1,
LCP[LF;(4)] = LCP[LF2(i)] -1, ..., LCP[LFqist(iy—1(7)] = LCP[LFqis(iy ()] — 1. Hence, LCP[i] =
LCP[LFgist(s)(4)] — dist(i) holds by the dist(i) equations.

Next, we prove Lemma 3. The two integers i and j must be the same if LFg(;)(i) =
LFgist(j)(j) because dist(i) = dist(j) holds by three equations LCP[i] = LCP[j], LCP[i] =
LCP[LFgist(s)(4)] — dist(i), and LCP[j] = LCP[LFgs(;y(j)] — dist(j). The equation i = j
contradicts the fact that ¢ # j. Hence, LFgist(s) (i) # LFqist(j)(j) holds. <

The function LFdist(i)(i) maps the integers in P; into distinct integers in set Sgiary by Lemma 3.
The mapping indicates that |P;| < |Sstart| = r holds for any integer ¢t. In Figure 3, the
right figure represents the mapping between P; = {3,4} and Ssanr = {1,2,5,6,7} on a
BWT. In this example, LF1(3) = 9 & Saart, LF2(3) = 5 € Sstant, LF1(4) = 10 & Setart, and
LF2(4) = 6 € Sstart. Hence, LFgiet(s) (i) maps the two positions 3 and 4 in P; into the two
positions 5 and 6 in Sgart, respectively, which indicates that |P;| < |Sstart| holds.

Finally, we obtain max{|Ko|, |K1],...,|Kn|} < 2r by |K;| < 2|P;| and |P;| < r. Hence,
the working space of our traversal algorithm is O((r + o)w) bits. We obtain the following
theorem using o < r.

» Theorem 4. We can output n sets {repr(P) | P € Lo}, {repr(P) | P € L1}, ..., {repr(P) |
P e L,_1} in left-to-right order in O(nloglog, (n/r)) time and O(rw) bits of working space
by processing the RLBWT of T.

4 Enumeration of characteristic substrings in O(rw) bits of space

In this section, we present r-enum, which enumerates maximal repeats, minimal unique
substrings, and minimal absent words using RLBWT. While the enumeration algorithm
proposed by Belazzougui and Cunial [7] finds nodes corresponding to characteristic substrings
by traversing the Weiner-link tree of T" in a depth-first manner, r-enum adopts the breadth-first
search presented in Section 3. The next theorem holds by assuming o < r.

T. Nishimoto and Y. Tabei

» Theorem 5. R-enum can enumerate (i) mazimal repeats, (%) minimal unique sub-
strings, and (i) minimal absent words for T in O(nloglog,, (n/r)), O(nloglog, (n/r)),
and O(nloglog,,(n/r) + occ) time, respectively, by processing the RLBWT of T with O(rw)
bits of working space, where occ is the number of minimal absent words for T, and occ = O(on)
holds [17]. Here, r-enum outputs rich representation repr(P), pair (interval(P’),|P’|), and
3-tuple (interval(P"),|P"|,c) for a mazimal repeat P, minimal unique substring P’, and
minimal absent word P"c, respectively, where P, P', P" are substrings of T, and c is a
character.

We prove Theorem 5(i) for maximal repeats. R-enum leverages the following relation
between the maximal repeats and nodes in the Weiner-link tree.

» Lemma 6. A substring P of T is a mazimal repeat if and only if P satisfies two condi-
tions: (i) node up is explicit (i.e., P € Lip|), and (ii) rank(Sstart, b) # rank(Sstart, €), where
interval(P) = [b, e].

Proof. |Oce(T, P)| > 2 and |Occ(T, P)| > |Occ(T, Pc)| hold for any character ¢ € ¥ if and
only if node up is explicit. From the definition of BWT, |Occ(T, P)| > |Occ(T, cP)| holds
for any character ¢ € ¥ if and only if L[b..e] contains at least two distinct characters, i.e.,
rank(Sstart, b) # rank(Sstart, €) holds. Hence, Lemma 6 holds. <

R-enum traverses the Weiner-link tree of T', and it verifies whether each explicit node
up represents a maximal repeat using Lemma 6, i.e., it verifies rank(Sstart, b) 7# rank(Sstart, €)
or rank(Sstart; b)) = rank(Sstart, €) using the two rank queries on Sgar. We output its rich
representation repr(P) if P is a maximal repeat. The rich representation repr(P) for up
stores [b, e], and our breadth-first traversal algorithm stores the data structure Ryank(Sstart)
for rank queries on Sgare. Hence, we obtain Theorem 5(i).

Similarly, r-enum can also find the nodes corresponding to minimal unique substrings
and minimal absent words using their properties while traversing the Weiner-link tree. See
Appendixes B and C for the proofs of Theorem 5(ii) and (iii), respectively.

5 Modified enumeration algorithm for original characteristic substrings
and their occurrences

Let output(P) be the element representing a characteristic substring P outputted by r-enum.
In this section, we slightly modify r-enum and provide three additional data structures,
Rgir, Roce, and Rerp, to recover the original string P and its occurrences in T from the
element output(P). The three data structures Rsy, Rocc and Rerp require O(rw) bits of
space and support extract, ertract-sa, and extended range distinct queries, respectively.
An extract query returns string P for a given pair (interval(P),|P]|). An extract-sa query
returns all the occurrences of P in T (i.e., SA[b..e]) for a given pair (interval(P),SAIb]),
where interval(P) = [b,e]. An extended range distinct query eRD(L,b,e,SA[b]) returns
4-tuple (¢, pe, ge, SA[pe]) for each output (¢,pc,q.) € RD(L,b,e) (i.e., eRD(L,b,e,SA[D]) =
{(¢,pes qe;s SA[pe]) | (¢,Dc,qc) € RD(L,b,e)}). We omit the detailed description of the three
data structures because each data structure supports the queries using the well-known
properties of RLBWT. Formally, the following lemma holds.

» Lemma 7. Let k = |eRD(L,b,e,SA[b])|. The three data structures R, Rocc, and Rerp
of O(rw) bits of space can support extract, extract-sa, and extended range distinct queries
in O(|P|loglog,,(n/r)), O((e — b+ 1)loglog,,(n/r)), and O((k + 1)loglog, (n/r)) time,
respectively. We can construct the three data structures in O(nloglog, (n/r)) time and
O(rw) bits of working space by processing the RLBWT of T.

21:11

CPM 2021

21:12

R-enum: Enumeration of Characteristic Substrings in BWT-runs Bounded Space

Table 2 Details of dataset. Table details size in megabytes (MB), string length (n), alphabet
size (¢), number of runs in BWT (7), and number of maximal repeats (m) for each data.

Data name Size [MB] n o r m
einstein.de.txt 93 92,758,441 | 118 101,370 79,469
einstein.en.txt 468 467,626,544 | 140 290,239 352,590
world leaders 47 46,968,181 90 573,487 521,255
influenza 155 154,808,555 16 3,022,822 7,734,058
kernel 258 257,961,616 | 161 2,791,368 1,786,102
cere 461 461,286,644 6 11,574,641 10,006,383
coreutils 205 205,281,778 | 237 4,684,460 2,963,022
Escherichia Coli 113 112,689,515 16 15,044,487 12,011,071
para 429 429,265,758 6 15,636,740 13,067,128
100genome 307,705 | 307,705,110,945 6 | 36,274,924,494 | 52,172,752,566
Proof. See Appendix D. |

We modify r-enum as follows. The modified r-enum outputs pair (repr(P), SA[b]), 3-tuple
(interval(P’), | P’|,SA[b]), and 4-tuple (interval(P"),|P"|,c,SA[b"]) instead of rich representa-
tion repr(P), pair (interval(P’),|P’|), and 3-tuple (interval(P"),|P"|, c), respectively. Here, (i)
P, P’, P"c are a maximal repeat, minimal unique substring, and minimal absent word, respect-
ively, and (ii) b,0’,b" are the left boundaries of interval(P), interval(P’), and interval(P”¢c),
respectively. We replace each range distinct query RD(L,b,e) used by r-enum with the
corresponding extended range distinct query eRD(L, b, e, SA[b]) to compute the sa-values
SA[b], SA[b'], and SA[B”]. See Appendix E for a detailed description of the modified r-enum.
Formally, the following theorem holds.

» Theorem 8. R-enum can also output the sa-values SA[b], SA[V'], and SA[D"] for each
mazimal repeat P, minimal unique substring P’, and minimal absent word P"c, respectively,
using an additional data structure of O(rw) bits of space. Here, b,b', b’ are the left boundaries
of interval(P), interval(P’), and interval(P"¢c), respectively, and the modification does not
increase the running time.

Proof. See Appendix E. <

We compute each characteristic substring and all the occurrences of the substring in 7'
by applying extract and extract-sa queries to the corresponding element outputted by the
modified r-enum. For example, the outputted pair (repr(P),SA[b]) for a maximal repeat P
contains interval(P), | P|, and SA[b]. Hence, we can obtain P by applying an extract query to
pair (interval(P),|P|). Similarly, we can obtain all the occurrences of P in T by applying
an extract-sa query to pair (interval(P),SA[b]). Note that we do not need to compute the
occurrences of minimal absent words in T since the words do not occur in 7.

6 Experiments

We demonstrate the effectiveness of our r-enum for enumerating maximal repeats on a
benchmark dataset of highly repetitive strings in a comparison with the state-of-the-art
enumeration algorithms of the OT [30], BBO [12] and BC [7] methods, which are reviewed
in Section 1. In this experiment, all the methods output suffix-tree intervals for maximal
repeats.

T. Nishimoto and Y. Tabei

Table 3 Peak memory consumption of each method in mega bytes (MB).

Memory (MB)
Data name Size [MB] || r-enum ‘ BBO ‘ BC ‘ oT
einstein.de.txt 93 2 100 | 100 | 1,642
einstein.en.txt 468 4 488 | 488 | 8,278
world leaders 47 5 37 37 832
influenza 155 18 77 73 | 2,741
kernel 258 21 297 | 292 | 4,567
cere 461 86 265 | 224 | 8,166
coreutils 205 32 268 | 237 | 3,634
Escherichia Coli 113 109 116 55 | 1,995
para 429 116 262 | 204 | 7,599

The OT method enumerates maximal repeats using the BWT and enhanced suffix array
of a given string, where the enhanced suffix array consists of suffix and LCP arrays. The OT
method runs in O(n) time and with O(nlogn) bits of working space for T'.

The BBO method traverses the Weiner-link tree of a given string T’ using Lemma 1
and a breadth-first search, and it outputs maximal repeats by processing all the nodes
in the tree. We used the SDSL library [22] for an implementation of the Huffman-based
wavelet tree to support range distinct queries, and we did not implement the technique
of Beller et al. for storing a queue for suffix-tree intervals in n + o(n) bits. Hence, our
implementation of the BBO method takes the BWT of T and runs in O(nlogo) time and
with |[WThue| + O(max{|Kol, |[K1], . .-, |Kn|})w) bits of working space, where (i) |W Thuge| =
O(nlog o) is the size of the Huffman-based wavelet tree, and (ii) Ko, K1, ..., K, are introduced
in Section 3.3. The latter term can be bounded by O(rw) bits by applying the analysis
described in Section 3.3 to their enumeration algorithm.

The BC method also traverses the Weiner-link tree by Lemma 1 and a depth-first search.

The method stores a data structure for range distinct queries and a stack data structure of
size O(0? log® n) bits for the depth-first search. We also used the SDSL library [22] for the
Huffman-based wavelet tree to support range distinct queries. Hence, our implementation of
the BC method runs in O(nlogo) time and with |W Thag| + O(0? log? n) bits of working
space.

We used a benchmark dataset of nine highly repetitive strings in the Pizza & Chili corpus
downloadable from http://pizzachili.dcc.uchile.cl. In addition, we demonstrated the
scalability of r-enum by enumerating maximal repeats on the concatenation of 100 human
genomes (307 gigabytes) built from 1,000 human genomes [33]. Table 2 details our dataset.

We used memory consumption and execution time as evaluation measures for each method.
Since each method takes the BWT of a string as an input and outputs suffix-tree intervals
for maximal repeats, the execution time consists of two parts: (i) the preprocessing time for
constructing data structures built from an input BWT, and (ii) the enumeration time after
the data structures are constructed. We performed all the experiments on 48-core Intel Xeon
Gold 6126 (2.60 GHz) CPU with 2 TB of memory. The source codes used in the experiments
are available at https://github.com/TNishimoto/renum.

21:13

CPM 2021

http://pizzachili.dcc.uchile.cl
https://github.com/TNishimoto/renum

21:14

R-enum: Enumeration of Characteristic Substrings in BWT-runs Bounded Space

Table 4 Execution time of each method in seconds (s).

Execution time (s)
Data name r-enum ‘ BBO ‘ BC ‘ oT
einstein.de.txt 172 84 70 13
einstein.en.txt 856 487 | 387 80
world leaders 97 24 16 10
influenza 267 69 49 30
kernel 559 281 | 178 57
cere 985 277 | 186 | 110
coreutils 445 285 | 179 42
Escherichia Coli 253 68 40 29
para 961 262 | 173 | 102

Table 5 Execution time in hours and peak memory consumption in mega-bytes (MB) of r-enum
on 100genome.

Size [MB] ‘ n/r ‘ Execution time (hours) ‘ Memory (MB)
307,705 | 8.5 | 25 | 319,949

6.1 Experimental results on benchmark dataset

In the experiments on the nine highly repetitive benchmark strings, we ran each method
and with a single thread. Table 3 shows the peak memory consumption of each method.
The BBO and BC methods consumed approximately 1.0-2.0 and 0.9-1.5 bytes per byte of
input, respectively. The memory usage of the BC method was no more than that of the
BBO method on each of the nine strings. The OT method consumed approximately 18 bytes
per character, which was larger than the memory usage of the BBO method. Our r-enum
consumed approximately 7-23 bytes per run in BWT. The memory usage of r-enum was the
smallest on most of the nine strings except for the file Escherichia Coli. In the best case, the
memory usage of r-enum was approximately 122 times less than that of the BC method on
einstein.en.txt because the ratio n/r &~ 1611 and alphabet size o = 140 were large.

Table 4 shows the execution time for each method. The OT method was the fastest among
all the methods, and it took approximately 13-110 seconds. The execution times of the BBO
and BC methods were competitive, and each execution of them finished within 487 seconds
on the nine strings. R-enum was finished in 985 seconds even for the string data (cere) with
the longest enumeration time. These results show that r-enum can space-efficiently enumerate
maximal substrings in a practical amount of time, although r-enum was approximately 10
times slower than the fastest method (i.e., OT method).

6.2 Experimental results on 100 human genomes

We tested r-enum on 100genome, which is a 307-gigabyte string of 100 human genomes. For
this experiment, we implemented computations of Weiner-links from nodes with the same
depth in parallel. It is easy to achieve the parallelization, because r-rnum uses Lemma 1 to
compute Weiner-links and we can apply the Lemma to each node independently. We ran the
parallelized r-enum with 48 threads.

Table 5 shows the total execution time and peak memory consumption of r-enum on
100genome. R-enum consumed approximately 25 hours and 319 gigabytes of memory
for enumeration. The result demonstrates the scalability and practicality of r-enum for

T. Nishimoto and Y. Tabei

enumerating maximal repeats on a huge string existing in the real-world. The execution
time was 0.6 seconds per 10° characters. The memory consumption was almost the same as
the size of the input file. It was relatively large compared with the memory consumption of
r-enum on the nine benchmark strings because the ratio of n/r & 8.4 for 100genome was
small.

7 Conclusion

We presented r-enum, which can enumerate maximal repeats, minimal unique substrings,
and minimal absent words working in O(rw) bits of working space. Experiments using a
benchmark dataset of highly repetitive strings showed that r-enum is more space-efficient
than the previous methods if n/r > 27.5. In addition, we demonstrated the applicability of
r-enum to a huge string by performing experiments on a 300-gigabyte string of 100 human
genomes. Our method was not so effective for the 300-gigabyte string because the string is
weakly compressible. On the other hand, it is oblivious that r-enum is more space-efficient
than the previous methods for huge strings such that n/r is sufficiently large. Our future
work is to reduce the running time and working space of r-enum.

We showed that breadth-first traversal of a Weiner-link tree can be performed in O(rw) bits
of working space. The previous breadth-first traversal algorithm by the BBO method requires
|[RD| 4 O(n) bits of working space, where |RD| is the size of a data structure supporting
range distinct queries on the BWT of T. In addition to enumerations of characteristic
substrings, traversal algorithms of a Weiner-link tree can be used for constructing three
data structures: (i) LCP array, (ii) suffix tree topology, and (iii) the merged BWT of two
strings [32]. Constructing these data structures in O(rw) bits of working space by modifying
r-enum would be an interesting future work.

We also showed that the data structure RD’ for our traversal algorithm supported two
operations: (i) a range distinct query in O(loglog, (n/r)) time per output element and
(ii) computations of LF function in O(loglog, (n/r)) time. The result can replace the
pair (|RD|,d) presented in Table 1 with pair (O(rw),O(loglog,,(n/r))), which improves
the BBO and BC methods so that they work in O(rw 4 n) and O(rw + ¢ log® n) bits of
working space, respectively. We think that the working space of the BC method with RD’ is
practically smaller than that of r-enum, because 02 log? n is practically smaller than rw in
many cases. This insight indicates that we can enumerate characteristic substrings with a
lower memory consumption of O(rw) bits by combining r-enum with the BC method even
for a large alphabet size. Thus, the following method could improve the space efficiency for
enumerations: executing the BC method with RD’ for a small alphabet (i.e., ¢ < 1/r/logn)
and executing r-enum for a large alphabet.

—— References

1 Paniz Abedin, M. Oguzhan Kiilekci, and Shama V. Thankachan. A survey on shortest unique
substring queries. Algorithms, 13:224, 2020.

2 Mohamed Ibrahim Abouelhoda, Stefan Kurtz, and Enno Ohlebusch. Replacing suffix trees
with enhanced suffix arrays. Journal of Discrete Algorithms, 2:53-86, 2004.

3 Alberto Apostolico. The myriad virtues of subword trees. In Combinatorial Algorithms on
Words, pages 85-96, 1985.

4 Hideo Bannai, Travis Gagie, and Tomohiro I. Refining the r-index. Theoretical Computer
Science, 812:96-108, 2020.

5 Carl Barton, Alice Héliou, Laurent Mouchard, and Solon P. Pissis. Linear-time computation
of minimal absent words using suffix array. BMC' Bioinformatics, 15:388, 2014.

21:15

CPM 2021

21:16

R-enum: Enumeration of Characteristic Substrings in BWT-runs Bounded Space

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

Verénica Becher, Alejandro Deymonnaz, and Pablo Ariel Heiber. Efficient computation of all
perfect repeats in genomic sequences of up to half a gigabyte, with a case study on the human
genome. Bioinformatics, 25:1746-1753, 2009.

Djamal Belazzougui and Fabio Cunial. Space-efficient detection of unusual words. In Proceedings
of SPIRE, pages 222-233, 2015.

Djamal Belazzougui, Fabio Cunial, Travis Gagie, Nicola Prezza, and Mathieu Raffinot. Com-
posite repetition-aware data structures. In Proceedings of CPM, pages 26-39, 2015.

Djamal Belazzougui, Fabio Cunial, Juha Kéarkkiinen, and Veli Mékinen. Linear-time string
indexing and analysis in small space. ACM Transactions on Algorithms, 16:17:1-17:54, 2020.
Djamal Belazzougui and Gonzalo Navarro. Optimal lower and upper bounds for representing
sequences. ACM Transactions on Algorithms, 11:31:1-31:21, 2015.

Djamal Belazzougui, Gonzalo Navarro, and Daniel Valenzuela. Improved compressed indexes
for full-text document retrieval. Journal of Discrete Algorithms, 18:3-13, 2013.

Timo Beller, Katharina Berger, and Enno Ohlebusch. Space-efficient computation of maximal
and supermaximal repeats in genome sequences. In Proceedings of SPIRE, pages 99-110, 2012.
Michael Burrows and David J Wheeler. A block-sorting lossless data compression algorithm.
Technical report, 1994.

Panagiotis Charalampopoulos, Maxime Crochemore, Gabriele Fici, Robert Mercas, and Solon P.
Pissis. Alignment-free sequence comparison using absent words. Information and Computation,
262:57-68, 2018.

Francisco Claude, Gonzalo Navarro, and Alberto Ordénez Pereira. The wavelet matrix: An
efficient wavelet tree for large alphabets. Information Systems, 47:15-32, 2015.

Maxime Crochemore, Gabriele Fici, Robert Mercas, and Solon P. Pissis. Linear-time sequence
comparison using minimal absent words & applications. In Proceedings of LATIN, pages
334-346, 2016.

Maxime Crochemore, Filippo Mignosi, and Antonio Restivo. Automata and forbidden words.
Information Processing Letters, 67:111-117, 1998.

Maxime Crochemore, Filippo Mignosi, Antonio Restivo, and Sergio Salemi. Data compression
using antidictionaries. Proceedings of the IEEE, 88:1756—1768, 2000.

Maxime Crochemore and Gonzalo Navarro. Improved antidictionary based compression. In
Proceedings of SCCC, pages 7T-13, 2002.

Isamu Furuya, Takuya Takagi, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Takuya
Kida. MR-RePair: Grammar compression based on maximal repeats. In Proceedings of DCC,
pages 508-517, 2019.

Travis Gagie, Gonzalo Navarro, and Nicola Prezza. Fully functional suffix trees and optimal
text searching in bwt-runs bounded space. Journal of the ACM, 67:2:1-2:54, 2020.

Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice: Plug
and play with succinct data structures. In Proceedings of SEA, pages 326-337, 2014.

Dan Gusfield. Algorithms on Strings, Trees, and Sequences - Computer Science and Computa-
tional Biology. Cambridge University Press, 1997.

Bernhard Haubold, Nora Pierstorff, Friedrich Moller, and Thomas Wiehe. Genome comparison
without alignment using shortest unique substrings. BMC' Bioinformatics, 6:123, 2005.
Dominik Kempa. Optimal construction of compressed indexes for highly repetitive texts. In
Proceedings of SODA, pages 1344-1357, 2019.

Dominik Kempa and Tomasz Kociumaka. Resolution of the burrows-wheeler transform
conjecture. In Proceedings of FOCS, pages 1002-1013, 2020.

Udi Manber and Eugene W. Myers. Suffix arrays: A new method for on-line string searches.
SIAM Journal on Computing, 22:935-948, 1993.

Tomonari Masada, Atsuhiro Takasu, Yuichiro Shibata, and Kiyoshi Oguri. Clustering docu-
ments with maximal substrings. In Proceedings of ICEIS, pages 19-34, 2011.

T. Nishimoto and Y. Tabei

29 Tatsuya Ohno, Kensuke Sakai, Yoshimasa Takabatake, Tomohiro I, and Hiroshi Sakamoto.

A faster implementation of online RLBWT and its application to LZ77 parsing. Journal of
Discrete Algorithms, 52-53:18-28, 2018.

30 Daisuke Okanohara and Jun’ichi Tsujii. Text categorization with all substring features. In
Proceedings of SDM, pages 838-846, 2009.

31 Alberto Policriti and Nicola Prezza. LZ77 computation based on the run-length encoded BWT.

Algorithmica, 80:1986-2011, 2018.

32 Nicola Prezza and Giovanna Rosone. Space-efficient construction of compressed suffix trees.

Theoretical Computer Science, 852:138—-156, 2021.
33 The 1000 Genomes Project Consortium. An integrated map of genetic variation from 1,092
human genomes. Nature, 491:56—-65, 2012.

A Algorithm for constructing data structures in Section 3.1

Recall that our traversal algorithm uses six data structures: (i) the RLBWT of T, (ii)
repr(e), (iii) Dir, (iv) Rrank(Sstart), (V) Rrp(L'), and (vi) an empty array X of size 0. Let
d be the permutation of [1,r] satisfying either of two conditions for two distinct integers
i,7 € {1,2,...,r}: (1) L[€(d]s])] < L[£(S]5])] or (ii) L[¢(d[i])] = L[¢([4])] and i < j. Then
Die[1] = 1 and Dyg[i] = Digli — 1] + |L[6(8[i — 1])..€(5[i — 1] + 1) — 1]| hold by LF formula.
We construct the permutation § in O(n) time and O(rw) bits of working space using LSD
radix sort. After that we construct the array Dy in O(r) time using 6.

Next, we construct Sgare and L’ in O(r) time by processing the RLBWT of T'. After that,
we construct Ryank(Sstart) in O(|Sstart| loglog,,,(n/r)) time and O(|Sstart|w) bits of working
space by processing Sgart [21, Appendix A.1]. Similarly, we construct Rrp(L’) in O(r) time
and O(rlogo) bits of working space [9, Lemma 3.17].

Finally, repr(e) consists of 3-tuple ([1,n], RD(L,1,n), 0). We compute RD(L,1,n) by
Lemma 2. Hence the construction time is O(nloglog,, (n/r)) in total, and the working space
is O(rw) bits.

B Proof of Theorem 5 (ii)

For simplicity, we focus on minimal unique substrings with a length of at least 2. Every
minimal unique substring with a length of at least 2 is a substring ¢P¢’ of T, where ¢, ¢’ are
characters, and P is a string with a length of at least 0. R-enum uses an array Rightp of
size o for detecting a minimal unique substring cPc’. Rightp[c] stores |Occ(T, Pc)| for each
c € X. A substring cPc’ of T is a minimal unique substring if and only if cPc’ satisfies three
conditions: (i) |Oce(T,cPc)| = 1, (ii) |Occ(T, cP)| > 2, and (iii) Rightp[c] > 2 hold. We
can verify the three conditions using repr(P) and Lemma 1, and hence, the following lemma
holds.

» Lemma 9. Let M(P) be the set of minimal unique substrings such that the form of each
minimal unique substring is cPc’, where ¢, are characters, and P is a given string. We
can compute the output by r-enum for the set M(P) (i.e., {(interval(cPc’),|cPc|) | cPc’ €
M(P)}) using (i) repr(R), (ii) the data structures presented in Section 3.1, and (iii) an
empty array X' of size . The running time and working space are O(hloglog,, (n/r))
and O((o + W')w) bits, respectively. Here, h = 3 p.ccpiidren(p) IWLINK(P)[, and b =

ZcPeWLink(P)m,c,P|+1 |children(cP)|.

Proof. Rightp[c] is stored in repr(P) for ¢ € X, and the pair (interval(cPc’), |cPc’|) is stored in
repr(cP). We compute the output by four steps. (i) We convert X’ into Rightp by processing
repr(P). (ii) We compute the rich representations for all the strings in WLink(P) by Lemma 1.

21:17

CPM 2021

21:18

R-enum: Enumeration of Characteristic Substrings in BWT-runs Bounded Space

(iii) We process the rich representation for each string ¢P € WLink(P) and output pair
(interval(cPc’), |cPc'|) for each child cPc if |interval(cPc’)| = 1 and Rightp[c/] > 2. (iv) We
recover X' from Rightp. Hence, Lemma 9 holds. |

Node up is always explicit (i.e., up is a node of the Weiner-link tree) if a substring
c¢Pc is a minimal unique substring of 7" because |Oce(T, P)| > |Oce(T, Pc')| holds from the
definition of the minimal unique substring. Hence, we can compute (interval(cPc’),|cPc|)
for each minimal unique substring ¢Pc’ in T by applying Lemma 9 to all the nodes in the
Weiner-link tree.

R-enum prepares an empty array X’ of size o and computes the output for set M(P) by
applying Lemma 9 to each node up. The running time and working space are O((>_;_, Hy)
loglog,, (n/r)) = O(nloglog, (n/r)) and O((r + o + max{|Ko/|, |1], ..., |Kn|})w)) = O(rw)

bits, respectively. Here, H; and KC; are the terms introduced in Section 3.3.

C Proof of Theorem 5 (iii)

For simplicity, we focus on minimal absent words with a length of at least 2. Minimal absent
words have similar properties to the properties of the minimal unique substrings explained
in the proof of Theorem 5(ii), i.e., the characteristic substrings have two properties: (i) a
string cPc¢’ is a minimal absent word for T" if and only if ¢cPc’ satisfies three conditions: (1)
|Oce(T, cPc)| = 0, (2) |Oce(T,cP)| > 1, and (3) Rightp[c/] > 1 hold, and (ii) node up is
always explicit if a substring ¢Pc¢’ is a minimal absent word for T because |Oce(T, P)| >
|Oce(T, Pc’)| holds from the definition of the minimal absent word. We obtain the following
lemma by modifying the proof of Lemma 9.

» Lemma 10. Let W(P) be the set of minimal absent words such that the form of each
minimal unique substring is cPc’, where c,c’ are characters, and P is a given string. We can
compute the output by r-enum for the set W(P) (i.e., {(interval(cP),|cP|,c) | cPc’ € W(P)})
using (i) repr(R), (ii) the data structures presented in Section 3.1, and (iii) an empty array
X' of size 0. The running time and working space are O(hloglog,, (n/r) + |W(P)|) and
O((o + R')w) bits, respectively.

We can compute (interval(cP), |cP|, ') for each minimal absent word ¢Pc¢’ for T by applying
Lemma 10 to all the nodes in the Weiner-link tree. R-enum prepares an empty array X' of
size o and computes the output for set W(P) by applying Lemma 10 to each node up. The
running time and working space are O(nloglog, (n/r) + occ) and O(rw) bits, respectively.

D Proof of Lemma 7

Proof for data structure Rg,. Data structure Rg, consists of (i) the RLBWT of T, (ii) ,
(ili) Dir, (iv) Rrank(Steart)s and (v) Rrank(Sstart). Here, (i) 7 is the permutation on {1,2,...,7}
satisfying LF(¢(n[1])) < LF(¢(n[2])) < --- < LF(¢(n[r])), (ii) Dy is the array introduced
in Section 3, and (iii) 8., = {LF(¢(7[1])) , LF(¢(7]2])), ..., LF(¢(x[r]))}. =[i] = &[i] holds
for any integer ¢ € {1,2,...,7}. Sl.. and Dy can be constructed in O(r) time after the
permutation 7 is constructed. We already showed that ¢ could be constructed in O(n)
time by processing the RLBWT of T, which was explained in Appendix A. Hence, we can
construct Rg, in O(nloglog,, (n/r)) time and O(rw) bits of working space.

We introduce the inverse function LF ™' of LF function (i.e., LF~*(LF(i)) = i holds for
i €{1,2,...,n}) tosolve the extract query. Recall that LF (i) = D g[z]+(i—£(x)) holds, which
is shown in Section 3.1, where 2 = rank(Sstart, 7). Similarly, LF~'(i) = £(x[y]) + (i — Dye[r[y]])
holds by the LF formula for any integer ¢ € {1,2,...,n}, where y = rank(S..n,%). Hence, we
can compute LF~!(7) in O(loglog,, (n/r)) time using the data structure Rg,.

T. Nishimoto and Y. Tabei

Let LF_ ! be the function that returns the position obtained by recursively applying the
inverse LF function to i z times (i.e., LF5 ' (i) = i, and LF, (i) = LF"*(LF,!,(4))). Then,
T[SA[i]..SA[i] +d — 1] = L[LFy'(4)], L[LF5 ' (3)], ..., LILF;*(i)] holds for any integer d > 1
because SA[LF~'(i)] = SA[i] + 1 holds unless SA[i] = n. Rg, can support random access
to the BWT L in O(loglog,,(n/r)) time using a rank query on set Ssarr. Hence, we can
compute T[SA[]..SA[i] + d — 1] in O(dloglog,,(n/r)) time using R, for two given integers i
and d.

We explain an algorithm solving an extract query for a given rich representation repr(P).
Let interval(P) = [b, e]. Then, SA[}] stores the index of a suffix of T having P as a prefix, i.e.,
T[SA[b]..SA[b] + |P| — 1] = P holds. We recover the prefix P from SA[b] using Rs,. Hence
Rg, supports the extract query in O(|P|loglog,,(n/r)) time. <

Proof for data structure R,... Next, we leverage a function ¢ to solve the extract-sa query.

The function ¢(SA[i]) returns SA[i + 1] for ¢ € {1,2,...,n — 1}. Ry is a data structure of
O(rw) bits proposed by Gagie et al. [21], and we can compute ¢ function in O(loglog,, (n/r))
time by Ry. The data structure can be constructed in O(nloglog,,(n/r)) time and O(rw)
bits of working space by processing the RLBWT of T' [21]. The second data structure Rocc
consists of R4, and we solve the extract-sa query by recursively applying the function ¢ to
SA[b] (e—b) times. Hence Rocc can support the extract-sa query in O((e—b+1)loglog,, (n/r))
time. <

Proof for data structure Regrp. Let Dsa be an array of size r such that Dsali] stores the
sa-value at the starting position of the 4-th run in BWT L for i € {1,2,...,7}, i.e., Dsali] =
SA[((7)]. Let (¢, pe, e, SA[pe]) be a 4-tuple outputted by query eRD(L, b, e, SA[b]) and z be the
index of the run containing character L[p.| (i.e., = rank(Sstart, pc)). Then SA[p.] = Dsalz]

if p. = £(z); otherwise SA[p.] = SA[b] holds because p.. is equal to ¢(z) or b under Lemma 2.
The relationship among SA[p.], Dsa[z], and SA[b] is called the toehold lemma (e.g., [31, 21]).

The toehold lemma indicates that we can compute SA[p.] in O(loglog,,(n/r)) time for each
output (¢,pe, q.) € RD(L, b, e) using (i) the array Dsa, (ii) data structure Ryank(Sstart), and
(iii) the RLBWT of T if we know the first sa-value SA[b] in [b, €].

Next, we explain Rerp. Rerp consists of Rrp(L'), Dsa, Rrank(Sstart), and the RLBWT of
T. We already showed that we could construct Rrp(L’) and Ryank(Sstart) in O(n loglog,, (n/1))
time by processing the RLBWT of T. We construct the array Dsa by computing all the
sa-values in SA[l..n] in left-to-right order using data structure Ry4. Ry can be constructed in
O(nloglog,,(n/r)) time by processing the RLBWT of T. Hence, the construction time for
Rerp is O(nloglog,,(n/r)) time in total, and the working space is O(rw) bits.

We solve extended range distinct query eRD(L, b, e, SA[b]) using the toehold lemma after
solving the corresponding range distinct query RD(L, b,) using Rrp(L'), Rrank (Sstart), and the

RLBWT of T. The running time is O((k + 1) loglog,,(n/r)), where k = [eRD(L, b, e, SA[b])|.

<

E Proof of Theorem 8

We extend Lemma 1. Let eRepr(P) for P be a 4-tuple (interval(P), {(c1,b1, €1, SA[b1]),
(c2,b2, €2,SA[ba]), ..., (ck,bk,ex, SA[bL])}, |P|,SA[B]). Here, (i) b is the left boundary of
interval(P), (ii) Pey, Pca, ..., Pcy are strings represented by the children of node up, and
(iii) [bs, ;] = interval(Pc;) for i € [1,k]. We call eRepr(P) an extended rich representation.
Let eRepr(cP) = (interval(cP), {(c},b}, e}, SABL]), (ch, b, eh, SADY]), ..., (¢h, i, €l
SA[bL])}, |eP),SA[Y']) for a character c. Let z; be an integer such that LF(x;) = b for a
4-tuple (cj, b}, e;, SA[b;]) in eRepr(P), and let y(i) be an integer such that x; € [by(), €y(i)]

19 Y Yo

21:19

CPM 2021

21:20

R-enum: Enumeration of Characteristic Substrings in BWT-runs Bounded Space

holds. Then, there exists a tuple (&, pe, ge, SA[pe]) € eRD(L, by iy, ey(iy, SA[by(iy]) such that
pe = x; holds. SA[D;] = SA[pe] — 1 holds by LF function. Next, let j be an integer such that
b} is the smallest in set {b,b5,...,b},}. Then SA[D'] = SA[V}] holds because b’; is equal to
the left boundary of interval(cP). Hence, Lemma 1 can output extended rich representations
instead of rich representations by replacing the range distinct queries used by the algorithm
of Lemma 1 with the corresponding extended range distinct queries. Formally, the following
lemma holds.

» Lemma 11. We can compute set {eRepr(cP) | cP € WLink(P)} for a given rich represent-
ation eRepr(P) in O(hloglog,, (n/r)) time using Rerp and the siz data structures introduced
in Section 3.1, where h = ZPc/eCh”dren(P) |WLink(Pc)|.

Next, we modify our traversal algorithm for the Weiner-link tree of T. The modified
traversal algorithm uses Lemma 11 instead of Lemma 1. Hence, we obtain the following
lemma.

» Lemma 12. We can output n sets {eRepr(P) | P € Lo}, {eRepr(P) | P € L1}, ...,
{eRepr(P) | P € L,,_1} in left-to-right order in O(nloglog,, (n/r)) time and O(rw) bits of
working space by processing the RLBWT of T.

Finally, we prove Theorem 8 using the modified traversal algorithm, i.e., Lemma 12.

Proof for maximal repeats. The node up representing a maximal repeat P is explicit, and
hence, eRepr(P) is outputted by the modified traversal algorithm. R-enum uses the modified
traversal algorithm instead of our original traversal algorithm. Hence, r-enum can output
the extended rich representations for all the maximal repeats in T' without increasing the
running time. <

Proof for minimal unique substrings. Let cPc’ be a minimal unique substring of T' such
that its occurrence position is SA[Y']. Recall that r-enum computes repr(cP) by applying
Lemma 1 to repr(P) and outputs (interval(cPc’), |cPc’|) by processing repr(cP). The extended
rich representation eRepr(cP), which corresponds to repr(cP), contains interval(cPc’), |cPc|,
and SA[V']. The modified r-enum (i) traverses the Weiner-link tree by the modified traversal
algorithm, (ii) computes eRepr(cP) by applying Lemma 11 to eRepr(P), and (iii) outputs
(interval(cPc'), |cPc|, SAY']) by processing eRepr(cP). The running time is O(n loglog,, (n/r))
time in total. |

Proof for minimal absent words. Let cPc’ be a minimal absent word for T, and let b” be
the left boundary of interval(cP). eRepr(cP) contains the sa-value SA[b”], and hence, we can
compute (interval(cP),|cP|,,SA[Y]) for the minimal absent word cPc’ by modifying the
algorithm used by the modified r-enum for minimal unique substrings.

The modified r-enum (i) traverses the Weiner-link tree by the modified traversal al-
gorithm, (ii) computes eRepr(cP) by applying Lemma 11 to eRepr(P), and (iii) outputs
(interval(cP), |cP|, ¢, SA[V']) by processing eRepr(cP). The running time is O(nloglog,, (n/r)+
occ) time in total. <

T. Nishimoto and Y. Tabei

F Omitted table

Table 6 Execution time of each method. Execution time is separately presented as enumeration

and preprocessing times in seconds (s).

Preprocessing time [s]

Enumeration time [s]

Data name

r-enum ‘ BBO ‘ BC ‘ oT

r-enum ‘ BBO ‘ BC ‘ oT

einstein.de.txt 1 1 1 7 171 83 69 6
einstein.en.txt 3 3 3 50 853 484 | 384 30
world leaders 1 1 1 7 96 23 15 3
influenza 2 1 1 17 265 68 48 13
kernel 2 2 2 41 557 279 | 176 16
cere 5 3 3 78 980 274 | 183 32
coreutils 2 2 2 29 443 283 | 177 13
Escherichia Coli 5 1 1 18 248 67 39 11
para 6 3 3 71 955 259 | 170 31

21:21

CPM 2021

	1 Introduction
	2 Preliminaries
	2.1 Rank and range distinct queries
	2.2 Suffix and longest common prefix arrays
	2.3 BWT and RLBWT
	2.4 Suffix tree
	2.5 Weiner links and Weiner-link tree

	3 Traversing Weiner-link tree in O(rw) bits of space
	3.1 Data structures
	3.2 Algorithm
	3.3 Analysis

	4 Enumeration of characteristic substrings in O(rw) bits of space
	5 Modified enumeration algorithm for original characteristic substrings and their occurrences
	6 Experiments
	6.1 Experimental results on benchmark dataset
	6.2 Experimental results on 100 human genomes

	7 Conclusion
	A Algorithm for constructing data structures in Section 3.1
	B Proof of Theorem 5 (ii)
	C Proof of Theorem 5 (iii)
	D Proof of Lemma 7
	E Proof of Theorem 8
	F Omitted table

