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Abstract
We introduce Contiguity Types, a formalism for network message formats, aimed especially at
self-describing formats. Contiguity types provide an intermediate layer between programming
language data structures and messages, offering a helpful setting from which to automatically
generate decoders, filters, and message generators. The syntax and semantics of contiguity types are
defined and used to prove the correctness of a matching algorithm which has the flavour of a parser
generator. The matcher has been used to enforce semantic well-formedness conditions on complex
message formats for an autonomous unmanned avionics system.
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1 Introduction

Serialized data, for example network messages, is an important component in many computer
systems.1 As a result, innumerable libraries and tools have been created that use high level
specifications as a basis for automating the creation, validation, and decoding of such data.
Usually, these high level specifications describe the format of a message in terms of how the
elements (fields) of the message are packed side-by-side to make the full message. When the
size of each field is known in advance, there are really no conceptual difficulties. However,
messages can be more complicated than that.

The main source of difficulty is self-describing messages: those where information em-
bedded in fields of the message determines the final structure of the message. Two of the
main culprits are variable-length arrays and unions. A variable-length array is a field where
the number of elements in the field depends on the value of some already-seen field (or,
more generally, as the result of a computation involving previously-seen information in the
message). The length is therefore a value determined at runtime. A union is deployed when
some information held in a message is used to determine the structure of later portions of
the message. For example, unions can be used to support versioning where version i has n

fields, and version i + 1 has n + 1. In settings where both versions need to be supported in
a single format, it can make sense to encode the version handling inside the message, and
unions are how this can be specified.
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30:2 Specifying Message Formats with Contiguity Types

base = bool | char | u8 | u16 | u32 | u64 | i16 | i32 | i64 | float | double
τ = base

| Recd (f1 : τ1) . . . (fn : τn)
| Array τ exp
| Alt bexp τ τ

Figure 1 Contiguity types.

We believe that tools and techniques from formal language theory such as regular
expressions, automata, grammars, parser generators, etc. can provide an effective way to
tackle message formats, and have been using the acronym SPLAT (Semantic Properties
for Language and Automata Theory) to refer to this approach. For example, we have used
regular expressions as a specification language for message formats having simple interval
constraints on the values allowed in fields. Generation of the corresponding DFA results in
an efficient table-driven automaton implementing the specified constraints, with a solid proof
certificate connecting the original constraints with the DFA behavior [5].

However, self-describing data formats fall outside the realm of common formal language
techniques; e.g., variable-length fields are clearly not able to be described by regular or
context-free languages. (These language classes encompass repetitions of a fixed or unbounded
size, but not repetitions of a size determined by parts of the input string.) It seems that
context-sensitive grammars can, in principle, specify such information, but there are few tools
supporting context sensitive languages. Knuth introduced attribute grammars [8] for dealing
with context-sensitive aspects of parsing, and those techniques address similar problems
to ours. Another possibility would be to use parser combinators in order to quickly stitch
together a parser; it seems likely that the combinators can be instrumented to gather and
propagate contextual information. However, we are seeking a high level of formal specification
and automation, while still being rooted in formal languages, with their emphasis on sets of
strings as the basic notion.

2 Contiguity Types

The characteristic property of a message is contiguity: all the elements of the message are
laid out side-by-side in a byte array (or string). Our assumption is that a message is the
result of a map from structured data and we will rely on a basic collection of programming
language types to capture that structure. Contiguity types (Figure 1) start with common
base types (booleans, characters, signed and unsigned integers, etc.) and are closed under
the construction of records, arrays, and unions. 2

Notice that τ is defined in terms of a type of arithmetic expressions exp and also bexp,
boolean expressions built from exp. Now consider

Array τ exp .

For this to specify a varying length array dependent on other fields of the message, its
dimension exp should be able to refer to the values of those fields. The challenge is just how
to express the concept of “other fields”, i.e., we need a notation to describe the location in

2 We will use the terms “contiguity type, contig, and τ interchangeably.
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the message buffer where the value of a field can be accessed. Our core insight is that this is
similar to a problem that programming language designers had in the 60s and 70s, resolved
by the notions of L-value and R-value. The idea is originally due to Christopher Strachey in
CPL [13] and developed subsequently, for example by Dennis Ritchie in C [12].

Before getting into formal details, we discuss a few examples. We will use familiar notation:
records are lists of filedname : τ elements enclosed by braces; an array field Array c dim is
written c [dim]; and Alt b τ1 τ2 is written ‘if b then τ1 else τ2’. “Cascaded” Alts may be
written in Lisp “cond” style, i.e., as

Alt b1 −→ τ1 . . .

bn −→ τn

otherwise −→ τn+1

1. The following is a record with no self-describing aspects: each field is of a statically known
size.

{A : u8
B : {name : char [13]

cell : i32}
C : bool

}

The A field is specified to be an unsigned int of width 8 bits, the B field is a record, the
first element of which is a character array of size 13, and the second element of which is a
32 bit integer; the last field is specified to be a boolean.

2. Variable-sized strings are a classic self-describing aspect. In this example the contents of
the len field determines the number of elements in the elts field.

{ len : u16
elts : char [len]

}

3. The following example shows the Alt construct being used to support multiple versions
in a single format. Messages with the value of field versionID being less than 14 have
three fields in the message, while all others have two.

{versionID : u8
versions : if versionID < 14 then

{ A : i32, B : u16})
else { Vec : char [13]}

}

4. The following is a contrived example showing the need for resolution of multiple similarly
named fields; it also shows how the information needed to determine the message structure
may be deeply buried in some fields.

{len : u16
A : {len : u16

elts : u16[len]
}

B : char [A.len - 1 * len]
C : i32 [A.elts[0]]

}

ITP 2021



30:4 Specifying Message Formats with Contiguity Types

lval = varname | lval [exp] | lval.fieldname
exp = Loc lval | nLit nat | constname | exp + exp | exp ∗ exp

bexp = bLoc lval | bLit bool | ¬bexp | bexp ∧ bexp | exp = exp | exp < exp

Figure 2 L-values, expressions, and boolean expressions.

2.1 Expressions, L-values, and R-values
In programming languages, an L-value is an expression that can occur on the left-hand
side of an assignment statement. Similarly, an R-value can occur on the right-hand side of
assignments. Following are a few examples:

x := x + 1
A[x] := B.y + 42
A[x].lens.fst[7] := MAX_LEN * 1024 + B.y

Figure 2 presents the formal syntax for L-values, R-values, and the boolean expressions
we will use. An L-value can be a variable, an array index, or a record field access. R-values
are arithmetic expressions that can contain L-values (we will use exp interchangeably with
R-value).

An L-value denotes an offset from the beginning of a data structure, plus a width. In
an R-value, an occurrence of an L-value is mapped to the value of the patch of memory
between offset and offset + width. For the purpose of specifying message formats, it may not
be immediately obvious that a notation supporting assignment in imperative languages can
help, but there is indeed a form of assignment lurking.

The above explanation of L-values centers on indices into a byte buffer; in the following
we will give a mild variant of this: instead of indices into the buffer, we lift out the designated
slices. Thus, given environments θ : lval 7→ string (binding L-values to strings), and functions
toN : string → N and toB : string → bool (which interpret byte sequences to numbers
and booleans, respectively), expression evaluation and boolean expression evaluation have
conventional definitions:

evalExp θ e = case e


Loc lval ⇒ toN(θ(lval))
nLit n ⇒ n

e1 + e2 ⇒ evalExp θ e1 + evalExp θ e2
e1 ∗ e2 ⇒ evalExp θ e1 ∗ evalExp θ e2

evalBexp θ b = case b



bLoc lval ⇒ toB(θ(lval))
bLit b ⇒ b

¬b ⇒ ¬(evalBexp θ b)
b1 ∨ b2 ⇒ evalBexp θ b1 ∨ evalBexp θ b2
b1 ∧ b2 ⇒ evalBexp θ b1 ∧ evalBexp θ b2
e1 = e2 ⇒ evalExp θ e1 = evalExp θ e2
e1 < e2 ⇒ evalExp θ e1 < evalExp θ e2

▶ Remark 1 (Partiality). Expression evaluation is partial because there is no guarantee that
θ(lval) is defined: an lval being looked-up may not be in the map θ. Failure in evaluation
is modelled by the option type, and must be handled in the semantics and the matching
algorithm. However error handling is omitted in the presentation since it hampers readability.
See the HOL4 formalization for full details.
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2.2 Semantics
We now confess to misleading the reader: in spite of the notational similarity, a contiguity
type is not a type: it is a formal language. A type is usually understood to represent a set, or
domain, of values, e.g., the type int32 represents a set of integers. In contrast, the contiguity
type i32 represents the set of strings of width 32 bits. An element of a contiguity type can be
turned into an element of a type by providing interpretations for all the strings at the leaves
and interpreting the Recd and Array constructors into the corresponding type constructs. (A
base contiguity type therefore serves mainly as a tag to be interpreted as a width and also as
an intended target type.) Thus, contiguity types sit – conveniently – between the types in a
programming language and the strings used to make messages.

The semantics definition depends on a few basic notions familiar from language theory:
language concatenation, and iterated language concatenation.

L1 · L2 = {w1w2 | w1 ∈ L1 ∧ w2 ∈ L2}
L0 = ε

Ln+1 = L · Ln

▶ Definition 2 (Semantics of contiguity types). In the following, we assume given an as-
signment θ for evaluating expressions. If an expression evaluation fails, the language being
constructed will be ∅.

Lθ(τ) = case τ



base ⇒ {s | len(s) = width(base)}
Recd (f1 : τ1) . . . (fn : τn) ⇒ Lθ(τ1) · . . . · Lθ(τn)
Array τ exp ⇒{

Lθ(τ)evalExp θ exp if evalExp θ exp succeeds
∅ if evaluation fails

Alt bexp τ1 τ2 ⇒
Lθ(τ1) if evalBexp θ bexp = true
Lθ(τ2) if evalBexp θ bexp = false
∅ if evaluation fails

▶ Example 3. Consider the following schema for an option contiguity type. The empty
record {} associated with boolean expression b has no fields.

if b then { } else c

In case b evaluates to true, no portion of the string is consumed; otherwise, c specifies the
remainder of the processing. It may be instructive to consider how this type works with
arrays. For example, a string meeting the following contig specification

(if b then {} else i32) [3]

is either zero or twelve bytes in length (assuming that i32 is four bytes wide).

3 Algorithms

The following are classical topics in formal language theory and practice, and they are worth
investigating in the context of contiguity types. At present we have been working on decoding,
filtering, and test generation.

Decoding A decoder breaks a sequence of bytes up and puts the pieces into a useful data
structure, typically a parse tree. We will discuss this in more detail in Section 3.1.

ITP 2021



30:6 Specifying Message Formats with Contiguity Types

Filtering A filter computes an answer to the question: “does a sequence of bytes meet the
specification of a given contiguity type”. This is an instance of the language recognition
problem. More powerful filters enforce that certain fields of a message, when interpreted,
meet specific semantic properties. We will discuss this further in Section 4.1.

Serialization Given a contiguity type, synthesize a function that writes a compact binary
version of a data structure to a message.

Test generation Given a contiguity type, generate byte sequences that do (or do not) meet
its specification and feed the sequences to implementations in order to observe their
behaviour.

Learning Given training sets of messages that are accepted/rejected by an implementation,
attempt to discover a contiguity type for the entire set of messages.

3.1 Decoding
Above we mentioned that decoding can result in parse trees; however, self-describing messages
allow a different conceptual framework to be brought to bear. There is an important
distinction between parsing, which creates structure (parse trees), and matching, which is
given structure and calculates assignments (substitutions).3 Giving some evocative types
helps make the difference clear:

parse : grammar → string → parsetree
match : pattern → string → assignments

For our purposes, namely decoding datastructures in binary format, the central decoding
algorithm is a matcher : given a contiguity type τ and a string s, the matcher will either fail, or
succeed with an assignment θ : lval 7→ string mapping each L-value in τ to its corresponding
slice of s. The assignment θ can be post-processed to yield a standard parse tree, but its
novelty and strength is that θ can be dynamically consulted to access the values needed to
guide the processing of self-describing messages.

▶ Definition 4 (Matching algorithm). The matcher operates over a triple (worklist, str , θ)
where worklist is a stack used to linearize the input contiguity type τ , str represents the
remainder of the input string, and θ is the assignment being built up. Each element of the
worklist is a (τ, lval) pair, where τ is a contig, and lval is the path growing down from the
root to τ . The notation (lval 7→ slice) • θ denotes the addition of binding lval 7→ slice to θ.
We examine the cases in turn:

1. The worklist is empty; the match succeeds.

([], str , θ) ⇒ SOME(str , θ)

2. The first element of the worklist is a base type. The prescribed number of bytes are broken
off the front of the string, giving str = (slice, rst); then the binding is added to θ before
recursing. If the string is shorter than the requested number of bytes, fail.

((Basic a, lval) :: t, str , θ) ⇒ (t, rst, (lval 7→ slice) • θ)

3 Thus the notion of matching discussed here is in the tradition of term rewriting [1], the main difference
being that our substitutions are applied to lvals rather than variables.
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3. The first element of the worklist is recd = Recd (f1 : τ1) . . . (fn : τn). Before recursing,
the fields are pushed onto the stack, extending the path to each field element:

((recd, lval) :: t, str , θ) ⇒ ([(τ1, lval.f1), · · · , (τn, lval.fn)]@t, str , θ)

4. The first element of the worklist is an array. The dimension expression is evaluated to
get the width d, then d copies are pushed onto the stack, where each path is extended with
the array index.

((Array τ exp, lval) :: t, str , θ) ⇒ ([(τ, lval[0]), · · · , (τ, lval[d − 1])]@t, str , θ)

5. The first element of the worklist is an Alt. If b evaluates to true, τ1 is pushed on to the
worklist; if it evaluates to false, τ2 is pushed. Otherwise, fail.

((Alt b τ1 τ2, lval) :: t, str , θ) ⇒ ((τi, lval) :: t, str , θ)

The matcher function, match begins with an initial state

state0 = ([(root, τ)], str0, ∅)

where the initial path is a default lval variable named root, the initial string is str0, and
the initial assignment has no bindings.

▶ Theorem 5 (Matcher termination). As mentioned, the state of the matcher is held in a
(worklist, str , θ) tuple. The termination relation is a lexicographic combination, where either
str gets shorter, or, str is unchanged and worklist gets smaller under the multiset order.
(The multiset order is useful in this proof since the handling of the Array construct is a nice
version of the Hercules-Hydra problem [3].)

▶ Definition 6 (Substitution application). Correctness depends on an operation θ lval τ

applying substitution θ to contiguity type τ , starting at lval, in order to reconstruct the
original string.

θ lval τ = case τ



base ⇒ θ(lval)
Recd (f1 : τ1) . . . (fn : τn) ⇒ θ (lval.f1) τ1 · . . . · θ (lval.fn) τn

Array τ1 exp ⇒{
θ (lval[0]) τ1 · . . . · θ (lval[d − 1]) τ1, if d = evalExp θ exp
∅ if evaluation fails

Alt bexp τ1 τ2 ⇒
θ lval τ1 if evalBexp θ bexp = true
θ lval τ2 if evalBexp θ bexp = false
∅ if evaluation fails

▶ Theorem 7 (Correctness of substitution). The correctness statement for the matcher is
similar to those found in the term rewriting literature, namely that the computed substitution
applied to the contiguity type yields the original string:

match state0 = SOME(θ, s) ⇒ θ root τ · s = str0

Proof. By induction on the definition of match. ◀

▶ Theorem 8 (Matcher soundness). The connection to Lθ(τ) is formalized as

str0 = s1s2 ∧ match state0 = SOME(θ, s2) ⇒ s1 ∈ Lθ(τ)

ITP 2021



30:8 Specifying Message Formats with Contiguity Types

Proof. By induction on the definition of match. ◀

In other words, a successful match provides a θ that will successfully evaluate all en-
countered expressions, and the matched string is indeed in the language of τ . A completeness
theorem going in the other direction has not yet been tackled.

▶ Example 9. Given the contig

{A : Bool
B : Char
len : u16
elts : i32 [len]

}

and an input string (listed in hex)

[0wx1, 0wx67, 0wx0, 0wx5, 0wx0, 0wx0, 0wx0, 0wx19, 0wx0, 0wx0,
0wx9, 0wx34, 0wx0, 0wx0, 0wx30, 0wx39, 0wx0, 0wx0, 0wxD4,
0wx31, 0wxFF, 0wxFF, 0wxFE, 0wxB3]

created by encoding: the boolean true, the letter g, the number 5 (MSB 2 byte unsigned),
and the five MSB 4 byte signed twos complement integers 25, 2356, 12345, 54321, and -333,
the matcher creates the following assignment of lvals to substrings of the input:

[(root.A, (Bool, [0wx1])),
(root.B, (Char, [0wx67])),
(root.len, (u16, [0wx0, 0wx5])),
(root.elts[0], (i32, [0wx0, 0wx0, 0wx0, 0wx19])),
(root.elts[1], (i32, [0wx0, 0wx0, 0wx9, 0wx34])),
(root.elts[2], (i32, [0wx0, 0wx0, 0wx30, 0wx39])),
(root.elts[3], (i32, [0wx0, 0wx0, 0wxD4, 0wx31])),
(root.elts[4], (i32, [0wxFF, 0wxFF, 0wxFE, 0wxB3]))

]

Note that each element of the list is of the form (lval, (tag, bytes)) where each slice is
labelled with its corresponding base type, to support further translation.

Thus the matcher will break up the input string in accordance with the specification; the
execution, in effect, generates a sequence of assignments that, if applied, would populate
a data structure with the specified data in the specified places. Therefore it is not really
necessary to generate parse trees to in order to decode messages: one merely needs a target
data structure to write data into. (In fact, when filtering, no target data structure is needed
at all.) The correctness property will ensure that all fields are written with the specified
data. The assignments can be incrementally evaluated as the decoder runs, or can be stored
and applied when the decoder terminates.

4 Extended contiguity types

In the discussion so far, contiguity types can only express bounded data: each base type has
a fixed size and all Array types are given an explicit bound. Removing these two restrictions
would greatly increase expressiveness. Of course, we look to the theory of formal languages
to guide extensions to the formalism. We have thus explored the addition of the empty
language ∅, Kleene star, and a lexer. The augmented syntax can be seen in Figure 3. The
addition of ∅ (via Void) and Kleene star (via List) has been accomplished, along with the
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τ = Base (regexp × valFn)
| Void
| List τ

| Recd (f1 : τ1) . . . (fn : τn)
| Array τ exp
| Alt bexp τ1 τ2

Figure 3 Extended contiguity types.

proofs verifying the upgraded matcher. We also discuss replacing the existing base types
with a lexer for completeness, even though that discussion more appropriately belongs to
future work.

▶ Definition 10 (Semantics additions). A base type element has the form Base(regexp, valFn),
where valFn is a function that maps the string recognized by regexp to a data value. The
semantics of a Base type is just the (formal language) semantics of its regular expression,
Void denotes the empty set, and List is a “tagged” version of Kleene star (NilTag and ConsTag
are described in Section 4.2).

Lθ(τ) = case τ


Base (regexp, valFn) ⇒ L(regexp)
Void ⇒ ∅
List τ ⇒ (ConsTag · Lθ(τ))∗ · NilTag
...(previous clauses)

4.1 Void and in-message assertions
The Alt constructor combined with Void supports an in-message assertion feature. The
contiguity type Assert bexp is defined as follows:

▶ Definition 11 (Assert).

Assert bexp = Alt bexp (Recd [ ]) Void

The meaning of Assert b is obtained by simplification:

Lθ(Assert bexp) = if evalBexp θ bexp then ε else ∅

and match evaluates it by failing when evalBexp θ bexp is false, and otherwise continuing on
without advancing in the input.

▶ Example 12 (AnBnCn). It is well known that L = AnBnCn is not a context-free language.
We can use Assert to specify a language that is nearly L with the following contiguity type:

charA = {ch : char, isA : Assert (ch = 65)} (* "A" = ASCII 65 *)
charB = {ch : char, isB : Assert (ch = 66)}
charC = {ch : char, isC : Assert (ch = 67)}

mesg = {len : u16
A : charA [len]
B : charB [len]
C : charC [len]

}

In fact Lθ(mesg) = u · AtoN(u) · BtoN(u) · CtoN(u).

ITP 2021



30:10 Specifying Message Formats with Contiguity Types

Assert expressions have been used extensively when specifying wellformedness properties
for messages in our application work. The applications include restrictions on array sizes
and constraints on array elements, e.g., requiring that every element in an array of GPS
coordinates is an acceptable GPS coordinate.

▶ Example 13 (Array limits). In UxAS messages (see Section 5) the length of every array
element is held in a separate length field which is two bytes in size. Thus the following contig,
in the absence of any further constraint, supports arrays of length up to 65536 elements. A
receiver system may well not be prepared for messages having collections of such potentially
large components.

{ len : u16
elts : i32 [len] }

In the meta-data for such messages, one can sometimes find information about the maximum
expected size, usually a fairly small number. This can be directly expressed inside the contig
with an Assert:

{ len : u16
len-range : Assert (len <= 8)
elts : i32 [len] }

Note that the expected array length should be specified before the array itself, otherwise the
allocation attempt might be made before the check.

4.2 Kleene Star
Although the use of bounded Array types provides much expressiveness for representing
sequences of data, ultimately some kinds of message can not be handled, i.e., those where there
is no way to predict the number of nestings of structure: s-expressions, logical formulae, and
programming language syntax trees are some typical examples. We address this shortcoming
by adding a new contiguity type constructor – List – of unbounded lists. A message matching
a List τ type will be subject to an encoding similar to implementations of lists in functional
languages. The matching algorithm for contiguity types is extended to handle List objects by
iteratively unrolling the recursive equation

L∗ = ε ∪ L · L∗

Indeed the type List τ is represented by the following contiguity type, a recursive record:

List τ =


tag : u8
test : Alt (tag = NilTag) −→ ε

(tag = ConsTag) −→ {hd : τ, tl : List τ}
otherwise −→ Void

In words, a List τ matches a sequence of records where a single-byte tag (NilTag or
ConsTag) is read, then tested to see whether to stop parsing the list (NilTag) or to continue
on to parse a τ into the hd field and recurse in order to process the remainder of the list. An
incorrect value for the tag results in failure. Thus, the list of integers

Cons(1, Cons(2, Cons(3, Nil)))

can be represented in a message as (assume Code is an encoder for integers)

ConsTag · Code(1) · ConsTag · Code(2) · ConsTag · Code(3) · NilTag
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and match, given type List int (where int is a contiguity type for some flavor of integer)
succeeds, returning the context

root.tag 7→ ConsTag
root.hd 7→ Code(1)

root.tl.tag 7→ ConsTag
root.tl.hd 7→ Code(2)

root.tl.tl.tag 7→ ConsTag
root.tl.tl.hd 7→ Code(3)

root.tl.tl.tl.tag 7→ NilTag

This solution is compositional, in the sense that List types can be the arguments of other
contiguity types, can be applied to themselves, e.g., List(List τ), etc. Thus quite general
branching structures of arbitrary finite depth and width can be specified and parsed with this
extension. The approach captures a certain class of context-free-like languages. However, it
differs distinctly from the standard Chomsky hierarchy, mainly because sums are determined
by looking behind when computing which choice to follow in an Alt type; for example, the
list parser branches after it has seen the tag. The similarity with ‘no-lookahead’ parsing,
such as LL(0) and LR(0), deserves further investigation.

▶ Example 14 (First order term challenge). Although lists of contig types can be straightfor-
wardly constructed with the above encoding, there remains a problem when lists are part of
a recursive construction. A classic example is first order terms, as described by the following
ML-style datatype:

term = Var of string
| App of string * term list

The following contiguity types capture a binary encoding of term, using tags to distinguish
the two kinds of term:

string = {len : u16, elts : char [len]}

term =


tag : u8
test : Alt (tag = VarTag) −→ {varName : string}

(tag = AppTag) −→ {fnName : string, Args : List term}
otherwise −→ Void

However, such nested recursive specifications demand more elaborate constructions, for
example treating term and List as being mutually recursively defined, as is already done for
nested recursive datatypes in theorem provers [6].

4.3 Lexing
Currently, the set of base contiguity types comprises the usual base types expected in most
programming languages. Semantically, a base type denotes a set of strings of the specified
width, but it is also coupled with an interpretation function for example, the contiguity
type u8 denotes the set of all one-byte strings, interpreted by the usual unsigned valuation
function:

u8 = ({s | length(s) = 1}, toN)
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This approach cannot, however, capture base types such as string literals of arbitrary size, or
bignums, or the situation in packed bit-level encodings where fields are of ad hoc sizes aimed
at saving space. A common generalization is to express base types via regular expressions
paired with interpretation functions. In that setting u8 can be defined as

u8 = (. , toN)

(where ‘.’ is the standard regular expression denoting any character). Similarly,

Cstring = ([\001 − \255]∗\000, λx. x)

denotes the set of zero-terminated strings, as found in the C language. Its displayed
interpretation is just the identity function, but could just as well be a function that drops
the terminating \000 character.

Scott Owens has already formalized a HOL4 theory of regexp based, maximal munch,
lexer generation, and it is future work to adapt contiguity types to use those lexemes instead
of the current restricted set of base types.

5 Application

In the DARPA CASE project, we have been applying contiguity types to help create provably
secure message filters and runtime monitors. One example we have been working with is
OpenUxAS, which has been developed by the Air Force Research Laboratory.4 UxAS is
a collection of modular services that interact via a common message-passing architecture,
aimed at unmanned autonomous systems. Each service subscribes to messages in the system
and responds to queries. The content of each message conforms to the Light-weight Message
Control Protocol (LMCP) format. In UxAS, software classes providing LMCP message
creation, access, and serialization/deserialization are automatically generated from XML
descriptions, which detail the exact data fields, units, and default values for each message.
All UxAS services communicate with LMCP formatted messages.

An example LMCP message type is AirVehicleState. The following is its contiguity type:

AirVehicleState =
{EntityState : EntityState
Airspeed : float
VerticalSpeed : float
WindSpeed : float
WindDirection : float

}

where an EntityState is quite an elaborate type:

{ ID : i64
u : float
v : float
w : float
udot : float
vdot : float
wdot : float
Heading : float

4 See https://github.com/afrl-rq/OpenUxAS.

https://github.com/afrl-rq/OpenUxAS
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Pitch : float
Roll : float
p : float, q : float, r : float
Course : float
Groundspeed : float
Location : mesgOption "LOCATION3D" location3D
EnergyAvailable : float
ActualEnergyRate : float
PayloadStateList

: uxasBoundedArray (mesgOption "PAYLOADSTATE" payloadState) 8
CurrentWaypoint : i64
CurrentCommand : i64
Mode : uxasNavigationMode
AssociatedTasks : uxasBoundedArray i64 8
Time : i64
Info : uxasBoundedArray(mesgOption "KEYVALUEPAIR" keyValuePair) 32

}

Most of the fields are simple base types, but the Location field and the PayloadStateList are
complex. They are expressed with some derived syntax, which we will explain.

The Location field, mesgOption "LOCATION3D" location3D, may or may not occur (signalled
with a tag field), but if it does, it is a location3D, which is a GPS location, and its latitude,
longitude, and altitude fields are checked with an Assert to make sure they lie within the
expected numeric ranges, which are expressed as floating point numbers.

AltitudeType = AGL | MSL

location3D = {
Latitude : double,
Longitude : double,
Altitude : float,
AltitudeType : AltitudeType,
Wellformed : Assert (

-90.0 <= Latitude <= 90.0 and
-180.0 <= Longitude <= 180.0 and
0.0 <= Altitude <= 15000.0)

}

The PayloadStateList is a variable-length array of optional records, with maximum length
8. Each record has, along with other fields, its own variable-length array of key-value
pairs, and the key and value of each such pair is a variable-length string.

We have formalized most of the LMCP messages as contiguity types, and created filters
and parsers by instantiating the match algorithm. In order to meet the demands of LMCP
message modelling, the matcher algorithm has been upgraded to support a fuller expression
and boolean expression language, but the core algorithm is the same as our verified core
version. The filters and parsers have been added to an existing UxAS design and successfully
tested with the UxAS simulator.

6 Extensions and future work

Various extensions have been easy to add to the contiguity type framework, and we also have
more substantial ideas to pursue for future work.
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Enumerations An enumeration declaration introduces a new base contiguity type, and also
adds the specified elements to a map associating constant names to numbers. Suppose
that enumerations are allowed to have up to 256 elements, allowing any enumerated
element to fit in one byte. The following enumeration is taken from UxAS messages:

NavigationMode
= Waypoint | Loiter | FlightDirector
| TargetTrack | FollowLeader | LostComm

A field expecting a NavigationMode element will be one byte wide, and thus there are 250
byte patterns that should not be allowed in the field. Thus, the contig

{ A : NavigationMode }

should be replaced by

{ A : NavigationMode
A-range : Assert (A <= 5)

}

Raw blocks A raw chunk of a string (byte array) of a size that can depend on the values of
earlier fields is easy to specify:

Raw exp

For example, a large Array form can lead to a large number of L-values being stored in θ;
if none are ever accessed later, e.g., if the array is some image data, it can be preferable to
simply declare a Raw block. Thus a 2D array can be blocked out in the following manner:

{ rows : i32
cols : i32
block : Raw (rows * cols)

}

Guest scanners It seemed useful to provide a general ability to host scanning functions.
This is accomplished via the following constructor:

Scanner (scanfn : string → (string × string)option)

When a custom scanner is encountered during the matching process, the scanner is
invoked on the input and should either fail or provide an (s1, s2) pair representing a
splitting of the input. Then s1 is added to θ at the current lval, and matching continues
on s2.

Non-copying implementations In the discussion so far, we have assumed that the input
string is being broken up into substrings that are placed into the lval map θ. However,
very little is changed if, instead of a substring, an lval in θ maps to a pair of indices
(pos, width) designating the location of the substring. The result is a matcher that never
copies byte buffer data. This is necessary to synthesize efficient filters.
In making this representation change, there is a slight change to the semantics. In the
original, θ(lval) yields a string whereas in the non-copying version, θ(lval) yields a pair of
indices, which means that the original string str0 needs to be included in applying the
assignment.
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Compilation Our current implementation of contiguity types is in an interpreted style: the
evaluation of numeric Array bounds and boolean guards on Alt conditions is done with
respect to the current context, which is explicitly accumulated as the message is processed.
However, notice that the host programming language will no doubt already provide
compilation for numeric and boolean expressions. This leads to the idea of compiling
contiguity types: the current matching algorithm for contiguity types can be replaced
by the generation of equivalent host-language code which is then compiled by the host-
language compiler and evaluated. Although the current contiguity type matcher has
proved to be fast enough to keep up with the real-time demands of the UxAS system, we
expect that a compiled version of the code would be much faster.
We would like to formalize the compilation algorithm and prove it correct. Since the
CakeML[9] formalization provides an operational semantics for CakeML programs, and
a convenient translation from HOL4 expressions to CakeML ASTs, one should be able
to prove a correctness theorem relating the matcher function of the present paper with
a compiler that takes a contiguity type and generates CakeML. However, this is only
speculative; there are many details to work out.

Relationship with grammars Contiguity types and match provide a type-directed and
context-oriented parser generator that has some similarities with LL(0) or LR(0) languages
wherein the parser can proceed with no lookahead. This is useful for binary-encoded
datastructures. It would be very interesting to attempt to bridge the gap with conven-
tional parsing technology based on grammars. A good beginning would be to understand
the issues involved in attempting to translate context-free grammars into contiguity types
and vice versa.

7 Related work

As mentioned in the introduction, domain specific languages for message formats have
been around for a long time. Semantic definitions and verification for them is a much
more recent phenomenon. The PADS framework [4] aimed at supporting a wide variety of
formats, including text-based. Its core message description formalism was given semantics by
translation into dependent type theory. An interesting integration of context-sensitivity into
a conventional grammar framework has been done by Jim and Mandelbaum [7]. Everparse
[11] is an impressive approach, based on parser combinators and having an emphasis on
proving the invertibility of encode/decode pairs with automated proof (other properties are
also established). Chlipala and colleagues [2] similarly emphasize encode/decode proofs,
basing their work in Coq and using the power of dependent types to good effect. Formats
based on dependent types can (and do) use the built-in expressive power of type theory to
enforce semantic properties on data. A recent language in this vein is Parsely [10] which
leverages the dependent records and predicate subtyping of PVS to provide a combination of
PEG parsing and attribute grammars aimed at parsing complex language formats.

Many of these efforts obtain the semantics of the data description formalism by translation
into features provided by a powerful host logic. In contrast, contiguity types use only very basic
– and easily implemented – concepts. This means that contiguity type matchers, parsers, and
extensions can be directly implemented in any convenient programming language. Contiguity
types also provide a kind of dependency, without leveraging the type system of the theorem
prover. We suspect that working at the representation level, and using L-values, allows one
to get some of the benefits of type dependency. Another distinguishing aspect of our work is
that our emphasis on filters means that we are primarily interested in the enforcement of
semantic properties on message contents rather than encode/decode properties. In future
work we expect to be able to leverage this in high performance filter implementations.
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8 Conclusion

We have designed, formalized, proved correct, implemented, and applied a specification
language for message formats, based on formal languages and the venerable notion of L- and
R-values from imperative programming. The notion of contiguity type seems to give a lot of
expressive power, sufficient to tackle difficult idioms in self-describing formats. Contiguity
types integrate common structuring mechanisms from programming languages, such as arrays,
records, and lists while keeping the foundation in sets of strings, which seems appropriate for
message specifications.
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