A Mechanized Proof of the Max-Flow Min-Cut
Theorem for Countable Networks

Andreas Lochbihler &2 &
Digital Asset (Switzerland) GmbH, Ziurich, Switzerland

—— Abstract

Aharoni et al. [3] proved the max-flow min-cut theorem for countable networks, namely that in
every countable network with finite edge capacities, there exists a flow and a cut such that the flow
saturates all outgoing edges of the cut and is zero on all incoming edges. In this paper, we formalize
their proof in Isabelle/HOL and thereby identify and fix several problems with their proof. We also
provide a simpler proof for networks where the total outgoing capacity of all vertices other than the
source is finite. This proof is based on the max-flow min-cut theorem for finite networks.

2012 ACM Subject Classification Mathematics of computing — Network flows; Theory of computa-
tion — Higher order logic; Theory of computation — Logic and verification

Keywords and phrases flow network, optimization, infinite graph, Isabelle/HOL
Digital Object Identifier 10.4230/LIPIcs.ITP.2021.25

Related Version A full version with informal proofs and more counterexamples is available:
Full Version: http://www.andreas-lochbihler.de/pub/lochbihler2021itpl.pdf [18§]

Supplementary Material The formalization is available in the Archive of Formal Proofs:
Software (Formalization): http://www.isa-afp.org/entries/MFMC_Countable.shtml [16]

Funding Swiss National Science Foundation grant 153217 “Formalising Computational Soundness
for Protocol Implementations”. This work was partially done while the author was at ETH Zurich.

Acknowledgements We thank Ron Aharoni and Eli Berger for helping to clarify the weaknesses in the

original proofs. S. Reza Sefidgar and the anonymous reviewers helped to improve the presentation.

1 Introduction

The max-flow min-cut (MFMC) theorem for finite networks [10] has wide-spread applications:
network analysis, optimization, scheduling, etc. Aharoni et al. [3] have generalized this
theorem to countable networks, i.e., graphs with countably many vertices and edges, as
follows:

» Theorem 1. Let A = (V, E, s,t,c) be a directed graph with countably many edges E C VXV,
vertices s and t and a capacity function c :: E — Rx>q. There ezists a flow f and an s-t-cut
C such that f saturates all outgoing edges e of C, i.e. f(e) = c(e), and is 0 on all incoming
edges.

The countable MFMC theorem is used, e.g., in probability [22] and programming language
theory [17], privacy [7], and for random walks [21]. Here, we formalize this theorem in
Isabelle.

Traditionally, the max-flow min-cut theorem is stated in terms of equality of values:
The value of the maximum flow is equal to the value of the minimum cut. Here, a flow
f 1+ B = Ry>(assigns values to the edges of A such that the incoming and outgoing amounts in
every vertex are the same, except for the source s and the sink ¢. The value |f] is the amount
that leaves the source s, ie., [f| = 3, cour(s) f(s,2) where OUT(z) = {y | (z,y) € E}.
Dually, an s-t-cut partitions the vertices into two sets (C,V — C) such that C contains the
source s but not the sink ¢. Its value |C| is the total capacity of the edges that leave C:
€l = X\ couriey €(e) where OUT(C) = {(z,y) € B |z € C Ay & C}.

? Andiieas Ic;OChcbihl?; ¢ Li CC-BY 4.0
BY icensed under reative ommons License .

12th International Conference on Interactive Theorem Proving (ITP 2021).
Editors: Liron Cohen and Cezary Kaliszyk; Article No. 25; pp. 25:1-25:18

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:mail@andreas-lochbihler.de
http://www.andreas-lochbihler.de
https://orcid.org/0000-0002-5851-494X
https://doi.org/10.4230/LIPIcs.ITP.2021.25
http://www.andreas-lochbihler.de/pub/lochbihler2021itpl.pdf
http://www.isa-afp.org/entries/MFMC_Countable.shtml
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2

A Mechanized Proof of the Max-Flow Min-Cut Theorem for Countable Networks

— @ source vertex
D (1)
1) 2 1 @\ .. @ sink vertex
@ 1
\0 A5 1
2
1

c] edge capacity

flow through an edge

2 cut
Figure 1 A countable network with a flow and a cut of infinite value.
For finite networks, the equality-of-values condition |f| = |C| is equivalent to the flow

f saturating the cut C. In infinite networks, the saturation condition is preferable. For
example, Fig. 1 shows a network with source s and sink ¢ and countably many vertices
xz;. The edge capacities are given as white rounded rectangles on the edges. The black
rectangles denote a flow f and the vertices in the grey area form a cut C'. The flow f
saturates the outgoing edges of C' and we have |f| = oo = |C|. However, there is another
flow ¢ given by g(e) = 1/2f(e) that sends only half the amount of f. Still, |g| = 0o = |C|.
So the equality-of-values condition does not distinguish between f and g. Yet, we should
consider only f a maximum flow, not g, as one can obviously increase g on some edges. The
cut-saturation condition achieves this as it compares the finite capacities of individual edges
with the flow through them.

This subtlety highlights the main challenge in proving the max-flow min-cut theorem
for countable networks: avoiding infinite summations. Aharoni et al’s proof performs an
elaborate dance around this problem, transforming the network several times on the way.
Our formalization follows these steps through all the transformations (Sect. 3) until the
problem is reduced to finding some sort of matching in an infinite bipartite graph. The
original proof then jumps back to arbitrary networks. Our proof forks into two proofs: The
first takes a shortcut to a significantly simpler argument based on the max-flow min-cut
theorem for finite networks (Sect. 4.1). This shortcut works only for networks where the
sum of the capacities of the outgoing edges of any vertex other than the source is finite.
This condition is met in some applications [7, 17]. The second proof follows the original
(Sect. 4.2).

Our main contributions are as follows:

We have formalized Aharoni et al’s strong version of the max-flow min-cut theorem

for countable networks in Isabelle/HOL. The resulting formalization is usable in other

formalizations; e.g., we have applied it to the problem of proving parametricity of a

probabilistic programming language with recursion [17]. The formalization has clarified

the definitions and theorems and has revealed several problems in the original proofs

(Sect. 6), which we have fixed. In particular, the reduction to bipartite graphs did not

work as expected and required more general theorems.

We give an alternative proof for the case when every inner vertex of a network has only

finite total outgoing capacity. This local boundedness assumption allows us to reuse

Lammich and Sefidgar’s formalization of the max-flow min-cut theorem for finite networks

[14] by applying a majorised convergence argument. This proof is considerably simpler

and suffices for some use cases in programming languages and privacy [7, 17].

Neither of the two proofs requires a large background theory; basic notions like infinite
summations, monotone and majorised convergence, and fixpoints of increasing functions
suffice. The formalization therefore does not rely on specific Isabelle/HOL features and could
have been done similarly in other systems like HOL4 and Coq.

A. Lochbihler

@85@7;;29
OF

Figure 2 Example of a network (left) and a flow (values of 0 are omitted) with an orthogonal cut,
and the corresponding web (right) with a maximal wave (black rectangles) and its set of terminal
vertices (grey circles). Capacities and weights are shown as labels in rounded rectangles.

The formalization started in 2015 and a first version was published in the Archive of
Formal Proofs in 2016. This paper describes the cleaned-up version for Isabelle2021 [16],
which also includes the simpler proof for the bounded case. This paper first presents the
corrected proof using conventional mathematical notation (Sects. 2-4). We discuss the
formalization aspects in Sect. 5 and the problems with the original proof in Sect. 6.

2 Graphs, Networks, and Webs

In this section, we introduce the relevant notions for graphs, networks, and webs. The
terminology and notation follows [3] to ease the comparison and make the presentation
accessible to mathematicians. Formalization considerations will be discussed in Sect. 5.

» Definition 2 (Graph). A (directed) graph G = (V, E) consists of a set of vertices V and a
set of directed edges E CV x V. A graph is countable iff its set of edges is countable. The
neighbours of a verter x € V are given by OUT¢g(z) ={y | (z,y) € E} and INg(z) ={y |
(y,x) € E'}. If the graph G is obvious from the context, we drop the subscript G.

Given a function f :: E — Rx, the in-degree dJ? 2V = RS, of [given by d;(l‘) =
ZyEIN(m) f(y,x) assigns to each vertex x € V the sum of f over all incoming edges to x.
Analogously, d}'(:c) = ZyGOUT(x) f(x,y) denotes f’s out-degree of x € V. If d}'(x) =0,
then x is a sink for f. The set SINK(f) denotes the set of sinks for f.

» Definition 3 (Network). A network A = (V) E, s,t,¢) is a graph (V, E) with two dedicated
vertices, the source s and the sink t, and a capacity function c :: E — R>o. A network is
countable iff the graph is countable.

» Definition 4 (Flow). For a network A = (V, E,s,t,¢), a flow f :: E — Rxq in A satisfies
1. (Capacity restriction) f(z,y) < c(x,y) for all (x,y) € E, and

2. (Kirchhoff’s 1°¢ law) d;(x) = d}'(m) forallx e V—{s,t}.

The value |f| of a flow f is f’s out-degree of s: |f| = d}'(s).

» Definition 5 (Orthogonal cut). In a network A = (V, E, s,t,c), a set of vertices C is a cut
iff s€eC andt ¢ C. A cut C is orthogonal to a flow f iff f saturates all edges going out of
C (ie., f(z,y) =c(z,y) for all (z,y) € E withax € C and y ¢ C) and f is zero on all edges
entering C (i.e., f(x,y) =0 for all (x,y) € E withx ¢ C and y € C).

We have already seen an orthogonal pair of a flow of infinite value and a cut in Fig. 1.
Another example of an orthogonal flow-cut pair of value 9 is shown in Fig. 2 on the left.

25:3

ITP 2021

25:4

A Mechanized Proof of the Max-Flow Min-Cut Theorem for Countable Networks

Figure 3 The network and web from Fig. 2 with a different flow (left) and a web-flow (right).

A network constrains the capacities of the edges in a graph, but the throughput of a
vertex is unconstrained. So the sums on the two sides of Kirchhoft’s first law may be infinite.
To avoid such infinite sums, a web constrains the throughput of a vertex and leaves the edge
capacity unconstrained. Section 3.1 explains how to convert between networks and webs.

» Definition 6 (Web). A web I' = (V, E, A, B,w) is a graph (V, E) with two sets of vertices
A,B CV (the sides A and B) and a weight function w :: V. — Rso. We refer to the
components of I' by Vi, Er, Ar, Br, and wr.

The two vertex sets A and B correspond to the source and sink of a network, respectively.
Currents in a web take the role of flows in a network. The difference is that vertices may
leak some of the incoming current (condition 2), i.e., they need not preserve the current.

» Definition 7 (Current). Given a web ' = (V, E, A, B,w), a current f :: E — R satisfies
1. (weight restriction) dy (z) < w(x) and d}f(:v) <w(z) forallz eV,

2. (flow reflection) d (x) > d?(x) forallz e V— A, and

3. (side restriction) d; (z) =0 for x € A and djf(y) =0 forye B.

A current f is called a web-flow if d} (z) = d}'(m) forallz e V- (AUB). If d}"(:v) > w(x),
then f exhausts z. If v € A or d;(x) > w(z), then f saturates x. A saturated sink x is

called terminal. The set of saturated vertices is written as SAT(f) and the set of terminal
vertices as TER(f) = SAT(f) N SINK(f).

Figure 2 shows an example web on the right where the weight of the vertices are shown in
rounded rectangles. It is derived from the network on the left as we will see in Sect. 3.1. The
black rectangles specify a current f whose terminal vertices TER(f) are shown in grey. It
exhausts none of the vertices. The current f is not a web-flow because some vertices are
leaking, e.g., d; (bc) =7 > 6 = d}'(bc).

Figure 3 shows a different flow and current for same network and web, respectively. The
flow on the left differs from the one in Fig. 2 only in that three units are routed through (s, a)
and (a, ¢) instead of through (s,b) and (b,c). So the vertex ¢ now mixes the units coming
from a with the three units coming from b and outputs five of them to d and one to e. On the
right, a web-flow is shown, which refines the flow on the left as will be explained in Sect. 3.1.
The light-grey area contains the exhausted vertices, namely ad, cd, and ce. There are no
terminal vertices as the three sinks dt, et, and eb are disjoint from the saturated vertices sa,
sb, ad, cd, and ce.

» Definition 8 (Essential vertex). Given sets of vertices S and B in a graph G = (V, E),
a vertex x € S is essential in S iff there is a path from x to a vertexr in B which does not
contain a vertex in S — {x}. The set of essential vertices of S is written as Eg p(S).

A. Lochbihler

» Definition 9 (Separation and roofing). A set S of vertices in graph G separates a vertezr x
from a set of vertices B iff every path from x to a vertex in B contains a vertex in S. The
set S is said to separate a set of vertices A from B iff it separates every vertex in A from B.

The roofing of S and B (notation RF ¢ g(S)) consists of all vertices which S separates
from B. The strict roofing excludes essential vertices: RFg 5(S) = RFq,5(S) — £a,5(S).

In a web T = (V,E, A, B,w), S is A-B-separating iff it separates A and B. If [is
a current in I', we abbreviate E(f) = &r p(TER(f)) and RF(f) = RFr g(TER(f)) and
RF°(f) = RF}. 5(TER(f).

In the web in Fig. 2, the grey vertices TER(f) separate A from B. The vertex ac is not
essential in TER (f) as all paths from ac to B pass either through cd or ce, which are both in
TER(f). The roofing RF(f) contains all the vertices to the left of ad, c¢d, and ce, inclusive,
i.e,, RFE(f) = {sqa, sb, ac, be, ad, eb, cd, ce}. The strict roofing RF°(f) excludes the essential
vertices ad, eb, and ce. Since ac is not essential in TER(f), the strict roofing includes ac.

» Lemma 10 ([2, Lemma 2.14]). If S separates A from B in G, so does Eg,p(S5).

The key tool for the proof is the concept of a wave. Waves are currents whose terminal

vertices separate A from B and which are zero outside of the roofing of the terminal vertices.

Intuitively, a wave’s essential terminal vertices identify a bottleneck in the web: since the
wave saturates them, all other separating sets between the A side and the terminal vertices
must allow at least the same current.

» Definition 11 (Wave). A current f in T is a wave iff TER(f) is A-B-separating and
d?(x) =0 for z ¢ RF(f).

In Fig. 2, the current f is 0 outside of RF(f), i.e., on the edges entering B. So f is a wave.

Conversely, the web-flow ¢ in Fig. 3 is not a wave as TER(g) = {} does not separate A
from B.

3 From Networks to Bipartite Webs and Back

Aharoni et al’s proof proceeds in four steps [3]:
1. Transform the network into a web.
Find a maximal wave in the web. Its roofing determines the cut.

2.
3. Trim the wave, i.e., reduce the wave such that strictly roofed vertices preserve the current.
4,

Extend the wave to a web-flow. This uses a reduction to bipartite webs in which every
current is a web-flow by definition.
In this section, we cover these steps up to the reduction to bipartite webs. The next section
takes care of actually finding a suitable current in the bipartite web.

3.1 From Networks to Webs

The first step reduces a network A to a web, which we denote by web(A). Every edge e
becomes a vertex of web(A) with weight ¢(e). Every two incident edges (z,y) and (y, z) in
the network induce an edge between the vertices (z,y) and (y, z) in web(A). The side A
consists of the edges leaving s and B of the edges entering ¢. Formally:

Viweb(a) = Ea Wyeb(a)(€) = c(e) Agena) =1{(s,9) | (5,y) € Ea}
Eyena) = {((2,9), (y,2)) | (,9y) € Ea A (y,2) € EA} Byeba) = {(2,1) | (2,1) € Ea}

25:5

ITP 2021

25:6

A Mechanized Proof of the Max-Flow Min-Cut Theorem for Countable Networks

Figure 4 A separating set (grey area) that Figure 5 A trimming of the wave from
is not orthogonal to the shown web-flow. Fig. 2.

For example, Figs. 2 and 3 show the same network A on the left and the corresponding
web web(A) on the right. Webs have the advantage over networks that the current makes
explicit how the incoming flow is split up into the outgoing edges of a vertex. In Fig. 3, e.g.,
the web-flow on the right specifies that the three units flowing from sa to ac split up into
two units going to c¢d and one unit going to ce. The flow in the network on the left cannot
express this detail: the vertex ¢ mixes the two incoming flows of 3 units each and distributes
somehow into five and one outgoing units.

Webs therefore allow us to capture flow preservation more precisely than networks. For if
a flow f through a network vertex x is infinite, then flow preservation at x merely states
that both sums are infinite: d; (z) = d;{(x) = oo. This creates problems if we want to
subtract two infinite flows f and g from one another because d; (z) — d; (z) = 0o — oo is not
meaningful. So even if both f and g satisfy Kirchhoff’s first law at a vertex, it is not clear
that their difference f — g satisfies it. In the corresponding web, in contrast, a web-flow g
specifies precisely the finite amount each incoming edge contributes to each outgoing edge.
So for a web-flow or current g, the sums d () and d/f (z) are finite because they are bounded
by the finite vertex weights, i.e., the edge capacities in the network. Accordingly, subtraction
of flows has nice algebraic properties such as d; (z) — d (z) = d;_ (2) if f > g.

We next transfer the orthogonality notion from networks to webs. We show that an
A-B-separating set S and an orthogonal web-flow f in web(A) induce a cut S and an
orthogonal flow f in the original network A. Figure 3 illustrates the reduction: The flow f
in the network A on the left corresponds to the web-flow f in web(A) on the right. The set
E(SAT(f)) in grey on the right is orthogonal to the web-flow f and yields the cut S on the
left.

» Definition 12 (Orthogonal current). Let I' = (V, E, A, B,w) be a web. A set of vertices S
is orthogonal to a current f iff

(i) d (z) = w(x) forz € S — A,

(i) d}'(x) =w(x) forz € (SNA)— B, and

(iii) f(z,y) =0 for x € V —RF°(S) and y € RF(S).

Intuitively, an orthogonal current exhausts the vertices in S unless the vertex belongs
to both sides. Condition (iii) ensures that nothing flows back into the roofed vertices. For
example, the web-flow in Fig. 4 is not orthogonal to the vertices in the grey area, because
one unit flows from the essential vertex ce back to the roofed vertex eb.

» Lemma 13 (Reduction from networks to webs). Let A = (V| E, s,t,c) be a network with
s # t and no outgoing edge from t and no direct edge from s to t. Suppose that all edges have
positive capacity, i.e., c¢(e) > 0 for e € E.

A. Lochbihler 25:7

(a) LAet f be a web-flow in web(A). Define f by f(e) = max(d;{(e),d;(e)) fore € E. Then,
f s a flow in A.

(b) Let S be an A-B-separating set in web(A). Define S = RFA (y({z | Fy. (z,y) € £(5)}).
Then S is a cut in A.

(c) Let an A-B-separating set S be orthogonal to a web-flow f. Then S is orthogonal to f

By this lemma, to find a cut and an orthogonal flow in a network A, it suffices to find a
separating set of vertices in web(A) and an orthogonal web-flow f. In the next section, we
focus on finding a suitable separating set, namely the terminal vertices of a maximal wave.

3.2 Maximal Waves and Trimmings

Waves and currents can be ordered pointwise: if f and g are waves or currents in ' =
(V,E, A, B,w), then f < g iff f(e) < g(e) for all e € E. The waves in a countable web form
a chain-complete partial order (ccpo), and so do the currents. Therefore, every countable
web contains a maximal wave [3, Cor. 4.4] by Zorn’s lemma.

Recall that a wave’s terminal vertices describe a bottleneck in the web. Intuitively, the
maximal wave identifies a narrowest bottleneck in the web: Roughly speaking, the roofed
part cannot contain a tighter bottleneck because if so, the current could not saturate the
terminal vertices due to the flow reflection condition. Conversely, if a separating set beyond
the terminal vertices formed a tighter bottleneck, then we could extend the wave and saturate
that smaller bottleneck, which contradicts maximality. Here, it is crucial that a wave may
partially leak the incoming current of some vertices, i.e., they need not preserve the current.

A trimming of a wave reduces the current such that the incoming current is preserved on
the strict roofing. For example, the wave in Fig. 2 on the right is maximal. Its trimming is
shown in Fig. 5. The current is reduced on the edge from sb to bc from 7 to 6 and on the
edge from sa to ac from 4 to 0.

» Definition 14 (Trimming). Let f be a wave in T = (V, E, A, B,w). A wave g is called a
trimming of f iff

() g< 7,

(i) df (z) = d, (x) for all x € RF°(f) — A, and

(iii) £&(TER(g)) — A =&(TER(f)) — A.

» Lemma 15 ([3, Lemma 4.8]). Every wave in a countable web has a trimming.

Proof. The trimming for a wave f is constructed as the transfinite fixpoint iteration of the
one-step trimming function t¢rim; starting at f. For a wave g, trim;(g) picks some strictly
roofed vertex z where Kirchhoff’s first law does not hold, i.e., 2 € RF°(g) = AAd]} (2) # d (2).

+
Then, trim; reduces the current on 2’s incoming edges by the factor 318 so that Kirchhoff’s
g
first law holds at z afterwards.
9(y,x) if g is a trimming

trima(9)(y, =) = if £ = 2 then MO g
dg (2)

(y,x) else g(y,x) if such a z exists

The fixpoint exists by Bourbaki-Witt’s fixpoint theorem [8] as trim; is decreasing, i.e.,
trim1(g) < g, and the set of waves g with g < f is a chain-complete partial order w.r.t. >. The
proof that the fixpoint satisfies the trimming conditions relies on d™ and d~ being point-wise
order-continuous, which holds by monotone convergence as the web is countable. <

ITP 2021

25:8

A Mechanized Proof of the Max-Flow Min-Cut Theorem for Countable Networks

. :
5 9 1 2
1 2 1 0 B
A B A
Figure 6 The quotient of the web and Figure 7 A web that contains no non-zero
wave of Fig. 2 with a linkage. wave, but the zero wave is a hindrance.

3.3 A Linkage in the Quotient of a Web

The trimming of a maximal wave f describes the first half of the web-flow we are looking
for (Fig. 5). For the second half, we consider the residual web beyond f’s terminal vertices,
which is called the quotient '/ f. Figure 6 shows the quotient for the web and wave f from
Fig. 2. The essential terminal vertices of the wave become the side A. The quotient does
not include the roofed vertex eb even though it is reachable from E(TER(f)) as we want to
construct an orthogonal current and nothing may flow back into roofed vertices. The formal
definition is a bit complicated so that it also works when there are edges between vertices
in E&(TER(f)) or when E(TER(f)) contains vertices from B. The details are discussed in
Sect. 6.

» Definition 16 (Quotient). Let I' = (V, E, A, B,w) and f be a wave in T'. The quotient T/ f
is the following web:

Erp={(z,y) € E|x ¢ RFp(f) Ay € RFp(f)}

Ap/f = EF(TERF(f)) - (B - A) and Bp/f =B

wrp(z) = w(z) for v € V — (RFR(f) U (TERr(f) N B)) and wr/p(xz) = 0 for x €

TERr(f) N B.
In the quotient I'/f, we now look for a web-flow g that saturates all vertices in A4, i.e.,
TER(f). Such a web-flow is called a linkage. Then, the web-flow in I' is given by the
trimming of f plus g. Figure 6 shows such a linkage; together with the trimmed wave from
Fig. 5, they form the orthogonal web-flow whose reduction (Lemma 13) yields the network
flow shown in Fig. 2.

» Definition 17 (Linkage [3, Def. 4.1]). A web-flow f in a web T = (V, E, A, B,w) is called
a linkage iff f exhausts all vertices in A, i.e., d}'(a) =w(a) for all a € A.

Under what conditions does a web I' contain a linkage? Certainly, there must not be a
bottleneck beyond the A side. Waves describe such bottlenecks. So if the zero wave is the
only wave in I', then the A side is the only bottleneck. Moreover, we need that all vertices
in A are essential for separation unless their weight is 0. For example, the web in Fig. 7
contains only the zero wave, but not a linkage. The problem is that the vertex as with
weight 1 is bottlenecked by the zero-weight vertex x € E(TER(0)). Such a situation is called
a hindrance.

» Definition 18 (Hindrance, looseness, [3, Def. 4.5]). A wave f in a web T = (V, E, A, B,w)
is a >e-hindrance iff there is a vertex a € A — E(TER(f)) such that ¢ < w(a) — d}”‘ (a). Also,
f s a hindrance iff there exists a € > 0 such that f is a >e-hindrance. A web is called
hindered (respectively >e-hindered) iff it contains a hindrance (respectively a >e-hindrance).
A web is called loose iff it contains no non-zero wave and the zero wave is not a hindrance.

A. Lochbihler
= = oy , .
2 all\ ‘/:)3// a/1 _n_ 2
x
2 3 2 3
1 3 7 7
1 1 T/ 1 1 n / 1
2 1 o W 5 o Ml 3
NG b2 (o (=" (="
: . 2 _ .
A 2 B > Ml g o M g
(= (v 2 (%
A B A B
Figure 8 An unhindered web I" (left) and Figure 9 A linkage g in bp(T") (left) that
its bipartite reduction bp(T') (right). The yields a linkage (right) in the web I' from
wave f in bp(I") induces the wave f in I. Fig. 8 by trimming § at vertex z.

» Lemma 19 ([3]). If f is a mazimal wave in the web ' = (V, E, A, B,w), then T'/ f is loose.

3.4 Reduction to Bipartite Webs

To find linkages in countable loose webs, Aharoni et al. [3] transform webs into bipartite
webs. A web Q = (V, E, A, B,w) is bipartite iff there are only edges from nodes in A to nodes
in B,ie.,if V=AUBand ANB=0and E C A x B.

We briefly review the transformation described in [1]; Fig. 8 shows an example. In
this section, we always assume that the web I' = (V, E, A, B,w) has no incoming edges
to vertices in A, no outgoing edges from vertices in B, no loops, and that A and B are
disjoint. In the bipartite web bp(T'), there are two copies ' and z” for every vertex

x €V —(AUB). Vertices x € A and y € B only have one copy «’ and y”, respectively.

The edges are Ey,y = {(z',y") | (z,y) € E}Uu{(2',2") | 2 € V — (AU B)} and the
sides Appry = {2’ | # € V — B} and Byyry = {2” | # € V — A} and the weight function
w(z') =w(x) for x € V — B and w(z"”) = w(z) for x € V — A.

An A-B-separating set S in bp(I') induces an A-B-separating set SinT given by S =

(As N Bs) U (AN Ag)U (BN Bg) where Ag = {v | v € S} and Bg = {v | v € S} [1].

Moreover, a wave f in bp(I') induces a wave f in I given by f(z,y) = f(z',y") for (z,y) € E
with TERr(f) = TERpp(r)(f) [3, Lemma 6.3].

» Lemma 20. IfT is loose, then bp(T') is unhindered.

Aharoni et al. wrongly claimed the stronger statement that if T' is loose then bp(T") is loose
[3, below Thm. 6.5]. We provide a counterexample in Sect. 6. Note that the reduction bp
does not preserve unhinderedness either.

Conversely, a linkage ¢ in bp(T") yields a linkage in T" as illustrated in Fig. 9: For § as

defined above, we have d;(a) =df(a') = w(a) for a € Ar and d;(x) > dj (z) for all x ¢ B.

So the out-flow of some vertices may surpass the in-flow, e.g., x in Fig. 9. Analogously to
the trimming of waves, we can trim § using a fixpoint iteration to obtain the linkage in T'.

» Lemma 21 ([3]). If bp(T') contains a linkage and T' is countable, then T' contains a linkage.

25:9

ITP 2021

25:10

A Mechanized Proof of the Max-Flow Min-Cut Theorem for Countable Networks

4 Linkability in unhindered bipartite webs

By the results in Sect. 3, the max-flow min-cut theorem for the countable case (Thm. 1)
follows from the following theorem, which we prove in this section.

» Theorem 22 (Bipartite linkability). A countable unhindered bipartite web contains a linkage.

In fact, we present two ways how to construct such a linkage in an unhindered bipartite
web. Both ways enumerate the vertices in A = {a1, a9, as, ...} and construct a sequence of
web-flows f; that exhaust {ay,...,a;} so that the limit f exhausts all of A. The difference is
in how the f; are constructed and in the limit argument. In Sect. 4.1, each f; is constructed
independently as the limit of maximum flows in a finite network; the existence and the
linkage property of the limit for these f; themselves is shown using diagonalization and
majorised convergence. Unfortunately, this construction only works if the neighbours of any
a; vertex have finite total weight.

In contrast, f;+1 in Sect. 4.2 saturates a; 1 by extending the previous web-flow f; with
a sequence of augmenting flows in the so-called residual network, similar to how classic
max-flow algorithms for finite networks work [9]. This construction avoids taking infinite
summations and thus yields a proof of Thm. 22 without additional assumptions. However,
the proof is more involved than in the bounded case.

4.1 The Bounded Case

We first prove Thm. 22 for the case where the neighbours of each vertex in A have only
bounded total weight, i.e., > coyr(,) w(y) < oo for all z € A. The general case is shown in
the next section.

The next lemma states the crucial property of unhindered bipartite webs, namely that
the total weight of any finite set of A vertices is at most the total weight of their neighbours
in B.

» Lemma 23. Let Q = (V, E, A, B,w) be a countable unhindered bipartite web and X C A be
finite. Then, 3_, oy w(z) < 3 cpxw(y) where E[X] ={y |3z € X. (z,y) € E} denotes
the neighbours of X .

This lemma allows us to understand a linkage in an unhindered bipartite web as an A x B
matrix over the reals where the weights on A are the row sums of the countable matrix and
the edges describe the matrix elements that may be non-zero. In the proof below, we will
use the following result about the existence of a countable matrix with given marginals. It
is a corollary of a theorem by Kellerer [12, Satz 4.1]. In the formalization, we have proved
the corollary directly by adapting Kellerer’s proof to this special case. This proof uses the
max-flow min-cut theorem for finite networks.

» Proposition 24 (Matrix with given marginals). Let f : A — R>o and g : B — Rxq for
countable sets A, B such that 3, 4 f(i) = >_,;c59(j) < oo, and let R C Ax B. Assume that
Yiex f(@) <X iepix 90) for all X € A. Then, there exists a function h: A x B — Rxg
such that for alli € A and j € B:

h(i,j) = 0 if (i,4) € R,

f(l) = ZjEN h(Za.])7 and

90) = Lien (i, J)-

A. Lochbihler

We can now prove bipartite linkability in the bounded case. The proof starts with a
sequence of increasing finite subsets A,, of A that converge to A, and suitable, possibly
infinite subsets B,, of their neighbours in B. For these subsets, we obtain a A, x B, matrix
h, with the right marginals. This sequence h, converges and its limit yields the desired
linkage, using a majorised convergence argument with the bound on the neighbours.

» Theorem 25 (Bounded bipartite linkability). A countable unhindered bipartite web 2 =
(V,E, A, B,w) contains a linkage if ZyeOUT(x) w(y) < oo for all x € A.

Together with the reduction from Sect. 3, this yields a proof for Thm. 1 when only the
source s in the network A = (V| E| s,t,c) may have outgoing edges whose total capacity is
infinite, i.e., d¥(x) < oo for z € V — {s}. The MFMC use cases in probability theory [22]
and privacy [7] satisfy this condition.

4.2 The Unbounded Case

We now show that Thm. 22 holds even when the neighbours of a vertex have infinite total
weight. Our proof generalizes Aharoni et al’s from loose to unhindered bipartite webs. For
the remainder of this section, we always assume that Q = (V, E, A, B,w) is a countable
bipartite web. We write 2 © f for the bipartite web 2 where the weight of the vertices has
been reduced by the current f that flows through them.

» Definition 26 (Residual web). If Q = (V, E, A, B,w) is a bipartite web and f a current in
Q, we write QO f for the web (V, E, A, B,w') where the new weight function w' is given by
w'(z) = w(z) — d}'(w) forz € A and w'(z) = w(x) — d; (x) forx € B.

The proof rests on the following step: If 2 is unhindered, then we can find a current f
that saturates some vertex a € A such that the residual web 2 © f is unhindered again.

» Lemma 27 (Vertex saturation in unhindered bipartite webs). If Q is unhindered and a € A,
then there exists a current f in) such that d}' (a) = w(a) and Q& f is unhindered.

With this lemma, we can now prove that countable unhindered bipartite webs are linkable
(Thm. 22). The proof is analogous to [3, Thm. 6.5], but uses our Lemma 27 instead.

Proof of Thm. 22. Enumerate the vertices in A as aj,as,.... Recursively define a family
fn of currents in Q as follows:

(i) fo is the zero current.

(i) For n > 0, pick a current g, in Q © f,_1 such that df(a,) = waey,_,(an) and

Q6 fn_1 6 g is unhindered. Set f, = fn_1 +g.

A simple induction on n shows that f,, is a well-defined current in Q and Q6 f,, is unhindered
for all n; here, Lemma 27 applied to 2 © f,,—1 ensures that g, exists. Set g(e) = sup{fn(e) |
n € N} for e € E. Then, g is a current in Q with df (z) = w(z) for all z € A. As every
current in a bipartite web is a web-flow, g is the linkage we are looking for. |

The proof of the saturation lemma 27 uses the following theorems and lemmas, which
have already been proven by Aharoni et al. [3]. We have formalized all of them and fixed the
glitches in the original statements and proofs.

» Theorem 28 (Flow attainability [3, Thm. 5.1]). Let A = (V,E,s,t,c) be a countable
network with s # t, no loops and no incoming edges to s, and such that for all x € V — {t},
the sum of capacities of the incoming edges to x or the sum of capacities of the outgoing
edges from x is finite, i.e., d_ (z) < oo or df (z) < co. Then there exists a flow f in A such
that d}L(s) =sup{|g| | g is a flow in A} and d} (z) < [f| for allz € V.

25:11

ITP 2021

25:12

A Mechanized Proof of the Max-Flow Min-Cut Theorem for Countable Networks

» Lemma 29 ([3, Lemma 6.7]). Let Q = (V, E, A, B,w) be a countable bipartite web and let
u V= Rxg such that u(zx) =0 forxz € A, u(y) <w(y) fory € B, ande =) pu(zr) < oo.
Let ' = (V,E, A, B,w — u) be the web Q) with w reduced by u. If Q' is >e-hindered, then
is hindered.

» Lemma 30 ([3, Cor. 6.8]). Let g be a current in Q with e ==}, pd (b) <oc. IfQO g is
>e-hindered, then) is hindered.

» Lemma 31 ([3, Lem 6.9]). Let Q2 be loose and b € B with w(b) > 0. For every 6 > 0, there
exists an € > 0 such that € < § and Q with the weight of b reduced by € is unhindered.

5 Discussion of the Formalization

We have formalized all definitions, theorems, and proofs mentioned in this paper in Isa-
belle/HOL. This includes all the lemmas and underlying theory. In this section, we discuss
the challenges we faced and the design decisions we made. The issues with the original
definitions, theorems, and proofs and their corrections are discussed in the next section.

Graphs are formalized using Isabelle’s record package [20] as an extensible record with
one field for the edge relation, given as a binary predicate over the vertices of type a. This
yields the projection function edge :: o graph = a = a = bool for the edge field.! From this,
we derive the set E of edges as an abbreviation.

record « graph = edge :: @ = a = bool

definition vertex :: @ graph = o = bool where vertex G = (Jy. edge G = y V edge G y)
type-synonym « edge = a X «

abbreviation E :: « graph = « edge set where Eq = {(x,y). edge G = y}

We derive the set of vertices from edges of the graph rather than modelling them separately.
This has the advantage that we encode the condition £ C V x V in the construction and do
not have to carry around this well-formedness condition in our formalization. Conversely,
graphs in this model cannot have isolated vertices. This is without loss of generality as
isolated vertices cannot contribute to any flow or cut.

Networks are formalized as an extension of the record graph. So all operations on graphs
also work for networks. The same applies to webs.

record « network = « graph + record o web = « graph +
capacity :: @ = ennreal weight :: a = ennreal
source :: « Ao set
sink :: « B:: «aset

Records provide a simple and lightweight means for grouping the components of a network
or web. Particular properties such as countability, finite capacity and weights, and disjoint
sides A and B, are formalized as locales [5]. For example, the locale countable-network
below enforces that there are only countably many edges, the source is not the sink, and
the capacities are finite and 0 outside of the edges. Using the (structure) annotation on
a record variable like A [4], we can omit the network (or web) as subscripts, e.g., in the

L The record package achieves extensibility with structural subtyping by internally generalizing o graph
to (a, B) graph-scheme, where § is the extension slot for further fields. For example, f is instantiated
with the singleton type unit for graph. All operations on graph are actually defined on graph-scheme so
that they also work for all record extensions. We omit this technicality from the presentation.

A. Lochbihler

assumption countable E; Isabelle automatically fills in the corresponding parameter. We use
this notational convenience mainly for definitions that need custom syntax anyway, e.g., &,
RF, and RF°. For plain HOL functions without special syntax like capacity and source, it is
usually faster to type the record parameter than to enter special syntax.

locale countable-network = fixes A :: a network (structure)
assumes countable E and source A # sink A
and e ¢ E = capacity A e = 0 and capacity A e < oo

Since flows, cuts, and capacities are always non-negative, we use the extended non-negative
reals ennreal from Isabelle/HOL’s library everywhere. Summations like the in-degree d~ are
expressed using the Lebesgue integral nn-integral over the counting measure count-space A
on the set A. So every subset of A is measurable and all points have equal weight. Moreover,
every function is integrable and we need not discharge neither integrability nor summability

conditions in the proofs. Just the finiteness conditions of the form » _, < oo are ubiquitous.

We also formalize capacities and weights as ennreal and explicitly require them being
finite in the locales. This avoids coercions from the real numbers real into ennreal, which
would complicate the proof formalization. For example, the in-degree N (f) of y is defined as
follows where), g desugars to nn-integral (count-space A) (Az. g). We let the summation
range over UNIV, the set of all values of «, not only the neighbours of y. Instead, we enforce
that f is 0 outside of E, e.g., via the capacity assumption in countable-network. This way,
d-IN depends only on f and not on the graph. This simplifies the formalization because when
we consider f in the context of different graphs, d-IN f is trivially the same for all of them.

definition d-IN :: (o« edge = ennreal) = a = ennreal where d-IN f y =3 _ v f (z,9)

Regarding the mathematical background theory, we found that most relevant theorems
were readily available in the Isabelle/HOL library: limits, infinite summations via the
Lebesgue integral, monotone and majorised convergence, lim sup and lim inf. There is
even a generic formalization of Cantor’s diagonalization argument by Immler [11]. The
Bourbaki-Witt fixpoint theorem [8], however, was missing. We therefore ported the Coq

formalization by Smolka et al. [23] to Isabelle/HOL. It is now part of Isabelle/HOL’s library.

We have also contributed many lemmas about ennreal and nn-integral to the library.

Apart from identifying and fixing glitches and mistakes in definitions and proofs (Sect. 6),
we faced three main challenges during the formalization. First, the definition and proof
principles in the paper are often not suitable for direct formalization. For example, the
original proofs construct trimmings, linkages and saturating flows using transfinite iteration
and transfinite induction with ordinals. We have replaced them with fixpoints of increasing
or decreasing functions in a chain-complete partial order, using Bourbaki-Witt’s fixpoint
theorem (Lemmas 15, 21, and 27). This way, we did not need to formalize ordinals and their
theory.

Second, applying the theorems from the Isabelle library often needs a small twist. The
proof for the existence of a maximal wave in Sect. 3.2 demonstrates this. The proof that the
least upper bound | |, f; for a chain f; of currents in a web I' is a current relies on Beppo
Levi’s monotone convergence theorem. The challenge here was that the monotone convergence
theorem applies only to countable increasing sequences, whereas Isabelle’s formalizaton of
chain-complete partial orders demands the existence of least upper bounds for arbitrary
(uncountable) chains. We bridge the gap by finding a countable subsequence of any such
chain, which relies on the currents being non-zero only on the countably many edges.

Third, we often faced the problem that a statement had some precondition that was not
met when we wanted to apply it. In an informal proof, these preconditions would be assumed
“without loss of generality” or ignored altogether. We deal with them in two ways: either

25:13

ITP 2021

25:14

A Mechanized Proof of the Max-Flow Min-Cut Theorem for Countable Networks

Table 1 Line counts for different parts of the formalization, not counting empty lines.

Shared Bounded Unbounded
preliminaries 200 matrix for marginals (Prop. 24) 845
networks & webs 2214 flow attainability (Thm. 28) 1954
reductions 1248 bipartite linkability (Thms. 25 / 22) 589 3158
total 3662 1434 5112

introduce a reduction that ensures the precondition or generalize the definitions and proofs
so that they are not needed. Reductions are in general preferable as generalizations often
complicate the definitions and proofs. Additional reductions can be seen, e.g., in Lemma 13.
It assumes that there is no direct edge from s to t and all edges have positive capacity. The
final theorem 1 does not make these assumptions. We therefore introduce another reduction
that splits a potential s-t edge by introducing a new vertex and removes all edges with no
capacity. Similarly, the reduction to bipartite webs in Sect. 3.4 assumes that the web does
not contain loops. These loops would originate from loops in the original network; so we
have another reduction that eliminates loops in networks. Reductions are not always feasible
though. The example of the quotient web (Def. 16) is discussed in the next section.

On the positive side, reasoning about paths in networks and webs was much less of a
pain than we had expected. We formalized a finite path as a list of vertices, which allows us
to reuse Isabelle’s library for lists to manipulate and reason about paths. For example, the
predicate distinct expresses that a path does not contain cycles, and 7 @ [z] @ 7/ denotes the
concatenation of the two paths 7 @ [z] and [z] @ #’. Moreover, we found that £, RF, and
RF° are powerful concepts that allow us to avoid explicitly dealing with paths in the main
lemmas about flows — once we had proven enough properties about them.

Table 1 shows line counts of the Isabelle theories for different parts of the formalization,
as a proxy for the formalization effort. These counts exclude empty lines. The left part
lists the material that is used by both linkability proofs for bipartite webs. This covers
the concepts of networks, flows, webs, currents, (maximal) waves, and trimmings, as well
as the reductions from networks to webs and from webs to bipartite webs. On the right,
the line counts are shown for linkability of bounded (Sect. 4.1) and unbounded (Sect. 4.2)
countable bipartite webs, together with the line counts for the helper statements 24 and
28. The unbounded case requires about 3.6 times as much space as the bounded case if we
include the formalization of the helper statements. If we exclude the helper statements, the
ratio is about 5.4. This highlights how much more complicated the general case is.

We have also generated a PDF from the Isabelle theories using Isabelle’s document
preparation system. The material corresponding to shared and unbounded fill 236 pages.
Aharoni et al. need a bit more than 10 pages in [3]. This gives an expansion factor of about
23. This is much higher than for text book mathematics, where the factor is typically well
below 10 [6, 24]. We take this as an indication that the original paper is very dense.

6 Problems in the Original Proof

We now discuss the problems we have identified in the original paper during the formalization.
We focus on three representative examples here: the reduction to bipartite webs, the definition
of quotient webs, and the notion of trimmings. Further problems are given in the report [18].

A. Lochbihler

e : Sy
2 2 0 2
.ZL‘I\/ 5yx// a/\ ?’x//
1 1 2 YH 2
v L) (i —Aot
1 1 2 YH 2
v HIHE) (s —Aot
1 1 2 YH L2
s) Y=
9 2§
i :
A B : A B
Figure 10 A loose web (left) whose bipartite Figure 11 An unhindered web (left) whose
reduction (right) is not loose as witnessed by bipartite reduction (right) contains a hindrance
the non-zero wave shown. as witnessed at z’.

Reduction to bipartite webs. This is the main problem we have found. Aharoni et al. [3]
claim that the reduction to bipartite webs from Sect. 3.4 preserves looseness, but this is not
the case. In Fig. 10, the web I' on the left is loose, its bipartite transformation bp(I') on
the right is not loose, because it contains the non-zero wave shown. The problem is that
there is no path from the (infinitely many) vertices y; (where ¢ € N) to b. In a finite web, we
could remove all vertices that cannot reach a vertex in B, because they cannot contribute to
a web-flow. In the infinite case, however, we cannot do so easily because such infinite paths
do occur in infinite networks and absorb parts of the (maximal) flow; an example is given
in the conclusion. So their key theorem [3, Thm. 6.5], namely that every countable loose
bipartite web contains a linkage, cannot be used to prove the general case.

Instead, we strengthen the theorem to countable unhindered bipartite webs (Thm. 22).

The induction invariant now is 2 & f,, being unhindered rather than being loose, and the
induction step (Lemma 27) must also be generalized. Fortunately, the original high-level
ideas carry over; our proof composes the lemmas 29, 30 and 31 in a different order. We regain
looseness from unhinderedness by first finding a maximal wave and reducing the weights,
similar to what is happening in Lemma 19. Note that the reduction bp does not preserve
unhinderedness either, as the example in Fig. 11 shows. The web on the left is not loose as
it contains the shown wave.

Quotient webs. Quotient webs (Def. 16) are an example where the definition had to be
changed. This change propagates to the proofs of the basic properties of quotient webs. In
detail, the original definition sets the edges as Er/; = {(z,y) € E | « ¢ RFL(f)Ay ¢ RFL(f)},
i.e., an edge may point to one of f’s essential terminal vertices. Our Definition 16 excludes
these edges. The difference is illustrated in Fig. 12. The quotient '/ f on the right of the

web I’ and the wave f on the left contains the edge (z,z) only with the original definition.

This edge invalidates a number of statements, e.g., that f + ¢ | (I'/f) is a current or a wave
if g is a current or a wave in I, where g [(I'/f) restricts g to the vertices of T'/f. Take, e.g.,
g9(a,z) =2, g(z,x2) = g(z,y) = 1, and g(e) = 0 otherwise.

25:15

ITP 2021

25:16

A Mechanized Proof of the Max-Flow Min-Cut Theorem for Countable Networks

1 0 1 2

a a8 Y b

A B
Figure 13 Wave f in a web

none of whose trimmings g sat-
Figure 12 A wave f in a web I' (left) and the quotient web isfies Aharoni et al’s condition
I'/f (right). The quotient contains the edge (z,z) only in [3]. TER(g9) — A = E(TER(f))—A.

Our definition therefore excludes this edge. And while we were at it, we also changed the
definition of Ap,s and the weights so that the two sides of the quotient are always disjoint
and vertices without edges have weight 0. These changes ensure that the quotient web meets
the assumptions of the reduction to bipartite webs (Sect. 3.4). Accordingly, we had to adapt
the existing proofs about the quotient web’s properties or find new ones.

Trimmings. The definition of trimmings (Def. 14) is an example of a small glitch that
affects proofs only minimally. For trimmings, Aharoni et al. [3] require the stronger condition
TER(g) — A = E(TER(f)) — A instead of E(TER(g)) — A = E(TER(f)) — A. The two are
equivalent only if there are no vertices with weight 0, but webs may contain such vertices.
So Lemma 15 need not hold for such webs. For example, Fig. 13 shows a wave f that does
not have a trimming according to Aharoni et al’s definition [3, Def. 4.7]. Every wave g has
x € TER(g) because x has weight 0, but « ¢ E(TER(f)) — A = {y}.

7 Related work

Lee [15] and Lammich and Sefidgar [13, 14] have formalized the MFMC theorem for finite
networks in Mizar and Isabelle/HOL, respectively. Lammich and Sefidgar additionally
formalize and verify several max-flow algorithms. We reused Lammich and Sefidgar’s
formalization in our proof of Prop. 24. We make no algorithmic considerations, as countable
networks are infinite objects that lie beyond the reach of traditional notions of algorithms.

Lyons and Peres [19, Thm. 3.1] consider countable locally finite networks, where every
vertex has only finitely many neighbours, and without a sink. They show that the maximum
flow’s value equals the value of a minimum cut, where a cut here contains an edge of every
infinite simple path that starts at the source. Like our proof for the bounded case, their
proof extends the MFMC theorem for finite networks using majorised convergence. Since
their graphs are locally finite, all summations of interest are finite by construction.

8 Conclusion

In this paper, we have formalized a strong max-flow min-cut theorem for countable networks
in Isabelle/HOL. To rule out anomalities due to the network being infinite, the theorem
statement avoids imprecise infinite sums and instead compares the saturation edge by edge.
During the formalization, we have discovered and fixed a number of problems in the original
proof [3].

Arguably, this statement still does not capture the intuition fully. For example, the
infinite network in Fig. 14 has a cut of value 4 with an orthogonal flow. This is the cut
that the proof of Thm. 1 constructs. Yet, this cut is not minimal: The cut that separates
the upper nodes from the lower nodes would be saturated by a flow of 2 units (not shown).

A. Lochbihler

M o 3W%
1i2i 1/8] T1/a 1/2 1/2 /4 18] 1 |2"

Figure 14 An infinite network with an orthogonal pair of a cut and a flow.

This illustrates the intricacies of infinite networks: The out-flow from the source s of value
3 drains away in the infinite ray s = x1 — 9 — x3 — Conversely, the in-flow to the
sink ¢ of value 4 is pulled in via the infinite path ... = y3 = y2 — y1 — 2z — t. So this
network shows that the outflow from the source may exceed the capacity of a cut and yet
not saturate it.

Aharoni et al. [3, Sects. 7-8] study two restrictions on networks that avoid such anomalies:
networks without infinite edge-disjoint paths and locally-finite networks. We have not yet
formalized these results. Neither result applies to the network in Fig. 14. So finding a more
intuitive statement of the max-flow min-cut theorem for countable networks is still an open
problem.

—— References

1 Ron Aharoni. Menger’s theorem for graphs containing no infinite paths. European Journal of
Combinatorics, 4:201-204, 1983. doi:10.1016/S0195-6698(83)80012-2.

2 Ron Aharoni and Eli Berger. Menger’s theorem for infinite graphs. Inventiones mathematicae,
176(1):1-62, 2009. doi:10.1007/s00222-008-0157-3.

3 Ron Aharoni, Eli Berger, Agelos Georgakopoulos, Amitai Perlstein, and Philipp Spriissel. The
max-flow min-cut theorem for countable networks. Journal of Combinatorial Theory, Series
B, 101:1-17, 2010. doi:10.1016/j.jctb.2010.08.002.

4 Clemens Ballarin. Locales and locale expressions in Isabelle/Isar. In Stefano Berardi,
Mario Coppo, and Ferruccio Damiani, editors, Types for Proofs and Programs (TYPES
2003), volume 3085 of LNCS, pages 34-50. Springer Berlin Heidelberg, 2004. doi:10.1007/
978-3-540-24849-1_3.

5 Clemens Ballarin. Locales: A module system for mathematical theories. Journal of Automated
Reasoning, 52:123-153, 2014. doi:10.1007/s10817-013-9284~-7.

6 Clemens Ballarin. Exploring the structure of an algebra text with locales. Journal of Automated
Reasoning, 64:1093—-1121, 2020. doi:10.1007/s10817-019-09537-9.

7 Gilles Barthe, Thomas Espitau, Justin Hsu, Tetsuya Sato, and Pierre-Yves Strub. *-liftings
for differential privacy. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca
Muscholl, editors, International Colloquium on Automata, Languages, and Programming
(ICALP 2017), volume 80 of Leibniz International Proceedings in Informatics (LIPlcs), pages
102:1-102:12, Dagstuhl, Germany, 2017. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
d0i:10.4230/LIPIcs.ICALP.2017.102.

N. Bourbaki. Sur le théoréme de Zorn. Archiv der Mathematik, 2(6):434—-437, 1949.

Jack Edmonds and Richard M. Karp. Theoretical improvements in algorithmic efficiency

for network flow problems. Journal of the ACM, 19(2):248-264, 1972. doi:10.1145/321694.

321699.

10 L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of
Mathematics, 8:399-404, 1956. doi:10.4153/CIM-1956-045-5.

25:17

ITP 2021

https://doi.org/10.1016/S0195-6698(83)80012-2
https://doi.org/10.1007/s00222-008-0157-3
https://doi.org/10.1016/j.jctb.2010.08.002
https://doi.org/10.1007/978-3-540-24849-1_3
https://doi.org/10.1007/978-3-540-24849-1_3
https://doi.org/10.1007/s10817-013-9284-7
https://doi.org/10.1007/s10817-019-09537-9
https://doi.org/10.4230/LIPIcs.ICALP.2017.102
https://doi.org/10.1145/321694.321699
https://doi.org/10.1145/321694.321699
https://doi.org/10.4153/CJM-1956-045-5

25:18

A Mechanized Proof of the Max-Flow Min-Cut Theorem for Countable Networks

11

12

13

14

15

16

17

18

19

20

21

22

23

24

Fabian Immler. Generic construction of probability spaces for paths of stochastic processes
in Isabelle/HOL. Master’s thesis, Fakultdt fiir Informatik, Technische Universitat Miinchen,
2012.

Hans G. Kellerer. Funktionen auf Produktrdumen mit vorgegebenen Marginal-Funktionen.
Mathematische Annalen, 144:323-344, 1961. doi:10.1007/BF01470505.

Peter Lammich and S. Reza Sefidgar. Formalizing the Edmonds-Karp algorithm. In Jas-
min Christian Blanchette and Stephan Merz, editors, Interactive Theorem Proving (ITP 2016),
volume 9807 of LNCS, pages 219-234. Springer, 2016. doi:10.1007/978-3-319-43144-4_14.
Peter Lammich and S. Reza Sefidgar. Formalizing network flow algorithms: A refinement
approach in Isabelle/HOL. Journal of Automated Reasoning, 62:261-280, 2019. doi:10.1007/
s10817-017-9442-4.

Gilbert Lee. Correctnesss of Ford-Fulkerson’s maximum flow algorithm. Formalized Mathem-
atics, 13(2):305-314, 2005. URL: https://fm.mizar.org/2005-13/pdf13-2/glib_005.pdf.
Andreas Lochbihler. A formal proof of the max-flow min-cut theorem for countable networks.
Archive of Formal Proofs, 2016. http://www.isa-afp.org/entries/MFMC_Countable.shtml,
Formal proof development.

Andreas Lochbihler. Probabilistic functions and cryptographic oracles in higher-order logic.
In Peter Thiemann, editor, Programming Languages and Systems (ESOP 2016), volume 9632
of LNCS, pages 503-531. Springer, 2016. doi:10.1007/978-3-662-49498-1_20.

Andreas Lochbihler. A mechanized proof of the max-flow min-cut theorem for countable
networks. http://www.andreas-lochbihler.de/pub/lochbihler2021itpl.pdf, 2021.
Russell Lyons and Yuval Peres. Probability on Trees and Networks. Cambridge University
Press, New York, 2017. doi:10.1017/9781316672815.

Wolfgang Naraschewski and Markus Wenzel. Object-oriented verification based on record
subtyping in higher-order logic. In Jim Grundy and Malcolm Newey, editors, Theorem Proving
in Higher Order Logics (TPHOLs 1998), volume 1479 of LNCS, pages 349-366. Springer, 1998.
doi:10.1007/BFb0055146.

Christophe Sabot and Laurent Tournier. Random walks in Dirichlet environment: an overview.
Annales de la Faculté des sciences de Toulouse: Mathématiques, Ser. 6, 26(2):463-509, 2017.
doi:10.5802/afst.1542.

Joshua Sack and Lijun Zhang. A general framework for probabilistic characterizing formulae.
In Viktor Kuncak and Andrey Rybalchenko, editors, Verification, Model Checking, and
Abstract Interpretation (VMCAI 2012), volume 7148 of LNCS, pages 396—-411. Springer, 2012.
doi:10.1007/978-3-642-27940-9_26.

Gert Smolka, Steven Schéfer, and Christian Doczkal. Transfinite constructions in clas-
sical type theory. In Christian Urban and Xingyuan Zhang, editors, Interactive The-
orem Proving (ITP 2015), volume 9236 of LNCS, pages 391-404. Springer, 2015. doi:
10.1007/978-3-319-22102-1_26.

Freek Wiedijk. The de Bruijn factor. https://www.cs.ru.nl/~freek/factor/factor.pdf,
2000.

https://doi.org/10.1007/BF01470505
https://doi.org/10.1007/978-3-319-43144-4_14
https://doi.org/10.1007/s10817-017-9442-4
https://doi.org/10.1007/s10817-017-9442-4
https://fm.mizar.org/2005-13/pdf13-2/glib_005.pdf
http://www.isa-afp.org/entries/MFMC_Countable.shtml
https://doi.org/10.1007/978-3-662-49498-1_20
http://www.andreas-lochbihler.de/pub/lochbihler2021itpl.pdf
https://doi.org/10.1017/9781316672815
https://doi.org/10.1007/BFb0055146
https://doi.org/10.5802/afst.1542
https://doi.org/10.1007/978-3-642-27940-9_26
https://doi.org/10.1007/978-3-319-22102-1_26
https://doi.org/10.1007/978-3-319-22102-1_26
https://www.cs.ru.nl/~freek/factor/factor.pdf

	1 Introduction
	2 Graphs, Networks, and Webs
	3 From Networks to Bipartite Webs and Back
	3.1 From Networks to Webs
	3.2 Maximal Waves and Trimmings
	3.3 A Linkage in the Quotient of a Web
	3.4 Reduction to Bipartite Webs

	4 Linkability in unhindered bipartite webs
	4.1 The Bounded Case
	4.2 The Unbounded Case

	5 Discussion of the Formalization
	6 Problems in the Original Proof
	7 Related work
	8 Conclusion

