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Abstract
We present the design and implementation of itauto, a Coq reflexive tactic for intuitionistic
propositional logic. The tactic inherits features found in modern SAT solvers: definitional conjunctive
normal form; lazy unit propagation and conflict driven backjumping. Formulae are hash-consed
using native integers thus enabling a fast equality test and a pervasive use of Patricia Trees. We also
propose a hybrid proof by reflection scheme whereby the extracted solver calls user-defined tactics
on the leaves of the propositional proof search thus enabling theory reasoning and the generation
of conflict clauses. The solver has decent efficiency and is more scalable than existing tactics on
synthetic benchmarks and preliminary experiments are encouraging for existing developments.
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1 Introduction

Using an ideal proof-assistant, proofs would be written at high-level and mundane proof
tasks would be discharged by automated procedures. However, automated reasoning is hard;
even more so for sceptical [17] proof-assistants: generating and verifying proofs at scale,
even for decidable logic fragments, is a challenge requiring sophisticated implementation
strategies [7, 4, 2]. For the Coq proof-assistant, the situation is made slightly worse because
intuitionistic logic is not mainstream for automated provers. Thus, the Satisfiability Modulo
Theory (SMT) approach that is based on a classical SAT solver needs to be revisited.

1.1 Propositional Reasoning and Theory Reasoning in Coq
There are a variety of Coq tactics which perform intuitionistic propositional and theory
reasoning. We describe here their main features and explain some limitations, thus motivating
the need for a novel (extensible) solver for intuitionistic propositional logic (IPL). We defer
to Section 6 the discussion of related approaches rooted in a classical setting and interfacing
with external provers.

tauto 1 is a complete decision procedure for IPL based on the LJT* calculus [14]. rtauto 2

is another decision procedure for IPL verifying proof certificates using proof by reflection.
These decision procedures are usually efficient enough for interactive use but do not perform
theory reasoning. lia3 is a decision procedure for linear arithmetic. It has a classical

1 https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.tauto
2 https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.rtauto
3 https://coq.inria.fr/refman/addendum/micromega.html#coq:tacn.lia
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understanding of propositional connectives but abstracts away non-arithmetic propositions.
congruence4 [11] does not perform propositional reasoning but decides the theory of equality
with constructors. Another tactic that is worth mentioning is intuition tac5; it first
performs propositional reasoning and calls the leaf tactic tac when it gets stuck. (tauto is
actually intuition fail.)

In a classical setting, calling a theory solver on the leaves of a propositional proof search
is the basis of the DPLL(T ) algorithm [16]. Unfortunately, in an intuitionistic setting,
completeness is lost. Example 1 illustrates the issue.

▶ Example 1 (Incomplete Combination). Consider the following goals.

Lemma Ex1:∀(p:Prop)(x:Z), x=0 → (x>=0 → p) → p.
Lemma Ex2:∀(A:Type)(p:Prop)(a b c:A),a=b → b=c → (a=c → p) → p.

For Ex1 and Ex2, intuition lia (resp. intuition congruence) fail whereas the goal can
be decided using a combination of propositional logic with the theory of linear arithmetic
and the theory of equality, respectively. The reason is that the intuition part does nothing
and therefore calls the leaf tactic on the unmodified goal. For Ex1, lia abstracts away
non-arithmetic propositions6 and is left with the non-theorem x=0→(x>=0→True)→False.
For Ex2, congruence abstracts away propositions and is also left with a non-theorem:
a=b→b=c→False.

Besides completeness, intuition tac may also call the leaf tactic tac more often than
necessary. This is illustrated by Example 2.

▶ Example 2 (Spurious Leaf Tactic Call). Consider the following goal.

Lemma Ex3:∀(A:Type)(x y t:A)(p q:Prop),x=y→p∨q→(p→y=t)→(q→y=t)→x=t.

In this case, intuition congruence performs a case-split over p\/q, and derives y=t by
modus-ponens. Eventually, it calls the leaf tactic congruence twice. However, in both
branches, congruence solves the same theory problem i.e., x=y → y=t → x=t.

1.2 Contribution
A first contribution is the design and implementation of a reflexive intuitionistic SAT solver
in Coq. The SAT solver obtains decent performances using features found in state-of-the-art
SAT solvers such as hash-consing, lazy unit propagation, backjumping and theory learning.
It also makes a pervasive use of native machine integers7 and Patricia Trees [22].

Another contribution is a variation of the proof by reflection approach whereby the verified
extracted SAT solver is first run inside the proof engine. Theory reasoning is then performs
by calling user-defined tactics on the leaves of the propositional proof search. Following the
DPLL(T ) approach, minimal conflict clauses obtained from the tactic proof-terms are passed
back to the SAT solver. Eventually, a proof is obtained by asserting the conflict clauses and
re-running the reflexive SAT solver with an empty theory module. To our knowledge, this
design combining reflexive code with tactics is original.

4 https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.congruence
5 https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.intuition
6 The propositional variable p is replaced by True or False depending on its polarity.
7 https://coq.inria.fr/refman/language/core/primitive.html#primitive-integers

https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.congruence
https://coq.inria.fr/refman/proof-engine/tactics.html#coq:tacn.intuition
https://coq.inria.fr/refman/language/core/primitive.html#primitive-integers
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The rest of the paper is organised as follows. In Section 2, we present the main features
of our SAT solver and its implementation in Coq. The structure of the soundness proof is
detailed in Section 3. In Section 4, we explain how to interface the SAT solver with the proof
engine and user-defined tactics. We show experimental results in Section 5. Related work is
presented in Section 6 and Section 7 concludes.

Note that the code snippets in the paper have been edited and idealised for clarity.

2 Design of an Intuitionistic SAT solver

Our algorithm is reusing several key components of modern SAT solvers. Fortunately, they
are only slightly adapted to the intuitionistic setting.

2.1 Syntax and Semantics of Formulae
Our SAT solver takes as input hash-consed [1] formulae defined by the inductive type LForm.

Inductive LForm : Type :=
| LFF | LAT : int → LForm | LOP : lop → list (HCons.t LForm) → LForm
| LIMPL : list (HCons.t LForm) → (HCons.t LForm) → LForm.

The syntax is mostly standard and models n-ary propositional operators. LFF represents
the proposition False. LAT i represents the propositional variable pi. LOP o [f1; . . . ; fn]
where o ∈{AND, OR} represents a n-ary conjunction or disjunction. LIMPL [f1; . . . ; fn] f

represents a n-ary implication with f1, . . . , fn being the premisses and f the conclusion.
The negation of a formula f is encoded by LIMPL [f ] LFF. All sub-formulae are hash-consed
i.e. f:HCons.t LForm is a pair made of a formula and a unique index. Because it enables a
fast equality test of formulae in O(1), hash-consing is essential for efficiency. N-ary operators
allow for a sparser conjunctive normal form (see e.g. [20]).

The interpretation of a formula f:LFORM is given by structural recursion with respect to an
environment e:int → Prop mapping indexes i.e., propositional variables, to propositions.

JLFFKe = False
JLAT iKe = e i

JLOP AND [f1; . . . ; fn]Ke = Jf1Ke ∧ · · · ∧ JfnKe

JLOP OR [f1; . . . ; fn]Ke = Jf1Ke ∨ · · · ∨ JfnKe

JLIMPL [f1; . . . ; fn] fKe = Jf1Ke → · · · → JfnKe → JfKe

In the following, as the environment e is fixed, we drop the subscript and write JfK for JfKe.

2.2 Intuitionistic Clausal Form
In a classical setting, to prove that a formula f is a tautology, a modern SAT solver proves
that the conjunctive normal form (CNF) of the negation of f is unsatisfiable. In other words,
a SAT solver exploits the fact that ¬(¬f) is equivalent to f and that the CNF conversion
preserves provability. In an intuitionistic setting, this approach is not feasible because reductio
ad adsurdum is not logically sound and the usual CNF conversion requires De Morgan laws
which are not admissible. Yet, Claessen and Rosén [10] show that it is possible to transform
an intuitionistic formula f into an equi-provable formula of the form

∧
F ∧

∧
I → q where q

is a variable ; f ∈ F is a so-called flat clause of the form p1 → . . . pn → q1 ∨ · · · ∨ qm where
the pi and qi are variables and i ∈ I is a so-called implication clause of the form (a → b) → c

where a, b and c are variables. The transformation is based on Tseitin definitional CNF [26]

ITP 2021
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with the modification that a clause is written p1 → · · · → pn → q1 ∨ · · · ∨ qn instead of
¬p1 ∨ · · · ∨ ¬pn ∨ q1 · · · ∨ qn. The implication clauses are reminiscent of the fact that double
arrows (e.g., in the LJT proof system) need a treatment that is specific to intuitionistic logic.

Our implementation is along these lines but optimises the transformation in order to
reduce both the set of flat clauses and implication clauses. To reduce the set of flat clauses,
our definitional CNF is based on Plaisted and Greenbaum CNF [24] which exploits the
polarity of formulae and uses memoization thus avoiding recomputing the CNF of identical
sub-formulae. In order to reduce the set of implication clauses, we exploit the fact that,
if the conclusion q is decidable, intuitionistic logic reduces to classical logic. In that case,
it is therefore admissible to replace an implication clause (a → b) → c by the equivalent
flat clauses {a ∨ c; b → c}. Moreover, before performing CNF conversion, formulae are
flattened using the associativity of ∧ and ∨. This has the advantage of augmenting the arity
of the operators, reducing the depth of the formulae, and therefore reducing the number of
intermediate propositional variables.

2.2.1 Pre-processing
The input formula is only using binary operators. To obtain n-ary operators, we recursively
apply the following equivalences (the operator ++ is the concatenation of lists):

LOP OR (LOP OR l1) :: l2 = LOP OR (l1 ++ l2)
LOP AND (LOP AND l1) :: l2 = LOP AND (l1 ++ l2)
LIMPL (LOP AND l1) :: l2 r = LIMPL (l1 ++ l2) r

LIMPL l1(LIMPLl2 r) = LIMPL (l1 ++ l2) r

2.2.2 Literals
Tseitin style CNF [26] consists in introducing fresh propositional variables. In a proof-
assistant, modelling freshness may incur some proof overhead. Fortunately, in our case, the
new propositional variables are not arbitrary but correspond to sub-formulae. As a result, we
represent a propositional variable by a hash-consed formula (HFormula = HCons.t LForm)
and a literal is a positive or negative hash-consed formula.

Inductive literal : Type := | POS (f: HFormula) | NEG (f: HFormula)

As usual, a clause is a list of positive and negative literals but with the following interpretation.

JNEGf :: lKe = JfKe → JlKe JPOSf :: lKe = JfKe ∨ JlKe J[]Ke = False

For readability, we will write ⌊f⌋ for POSf and ⌊f⌋ → for NEGf . A singleton clause
[NEGf ] will be written ⌊f⌋ → ⊥. In the remaining, we have the invariant that the
negative literals are always before the positive literals. As a result, a general clause
[NEGf1; . . . ; NEGfi; POSg1; . . . ; POSgj ] will be written ⌊f1⌋ → · · · → ⌊fi⌋ → ⌊g1⌋ ∨ · · · ∨ ⌊gj⌋ or
more compactly

∧
i⌊fi⌋ →

∨
j⌊gj⌋. Moreover, we define the negation of a literal l: ¬l is such

that ¬⌊f⌋ = ⌊f⌋ → and ¬⌊f →⌋ = ⌊f⌋.

2.2.3 Introduction Rule
Before running the CNF conversion per se, we inspect the formula and perform reductio
ad adsurdum if possible. The function intro_impl performs the introduction rule for im-
plication with the twist that the conclusion is double negated if it is decidable. Therefore,
intro_impl: HFormula → (list literal * HFormula) takes as input a hash-consed for-
mula and returns a pair (l, c) where l are hypotheses and c is the conclusion.
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intro_impl (LIMPL l r) = if is_dec r then ((NEG r):: map POS l , HLFF)
else (map POS l, r)

intro_impl f = if is_dec f then ([NEG f] , HLFF) else ([], f)

The constant HLFF is the hash-consed formula LFF i.e., the syntax for the proposition False.
The is_dec predicate is implemented by a boolean flag stored together with the hash-cons
of the formula. It is recursively propagated from atomic propositions that are known to be
classical i.e., we have r ∨ ¬r.

2.2.4 Construction of the CNF
The next step consists in computing the CNF of the literals and of the formula in the
conclusion. We recursively compute for a positive literal CNF- i.e., a set of clauses modelling
the elimination rule; and for a negative literal (or the conclusion) CNF+ i.e., a set of clauses
modelling the introduction rule.

f = (f1 ∧ · · · ∧ fn)
AND-(f) = {⌊f⌋ → ⌊f1⌋; . . . ; ⌊f⌋ → ⌊fn⌋}
AND+(f) = {⌊f1⌋ → · · · → ⌊fn⌋ → ⌊f⌋}

f = (f1 ∨ · · · ∨ fn)
OR-(f) = {⌊f⌋ → ⌊f1⌋ ∨ · · · ∨ ⌊fn⌋}
OR+(f) = {⌊f1⌋ → ⌊f⌋; . . . ; ⌊fn⌋ → ⌊f⌋}

f = (f1 → · · · → fn → r)
IMPL-(f) = {⌊f⌋ → ⌊f1⌋ → · · · → ⌊fn⌋ → ⌊r⌋}
IMPL+(f) = {⌊r⌋ → ⌊f⌋} ∪

⋃
is_dec fi

{⌊fi⌋ ∨ ⌊f⌋}

This clausal encoding is correct and the generated clauses are both classical and intuitionistic
tautologies. Except for IMPL+, the clausal encoding is also complete e.g., we have

CNF+(f1 ∧ · · · ∧ fn) ∪ {⌊f1⌋ ∧ · · · ∧ ⌊fn⌋} ⊢ ⌊f1 ∧ · · · ∧ fn⌋
CNF-(f1 ∧ · · · ∧ fn) ∪ {⌊f1 ∧ · · · ∧ fn⌋} ⊢ ⌊f1⌋ ∧ · · · ∧ ⌊fn⌋

For IMPL+, if not all the fi are classical propositions, the clausal encoding is partial and we
also keep the implication clause (⌊f1⌋ → · · · → ⌊r⌋) → ⌊f⌋ for later processing. An exception
is when we intend to prove False. In that case, the IMPL+ rule may drop the requirement on
the decidability of the fi thus providing a complete clausal encoding. This is sound because
for any f = (f1 → · · · → fn → r), (⌊r⌋ → ⌊f⌋) ∧

∧
fi

(⌊fi⌋ ∨ ⌊f⌋) → False is an intuitionistic
tautology.

▶ Example 3. Suppose that we intend to prove the tautology (a → (b ∧ c)) → (b ∨ (a → c))
where a, b and c are intuitionistic propositional variables. After running the introduction
rule, we obtain the following hypothesis and conclusion

{⌊a → (b ∧ c)⌋} ⊢ b ∨ (a → c)

We compute CNF- for the hypothesis i.e. IMPL-(⌊a → (b ∧ c)⌋), and CNF+ for the conclusion
i.e., OR+(⌊d∨(a → c)⌋). Recursively, we compute AND-(b∧c) and IMPL+(a → c) and eventually
obtain

⌊a → (b ∧ c)⌋, ⌊a → (b ∧ c)⌋ → ⌊a⌋ → ⌊b ∧ c⌋,

⌊b ∧ c⌋ → ⌊b⌋, ⌊b ∧ c⌋ → ⌊c⌋,

⌊b⌋ → ⌊b ∨ (a → c)⌋, ⌊a → c⌋ → ⌊b ∨ (a → c)⌋
⌊c⌋ → ⌊a → c⌋, (⌊a⌋ → ⌊c⌋) → ⌊a → c⌋

 ⊢ b ∨ (a → c)

Note that because a is an intuitionistic proposition, we keep the implication clause (⌊a⌋ →
⌊c⌋) → ⌊a → c⌋.

ITP 2021
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2.3 Lazy Unit Propagation
Once a clause is reduced to a single literal, say l, unit propagation simplifies all the remaining
clauses using l. There are three cases to consider. If a clause c does not mention l, it is left
unchanged. If the literal l belongs to the clause c, the clause is redundant and it is removed
(see R1 and R2). If the negation of the literal l belongs to the clause, we deduce the simplified
clause c \ ¬l (see M1 and M2). In logic terms, we have the following inferences:

R1
p

p ∨ r
R2

p → ⊥
p → r

M1
p p → r

r
M2

p → ⊥ p ∨ r

r

In the following, a literal l is said to be watched if neither [l] nor [¬l] is a unit clause. We
also say that a literal l is assigned if it is not watched.

A naive unit propagation algorithm linearly traverses every clause and is therefore
inefficient. A key observation is that the purpose of unit propagation is to produce new
unit clauses. Said otherwise, it not necessary to traverse clauses where at least 2 literals
are watched. As a result, a clause that is neither the empty clause nor the unit clause is
represented by the type watched_clause given below.

Record watched_clause:={
watch1 : literal; watch2 : literal; unwatched : list literal }.

This is purely functional variant of so called head/tail lists8 [28, 29] that is simpler than
the 2-watched literals optimisation [21]. Watched clauses are indexed on their watched
literals but also on whether the watched literals are positive or negative. To get an efficient
representation of sets of clauses, each clause is given a unique identifier and is stored in
a Patricia Tree [22]. In order to implement so-called non-chronological backtracking (see
Section 2.4), we also track the set of literals that are needed to deduce a clause. As a result,
each clause is annotated with a set of literals LitSet.t.

Record Annot (A: Type) := { elt := A ; deps := LitSet.t }

Therefore, unit propagation operates on the following watch_map data-structure.

Definition clause_set := ptrie (Annot watched_clause).
Definition watch_map := ptrie (clause_set * clause_set).

A watch_map m maps a propositional variable f i.e., a hash-consed formula, to two sets
(n, s) of clauses where clauses in n are watched by ⌊f⌋ → and clauses in p are watched by
⌊f⌋. More precisely, we have

c ∈ n iff c.watch1 = (⌊f⌋ →) ∨ (c.watch2 = ⌊f⌋ →)
c ∈ p iff c.watch1 = ⌊f⌋ ∨ c.watch2 = ⌊f⌋

Suppose that we perform unit propagation for the literal ⌊f⌋ for a watched_map m such that
m[f ] = (n, p). The clauses in p are redundant and can be dropped; the clauses in n need
to be processed and reduced. The reduction takes as argument the set of literals that are
currently assigned, a watched clause c and returns an annotated clause Annot clause where
the type clause is given below

Inductive clause:=|EMPTY |TRUE |UNIT (l:literal)|CLAUSE (wc:watched_clause)

8 Head/tail lists give access to the first and last element of a list in O(1).
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EMPTY represents the empty clause, i.e. a contradiction. In that case, unit propagation
concludes the proof. TRUE represents a redundant clause that will be dropped. UNIT l is a
unit clause to be propagated and CLAUSE wc is a watched clause.

Without loss of generality, suppose that ⌊f⌋ belongs to the set of assigned literals s and
that we have a clause c of the form:

c = {|watch1 := ¬⌊f⌋; watch2 := x; unwatched := [y1; . . . ; yn; ]|}

The reduce function takes as input the watched literal x and aims at finding in the list
[y1; yn; . . . ; yn] a watched literal yi (i.e., yi is not assigned in s) and return as clause the rest
of the list.

reduce s d x [] = {| elt := UNIT x ; deps := d |}
reduce s d x (y::l) = {| elt := TRUE ; deps := d |} when y ∈ s
reduce s d x (y::l) = reduce s ((deps (s y)) ∪ d) l when ¬ y ∈ s
reduce s d x (y::l) =

let wc := {| watch1 := x ; watch2 := y ; unwatched := l |} in
{| elt := CLAUSE wc ; deps := d |} when y /∈ s

If the list is empty, we produce the unit clause UNIT x and unit propagation will be recursively
called for x. Let y be the head of the list l. If y is not assigned in s, we return a novel clause
where the watched literals are x and y. If y is already assigned with the same polarity in s

(y ∈ s), the clause is redundant and can be dropped. If y is already assigned but with opposite
polarity (¬y ∈ s), the reduction is recursively called threading along the dependencies of the
literal y.

▶ Example 4. Suppose that the set of assigned literals is given by s = {f ; ¬y1; ¬yn} and we
perform unit propagation over the clause c. By construction, we know that neither x nor
¬x are assigned in s. To get a well-defined watched clause with 2 watched literals, we need
to find a replacement for the literal ¬⌊f⌋ in the list [y1; y2; . . . ; yn]. As {¬y1, ¬yn} ⊆ s, a
greedy unit propagation would deduce that y1 and yn can be removed but as the prohibitive
cost of a linear scan of the whole clause. The idea of lazy unit propagation is to stop at the
first unassigned literal i.e. y2. Therefore, we generate the watched clause

{watche1 := x; watche2 := y2; unwatched := [y3; . . . ; yn]}

2.4 Case Splitting and Backjumping

When all the unit clauses are propagated, the solver performs a case-split over a clause.
The clause needs to represent a disjunction. If the conclusion is False, any clause may be
selected. Otherwise, the clause may only contain either positive literals or negative classical
literals. The soundness of this argument is expressed by the following inferences.∧

i
Γ ∪ (pi → ⊥) ⊢ ⊥

∧
j

Γ ∪ qj ⊢ ⊥
Γ ∪

∧
i
pi →

∨
j

qj ⊢ ⊥

∧
i
(pi ∨ ¬pi)

∧
i
Γ ∪ (pi → ⊥) ⊢ g

∧
j

Γ ∪ qj ⊢ g

Γ ∪
∧

i
pi →

∨
j

qj ⊢ g

A naive algorithm consists in doing a recursive call for each literal, say li, of the clause.
However, if for one of the cases, the proof does not depend on the literal li, it is sound to
ignore the other cases and immediately return (backjump) to a previous case-split. This is
illustrated by Example 5.

ITP 2021
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▶ Example 5 (Backjumping). Consider the following goal where each clause Hi is tagged with
a set of dependencies di where the di are disjoint and do not contain the literals {l, m, n, o}.

{H1 : (l ∨ m)d1 , H2 : (n ∨ o)d2 , H3 : (n → ⊥)d3 , H4 : (o → ⊥)d4} ⊢ ⊥

Suppose that we first perform a case-split over H1. For the first case, we introduce the unit
clause H5 : l{l} with a singleton dependency i.e., the literal only depends on itself. As no
unit propagation is possible, we perform another case split over H2 : (n ∨ o)d2 . For the case
n, using H3, we derive the empty clause ⊥d3∪{n} and for the case o, we derive the empty
clause ⊥d4∪{o}. Therefore, gathering both sub-cases, we have ⊥d2∪d3∪d4 . As l /∈ d2 ∪ d3 ∪ d4,
the case-split over H1 is irrelevant for the proof and, therefore, there is no need to explore
the second case of the case-split over H2.

A propositional prover has the idealised type ProverT defined below.

ProverT := state → HFormula → option LitSet.t

It takes as input the prover state st, and the formula to prove g and returns, upon success, the
set of literals that are needed for the proof. Details about the components of state are given
in Section 2.7. The case_split algorithm is parametrised by a prover Prover:ProverT. It
takes as input a clause cl and returns a prover performing a case-analysis over all the literals
of the input clause cl. In addition to a set of literals, it returns a boolean indicating whether
backjumping is possible.

Fixpoint case_split cl st g :=
match cl with
| [] => Some (false, LitSet.empty)
| f::cl => match Prover (st ∪ f) g with

| None => None
| Some d =>

if f/∈ d && st ⊢ d then Some (true,d)
else match case_split cl st g with

| None => None
| Some(b, d') => if b then Some(b,d')

else Some(false, d' ∪ (d \ {f}))
end end end.

If the clause is empty i.e., it denotes False, the proof is finished. Suppose that f is the first
literal of the clause cl, the prover is recursively called with the state st augmented with the
unit clause f . If the proof d does not require f and all the literals in d are assigned in the
current state (st ⊢ d), the whole case-split is spurious and the prover returns immediately.
Otherwise, we recursively call case_split and return the updated set of literals needed
by the proof. The literal f is momentarily removed from the dependencies of d but the
dependencies are adjusted just after the case_split call by adding the dependencies of the
clause cl.

2.5 Implication clauses

When there is no clause to branch over, the prover considers implication clauses and tries to
(recursively) prove one of them.
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Fixpoint prover_arrows (l : list literal) (st: state) (g: HFormula) :=
match l with
| [] => None
| f :: l => match Prover st f with

| Some _ => Prover (st ∪ f) g | None => prover_arrows l st g
end end.

The function prover_arrows takes as argument a list l of literals. A literal f in the list
is of the form POS(LIMPL [a1; ...; an] b) which encodes an implication clause ⌊a1⌋ → · · · →
⌊an⌋ → (⌊a1 → · · · → an → b⌋) which was left aside during the CNF conversion. The prover
is recursively called with, as goal, the formula

∧
i ai → b. If the proof succeeds, the literal f

holds and the proof continues with a state augmented with f. Otherwise, the prover tries
another literal.

2.6 Theory Reasoning
At leaves of the proof search, the solver has assigned a set of literals that do not lead to
a propositional conflict. At this stage, a SAT solver reports that a model is found. Yet,
this propositional model may be invalidated by performing theory reasoning. Our solver is
parametrised by a theory reasoner. Essentially, it takes as input a list of literals and returns
(upon success) a clause. The clause is a tautology of the theory that is added to the clauses
of the SAT solver. The interface of a theory reasoner is given below.

Record Thy := {
thy_prover : hmap → list literal → option (hmap * clause);
thy_prover_sound : ∀ hm hm' cl cl', thy_prover hm cl = Some (hm',cl')

→ Jcl'K ∧ hm ⊑ hm' ∧ ∀ l ∈ cl', l ∈ hm' }

A thy_prover takes as input a hash-cons map hm and a list of literals cl. The hash-cons
map hm contains the currently hash-consed terms. The literals in the list cl are obtained
from the current state of the SAT solver and are restricted to atomic formulae i.e., LAT i for
some i. The theory prover may either fail to make progress or return an updated hash-cons
map hm' and a clause cl' such that

i) the clause cl' holds;
ii) the literals in cl' are correctly hash-consed in hm';
iii) the updated hash-cons map hm' contains more hash-consed formulae than hm.

Typically, the clause cl' is a conflict clause and therefore the literals of cl' are including in
those of cl. However, we open the possibility to perform theory propagation and generate a
clause made of new literals.

2.7 Solver State and Main Loop
Using the previous components, we are ready to detail the proof state.

Record state := {
fresh_clause_id : int; hconsmap : hmap; arrows : list literal;
wneg : iSet; defs : iSet * iSet;
units : ptrie (Annot bool); unit_stack : list (Annot literal);
clauses : watch_map }.

The field fresh_clause_id is a fresh index that is incremented each time a novel clause
is created.

ITP 2021
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The field hconsmap is only updated by the theory prover and is used to ensure well-
formedness conditions about hash-consing.
The field arrows contains a list of literals. Each literal is of the form IMPL[a1; . . . ; an]b and
represent an implication clauses i.e., (⌊a1⌋ → · · · → ⌊ai⌋ → ⌊b⌋) → Lita1 → · · · → ai → b

which could not be turned into a proper flat clause during CNF conversion.
The field wneg contains a set of hash-cons indexes corresponding to watched negative
literals. These literals are added to the list of literals sent to the theory prover.
The field defs is a pair of sets of hash-cons indexes. These are used for memoizing the
CNF+ and CNF- computations.
The field units encodes using a Patricia Tree the set of assigned literals. The boolean
indicates whether the literal is positive or negative and the annotation tells which sets of
initial literals were needed for the deduction.
The field unit_stack is the stack of literals for which unit propagation needs to be run.
The field clauses contains the indexed watched_clauses.

The type of the implemented prover is slightly more complicated that what we explained
in the Section 2.4. In addition to a set of literals, it also threads along a hmap and a list
of clauses learnt by theory reasoning. Theory reasoning is only running if the boolean
use_prover is set. Termination is ensured by provided some fuel computed (without proof)
from the size of the formula.

Fixpoint prover thy use_prover fuel st g :=
match n with
| O => Fail OutOfFuel
| S n => let ProverRec := prover thy use_prover n in

(prover_unit n ; prover_case_split ProverRec ;
prover_impl_arrows ProverRec ; prover_thy ProverRec thy use_prover) st g

end.

If the prover does not run out of fuel, it calls in sequence the different provers described
in the previous sections. After performing unit propagation, it performs a case-split and
recursively calls the prover. If no case-split is possible, it tries to prove one of the implication
clause by recursively calling the prover. Eventually, if no implication clause can be derived,
theory reasoning is called.

▶ Example 6 (Example 3 continued). Suppose that we have the proof state obtained after
constructed the CNF for a → (b∧c) → (d∨(a → c)) (see Example 3). The literal ⌊a → (b∧c)⌋
triggers unit propagation and generates the clause ⌊a⌋ → ⌊b ∧ c⌋. At this stage, neither
unit propagation nor case-splitting is possible. Yet, we have a single implication clause
(⌊a⌋ → ⌊c⌋) → ⌊a → c⌋. Hence, we call prover_arrows with the singleton list [⌊a → c⌋]. To
prove ⌊a → c⌋, we introduce ⌊a⌋ and attempt to prove c. By unit propagation, we derive
first ⌊b ∧ c⌋ and then ⌊b⌋ and ⌊c⌋; thus concluding the sub-proof. As a result, we augment
the context with ⌊a → c⌋ and conclude the goal by unit propagation.

3 Soundness Proof

In this part, we give some insights about the soundness proof that is based on three main
properties: well-formedness, soundness of dependencies and soundness of provers. The only
axioms of the development are those of the Int63 standard library which define native
machine integers.
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3.1 Well-formedness
Hash-consing has the advantage that the equality of terms can be decided by an equality
of native integers without in-depth inspection of terms. However, this requires ensuring
that the initial formula is correctly hash-consed and that the prover always operates with
hash-consed literals. Fortunately, most of the generated literals are sub-formulae that are
obtained by the CNF. The only exception is theory reasoning. The hash-consed formulae are
stored in a map m : hmap := ptrie (bool*LForm). The keys of the map are the hash-cons
indexes and the boolean indicates whether the formula is a classical proposition. The set of
hash-consed formulae has_form m is inductively defined below.

m(i) = (true, LFF)
LFFtrue

i ∈ has_form m

m(i) = (b, LAT i) b ↔ JLAT iK ∨ ¬JLAT iK
(LAT i)b

i ∈ has_form m

m(i) = (b, LOP o [_b1
i1

; . . . ; _bn
in

])
(f1)b1

i1
∈ has_form m . . . (fn)bn

in
∈ has_form m

b ↔ b1 ∧ · · · ∧ bn

(LOP o [(f1)b1
i1

; . . . ; (fn)bn
in

])b
i ∈ has_form m

m(i) = (b, LIMPL[_b1
i1

; . . . ; _bn
in

] _b0
i0

)
(f0)b0

i0
∈ has_form m . . . (fn)bn

in
∈ has_form m

b ↔ b0 ∧ · · · ∧ bn

(LIMP[(f1)b1
i1

; . . . ; (fn)bn
in

] (f0)b0
i0

)b
i ∈ has_form m

Essentially, this consists in checking that all the sub-formulae are stored within the hmap m
when only considering the top constructor and the hash-cons index of the sub-formulae. The
advantage of this formulation is that f b

i ∈ hash_form m can be checked algorithmically by
a linear pass over the formula f . This definition also entails that formulae with the same
hash-cons index are the same.

f b1
i ∈ has_form m ∧ gb2

i ∈ has_form m → f b1
i = gb2

i

Our well-formedness conditions state that a solver state st:state only contains hash-
consed formulae. In particular, all the literals in the clauses are hash-consed formulae. As
Patricia Trees come with structural invariants, every Patricia Tree needs to be well-formed.
In the prover state, the set of assigned literals (see the units field) is represented by a
Patricia Tree ptrie (Annot.t bool) where the keys are hash-consed indexes. In this case,
the well-formedness conditions requires that there exists a hash-consed formula corresponding
to this index. As all the formulae with the same hash-cons index are equal this identifies a
unique formula.

wf_units_lit u m = ∀i, v, u(i) = v → ∃f b
i , has_form m f b

i

The proofs of preservation are compositional and do not pose any particular issue.

3.2 Soundness of Dependencies
The logical objects in the proof state are the set of indexed watched clauses (clauses) , the
set of assigned literals (units) and the stack of literals that are yet to be unit-propagated
(unit_stack). Each clause (or literal) is also annotated by the set of literals needed for the
deduction. These sets are represented by Patricia Trees using hash-consed indexes as keys.

ITP 2021
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We write cd (resp. ld) for a (watched) clause (resp. literal) annotated with a set of
literals d. For each operation, we prove that the annotation is sound i.e. the conjunction of
the literals in d entails the clause c (resp. the literal l). The interpretation is indexed by a
hash-cons map m linking indexes to hash-consed formulae.

Jc{l1,...,ln}Km = Jl1Km ∧ . . . JlnKm → JcK

A literal l is introduced by either the introduction rule or a case-split. In that case, the
set d is the singleton {l} and Jl{l}K holds. New clauses are obtained by unit propagation and
the soundness of the deduced clauses is obtained from the following deduction rules:

d1 → p d2 → (p → p1 → . . . pn → q1 ∨ . . . qn)
d1 ∧ d2 → (p1 → . . . pn → q1 ∨ . . . qn)

d1 → ¬q d2 → (q ∨ q1 ∨ . . . qn)
d1 ∧ d2 → (q1 ∨ . . . qn)

Syntactically, the conjunction d1 ∧ d2 is modelled by the union d1 ∪ d2.

Jd1 ∪ d2Km = Jd1Km ∧ Jd1Km

Given a prover state st, JstKdep holds if all the clauses (resp. literals) in the state have
correct dependencies. The proofs that the dependencies are correct are also compositional
but require well-formedness conditions to hold.

3.3 Soundness of Provers
Upon success, a prover p:ProverT returns a set of valid learnt clause, an updated hash-cons
map but also a set of literals that are sufficient to entail a conflict. The soundness of provers
is then stated by the following definition.

Definition sound_prover (prover: ProverT) (st: state) :=
∀ g hm lc d, wf_state st → gb

i ∈ hconsmap st →
prover st g = Success (m,lc,d) →
(JstK → JstKdep → JgK) ∧ (JstKdep → JdKm → JgK) ∧

∧
c∈lc JcK

Therefore, soundness requires to prove that the goal formula g is entailed by either the
clauses in the state and their dependencies or the dependencies alone and the set of literals
d. Both properties are needed in order to prove that backjumping is correct. We also have to
prove that the clauses lc obtained by theory reasoning are sound. Sometimes, the fact that
we use classical reasoning in an intuitionistic context is a source of complication for the proof
because this prevents a direct forward reasoning. For instance, in a pure classical context,
the CNF of a formula f generates tautologies and the correctness can be directly stated by

∀cl, cl ∈ cnf f → JclK

The correctness of our CNF depends on the goal formula. For instance, if the conclusion is
False, De Morgan laws are admissible. Therefore, our formulation is the following.

((∀cl, cl ∈ cnf f → JclK) → JgK) → JgK

Note that if g = False, we get a double negation. For most of our proof state transformation,
say T, a simplified correctness lemma has the form

wf_state st → (JT stK → JgK) → (JstK → JgK)
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4 Proof by Hybrid Reflection

Having a SAT solver for deciding propositional logic, one option is to directly perform proof
by reflection [9, Chap. 16]. Using this mode, we get a tactic that is similar to the existing
tauto with the advantage that our reification process detects decidable propositions declared
using the type-class mechanism [25].

In order to perform theory reasoning, the proof by reflection approach demands that
we implement the interface of Section 2.6. However, a closer look shows that the interface
does not expose a syntax for atoms: they are only represented by indexes. In a nutshell, the
interface is purposely an empty shell. A fully reflexive approach would require to enrich the
interface with an environment mapping atoms to theory-specific syntactic terms. Here, we
follow a different path and implement theory reasoning using classic user-defined tactics. The
advantages are that existing decision procedures can be readily reused and that user-defined
tactics are more flexible. Yet, user-defined tactics and proof by reflection do not operate at
the same level and embedding a powerful reflective tactic language would be a challenge by
itself.

To reach our goal, we take the opposite approach and leverage the Coq extraction
mechanism, thus allowing to run our SAT solver inside the Coq proof engine, i.e., at the level
of tactics. There, the theory reasoning interface may be implemented by calling user-defined
tactics. The theory prover thy_prover (see Section 2.6) takes a list of literals and attempts
to produce a clause. Therefore, to interface with tactics, the followings tasks need to be
performed:
1. Construct a goal from the literals provided by the SAT solver.
2. (Optionally) perform theory propagation
3. Run the tactic and obtain a proof-term.
4. Return a reduced clause.
Within the proof engine, we maintain a mapping from literals to actual Coq terms. We
interpret the list of literal as a clause to be discharged by the user-provided tactic. We
obtain a goal G of the general form: G:=∀i∈I(xi : pi),

∨
j∈J qj . Actually, the pi and the qj

do not depend on the xi. Yet, this dependent product notation is convenient to explain our
minimisation procedure.

The fact that the conclusion is a disjunction
∨

j∈J qj may trigger, for some tactics, a
costly case-analysis which would be more efficiently performed at the level of the SAT solver.
For this purpose, we leverage the type-class mechanism to perform theory propagation at
the level of individual propositions. For instance, if one of the qj is an equality over Z, say
x=y, we directly return to the SAT solver the tautology clause x<y ∨ x=y ∨ y<x.

If the tactic fails, the unsuccessful goal G is a potential counter-example and is returned
to the user for inspection. If the tactic proves the goal, the clause G holds and is therefore
a conflict clause. A sound, but naive, approach is to return this clause containing all the
input literals. Yet, to improve the efficiency of the SAT solver, it is desirable to reduce the
clause and produce a minimal unsatisfiable core. In other words, we search for sets I ′ ⊆ I

and J ′ ⊆ J such that G′:=∀i∈I′(xi : pi),
∨

j∈J′ qj is still a tautology. In our context, if the
tactic succeeds, it also produces a proof-term. Using a syntactic analysis, we track the subset
of the xi that are used in the proof-term and therefore obtain a set I ′ ⊆ I containing the
needed hypotheses. To minimise the set J , a finer grained analysis of the proof term may be
possible. However, there is a sweet spot when the positive literals are classical propositions.
In that case, the goal G is equivalent to G′

G′:=∀i∈I(xi : pi), ∀j∈J(yj : ¬pj), False

ITP 2021
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Using this formulation, the same syntactic analysis extracts both a subset I ′ ⊆ I of the
negative literals and a subset J ′ ⊆ J of the positive literals. When the propositions are not
classical, we perform some partial iterative proof-search and try to prove each of the qi, one
at a time. Once the minimisation is done, we adjust the proof-term for the minimised conflict
clause: this consists in recomputing the correct De Bruijn indexes to accommodate for the
removed hypotheses.

If the extracted SAT solver succeeds, we have the guarantee that the goal is provable but
the proof elements still need to be pieced together. The SAT solver returns the set of needed
literals. We exploit this information to remove from the context the propositions that are
irrelevant for the proof. Now, we enrich the context with all the conflict clauses that were
generated during the SAT solver run, re-using the cached proof terms. At this stage, we have
a goal that is a propositional tautology. It is solved by re-running the SAT solver, without
theory reasoning, by a classic proof by reflection.

Using the extracted SAT solver has the advantage that the possible bugs are limited
to the interface with user-provided tactic. Another possible design would be to rely on an
external untrusted (intuitionistic) SAT solver. This would have some speed advantage for
the generation of conflict clauses but would increase the code base. In our case, we reuse the
same verified component both in the Coq proof engine and to perform proof by reflection.

5 Experiments

Before showing some larger scale experiments, we come back to the motivating examples
(see Section 1.1) and explain how they are solved by our tactic.

5.1 Back to Motivating Examples
Consider again the goals in Example 1. For Ex1, the SAT solver has knowledge that x>=0
is a classical proposition and therefore performs a case-split over x>=0→ p. The first sub-
case is solved by theory reasoning (x=0 → ~ x>= 0 → False holds); and the second by
propositional reasoning (p → p). For Ex2, the SAT solver does not make progress. However,
it asks the leaf tactic congruence whether a watched negative literal (i.e., a=c) may be
deduced from the assigned literal (i.e., a=b and b=c). As a=b → b=c → a=c can be proved
by congruence, the clause is asserted by theory reasoning. The proof follows by propositional
reasoning.

For Example 2, the goal is solved by intuition congruence using two identical calls
to the leaf tactic congruence. Because our SAT solver threads learnt clauses along the
computation, the same goal is solved by itauto congruence by calling congruence only
once.

5.2 Pigeon Hole
The Pigeon Hole Principle, stating that there is no way to fit n+1 pigeons in n holes, is a hard
problem for resolution based SAT solvers. The algorithm presented here is no exception and
the running time will be exponential in n. This is however a useful benchmark for assessing
scalability. We have benchmarked our itauto tactic against the existing tauto and rtauto
tactics using a timeout of 3600s and a memory limit of 15GB on a laptop (Intel Core i7 at
1.8GHz with 32GB of RAM). The results are shown in Fig. 1. For itauto, the running time
of the tactic and the type-checking time (Qed time) are similar. As we perform a pure proof
by reflection, this is not surprising. Though itauto scales slightly better, the running time
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Figure 1 Pigeon Hole for itauto, tauto and rtauto.

are similar to rtauto which only performs proof by reflection to check certificates. tauto is
the least scalable and the proof search reaches timeout for 5 pigeons. rtauto exhausts its
memory quota when checking its certificate for 7 pigeons. itauto reaches the time limit of
3600s for 10 pigeons.

5.3 On existing developments
We have benchmarked itauto against the existing Coq tactics tauto and intuition for the
Bedrock29 and CompCert10 developments using Coq 8.14+alpha. We have replaced calls to
tauto and intuition tac for tac ∈ {idtac, assumption, discriminate, congruence, lia,
auto, eauto }. We have ruled out calls to intuition when they generate sub-goals. In terms
of completeness, itauto is able to solve the vast majority of the goals. One representative
case of failure is given in Example 7.

▶ Example 7. The following goal is solved by intuition congruence.

Goal true = true ↔ (Z → (False ↔ False)).

Yet, itauto congruence fails because Z (i.e., the type of integers) has type Set and therefore
the whole expression Z → (False ↔ False) is reified as an opaque atomic proposition.
Our solution is to call itauto recursively i.e., itauto (itauto congruence) so that an
hypothesis x:Z is explicitly introduced. The same approach works for goals with inner
universal quantifiers.

For a few instances, we also strengthen the leaf tactic replacing e.g., idtac by reflexivity,
and, discriminate by congruence. This is due to the fact that intuition implicitly calls
reflexivity and that our handling of theory reasoning sometimes introduces negations
which fool the discriminate tactic.

After modification, Bedrock2 performs 1621 calls to itauto. For 40% of the goals, the
running time differs by less than 1ms and itauto outperforms the historic tactics for 40% of
the cases. Overall, itauto is faster and there is an slight speedup of 1.07. Yet, all the calls
are quickly solved; the slowest goal is solved in 0.18s.

CompCert performs 924 calls to itauto. For 76% of the goals, the running time also
differs by less than 1ms. itauto outperforms the historic tactics for 19% percent of the goals.

9 https://github.com/mit-plv/bedrock2
10 https://github.com/AbsInt/CompCert
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Yet, when itauto is faster it can be by several orders of magnitudes: the 19% percent of
goals are solved more than 20 times faster by itauto. For instance, the maximum running
time of tauto is 5.26s to be compared to 0.81s for itauto. Overall, itauto performs better
with a speedup of 2.8 for solving all the goals.

In summary, the results are rather positive though the advantage may be slim. It seems
that itauto shows a decisive advantage for goals that are very slow with the existing tactics.
As shown by the Pigeon Hole experiment, this would indicate a better scalability. It would
not be surprising for itauto to be slower on simple goals where the overhead of setting up
the proof by reflection cannot be amortised. itauto spends time in different proof tasks:
SAT solver, theory reasoning and proof by reflection. We are confident that the SAT solver is
scalable and reasonably fast. Yet, this is not always the bottleneck, and, the positive results
reported here were only made possible by fine tuning other tasks e.g., the reification code.

6 Related Work

For propositional logic, Weber and Amjad [27] for HOL theorem provers and Armand et
al. [3] for Coq show how to efficiently validate resolution proofs that can be generated by
modern SAT solvers using Conflict Driven Clause Learning (e.g. zChaff [21]). Satisfiability
Modulo Theory (SMT) solvers (e.g., veriT [8], Z3 [12] , CVC4 [13]) produce proof artefacts.
Böhme and Weber [7] show how to efficiently perform proof reconstruction for HOL provers.
Armand et al. [2] and Besson et al. [4] extract proof certificates from SMT proofs that
are validated in Coq. Sledgehammer [5] interfaces Isabelle/HOL with a variety of provers;
Metis [18, 23] is in charge of performing proof reconstruction. We follow a different approach
and verify a SAT solver interfaced with the tactics of Coq. What we loose in efficiency, we
gain in flexibility because the user might use her own fine-tuned domain specific tactics.

Claessen and Rosén [10] build a prover for intuitionistic logic on top of a black-box
SAT solver. Their implementation is more efficient than ours but is not integrated inside a
proof-assistant. Lescuyer and Conchon [19, 20] formalise a reflexive SAT solver for classical
logic. Their implementation features a lazy definitional CNF that is not fully exploited
because of the lack of hash-consing. Compared to ours, their SAT solver performs neither lazy
unit propagation nor backjumping. Blanchette et al. [6] formalise a Conflict Driven Clause
Learning (CDCL) SAT solver and derive a verified implementation. Using this framework,
Fleury, Blanchette and Lamich [15] derive an imperative implementation using watched
literals. Our implementation has less sophisticated features but is integrating as a reflective
proof procedure and allows to perform theory reasoning.

7 Conclusion and Future Work

We have presented itauto a reflexive tactic for intuitionistic propositional logic which
can be parametrised by user-provided tactics. The SAT solver is optimised to leverage
classical reasoning thus limiting, when possible, costly intuitionistic reasoning. Our SAT
solver has several features found in modern SAT solver. Yet, the implementation could
be improved further. A first improvement would be to generate more sophisticated learnt
clauses. This could be done by attaching to each clause, not only the needed literals, but
also the performed unit propagations. Another improvement would be to use primitive
persistent arrays (available since Coq 8.13) allowing to implement efficiently more imperative
algorithms e.g., 2-watched literals.
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