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—— Abstract

Literature in Al & Law contemplates argumentation in legal cases as an instance of theory con-
struction. The task of a lawyer in a legal case is to construct a theory containing: (a) relevant
generic facts about the world, (b) relevant legal rules such as precedents and statutes, and (c)
contingent facts describing or interpreting the situation at hand. Lawyers then elaborate convincing
arguments starting from these facts and rules, deriving into a positive decision in favour of their
client, often employing sophisticated argumentation techniques involving such notions as burden
of proof, stare decisis, legal balancing, etc. In this paper we exemplarily show how to harness
Isabelle/HOL to model lawyer’s argumentation using value-oriented legal balancing, while drawing
upon shallow embeddings of combinations of expressive modal logics in HOL. We highlight the
essential role of model finders (Nitpick) and “hammers” (Sledgehammer) in assisting the task of
legal theory construction and share some thoughts on the practicability of extending the catalogue
of ITP applications towards legal informatics.
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1 Introduction

In this paper we explore (value-oriented) legal reasoning as a new application area for
higher-order proof assistants. More specifically, we employ Isabelle/HOL [33] to formalise,
verify, and enhance legal arguments as presented in the context of a legal case between two
parties: a plaintiff and a defendant. In the spirit of previous work in the AI & Law tradition,
we tackle the formal reconstruction of legal cases as a task of theory construction, namely,
“building, evaluating and using theories” [5]. Thus, “the task for a lawyer or a judge in
a “hard case” is to construct a theory of the disputed rules that produces the desired legal
result, and then to persuade the relevant audience that this theory is preferable to any theories
offered by an opponent” [32].

We utilise the framework of shallow semantical embeddings (SSE; cf. [7, 15]) of (combina-
tions of) non-classical logics in classical higher-order logic (HOL). HOL, which is instantiated
here as Isabelle/HOL, thereby serves as a meta-logic, rich enough to support the encoding of
combinations of object logics (modal, conditional, deontic, etc. [6, 8, 9, 10]) allowing for the
modelling of adaptable value systems. For this sake, we also integrate some basic notions
from formal concept analysis (FCA) [22] to exemplarily illustrate the encoding of a theory of
legal values as proposed by Lomfeld [30].
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Value-Oriented Legal Argumentation in Isabelle/HOL

This paper improves an unpublished workshop paper [11]; Paper structure: In §2 we
outline our object logic of choice, a modal logic of preferences [37], and we then present
a SSE of this logic in the Isabelle/HOL proof assistant. Subsequently we depict in §3 the
encoding of a logic of legal values by drawing upon FCA notions and Lomfeld’s value theory.
In §4 we demonstrate how the formalisation of relevant legal and world knowledge can be
used for formally reconstructing value-oriented arguments for an exemplary property law
case. We conclude in §5 with some comments on related work and further reflections and
ideas for the prospective application of ITP in the legal domain.

2 Shallow Embedding of the Object Logic
2.1 Modal Preference Logic PL

As will become evident later on, our object logic needs to provide the means for representing
(conditional) preferences between propositions. For this sake we have chosen the modal logic
of ceteris paribus preferences as introduced by van Benthem et al. [37], which we abbreviate
by PL in the remainder. For the purpose of this present paper we will focus our discussion
on PL’s basic preference language, disregarding the mechanism of ceteris paribus clauses.
Nevertheless, we have provided a complete encoding and assessment of PL in the associated
Isabelle/HOL sources [1]. We will briefly outline below some relevant syntactic and semantic
notions of PL and refer the reader to [37] for a complete exposition.

PL is composed of normal S4 and K/ modal operators, together with a global existential
modality E. Combinations of these modalities enable us to capture a wide variety of proposi-
tional preference statements of the form A < B (for different, indexed <-relations as shown
below). The formulas of PL are inductively defined as follows (where p ranges over a set
Prop of propositional constant symbols):

e, 0= ploAY|—p| 030 | 0%¢ | Ep

0= is to be read as “y is true in a state that is considered to be at least as good as
the current state”, 0=y as “p is true in a state that is considered to be strictly better than
the current state”, and E¢p as “there is a state where ¢ is true”. 0%y, O~p and Ay can
be introduced to abbreviate ==y, ===y and “E-, respectively. Further, standard
logical connectives such as V, — and <> can be defined as usual. We use boldface fonts to
distinguish standard logical connectives of PL from their counterparts in HOL.

A preference model M is a triple M = (W, X, V) where: (i) W is a set of states; (ii) =
is a so-called “betterness relation” that is reflexive and transitive (i.e. a preorder), where
its strict subrelation < is defined as: w < v iff w < v Av A w for all v and w (totality of <,
i.e. v 2w or w < v, is generally not assumed); (iii) V is a standard modal valuation. Below
we show the truth conditions for PL’s modal connectives (the rest are standard):

M,wE 0=y iff 3v € W such that w < v and M,v E ¢
M,w E O~ iff Jv € W such that w < v and M, v F ¢
M, wEEp iff 3v € W such that M,vE ¢

A formula ¢ is true at world w € W in model M if M, w E ¢. ¢ is globally true in M,
denoted M E o, if ¢ is true at every w € W. Moreover, ¢ is valid (in a class of models K) if
globally true in every M (€ K), denoted Fpz ¢ (Fx ¢).

Quite relevant to our purposes is the fact that PL introduces eight semantical definitions
for binary preference operations on propositions (Xgg, <am, 3EA, <44, and their strict
variants). They correspond, roughly speaking, to the four different ways of combining a pair
of universal and existential quantifiers when “lifting” an ordering on worlds to an ordering
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on sets of worlds (i.e. propositions). In this respect PL can be seen as a family of preference
logics encompassing, in particular, the proposals by von Wright [38] and Halpern [24]. PL
appears well suited for effective automation using the SSE approach, which has been an
important selection criterion. This judgment is based on good prior experience with the SSE
of related (monadic) modal logics [14, 15] whose semantics employs Kripke-style relational
semantics.

2.2 Encoding PL in Meta-logic HOL

We employ the shallow semantical embeddings (SSE) technique [7, 15] to encode (a semantical
characterisation of) the logical connectives of an object logic as A-expressions in HOL. This
essentially shows that the object logic can be unraveled as a fragment of HOL and hence
automated as such. For (multi-)modal normal logics, like PL, the relevant semantical
structures are Kripke-style relational frames. PL formulas can thus be encoded as predicates
in HOL taking worlds as arguments.!

As a result, we obtain a combined, interactive and automated, theorem prover and
model finder for (an extended variant of) PL realised within Isabelle/HOL. This is a new
contribution, since we are not aware of any other existing implementation and automation of
such a logic. Moreover, the SSE technique supports the automated assessment of meta-logical
properties of the embedded logic at a semantical level, which in turn provides practical
evidence for the correctness of our encoding.

We now give a succinct overview of the SSE of PL [1]. The embedding starts with
declaring the HOL base type ¢, corresponding to the domain of possible worlds/states in
our formalisation. PL propositions are modelled as predicates on objects of type ¢ (i.e. as
truth-sets of worlds) and, hence, they are given the type (¢« — 0), which is abbreviated as o in
the remainder. The “betterness relation” < of PL is introduced as an uninterpreted constant
symbol =(,_,.,) in HOL, and its strict variant < is introduced as an abbreviation <(,_,_.)
standing for the HOL term AvAw(v < w A =(w < v)); see Fig. 1. <-accessible worlds are
interpreted as those that are at least as good as the present one, and we hence postulate that
= is a preorder, i.e. reflexive and transitive. In a next step the o-type lifted logical connectives
of PL are introduced as abbreviations for A-terms in the meta-logic HOL. The conjunction
operator A of PL, for example, is introduced as an abbreviation A,_,_, which stands
for the HOL term Aps Ay Aw,(p w A ¥ w), so that p, A 1, reduces to Aw,(p w A ¥ w),
denoting the set? of all worlds w in which both ¢ and v hold. Analogously, for negation, we
introduce an abbreviation —,_,, which stands for Ao, w,~(p w).

The operators ¢= and = use =< and < as guards in their definitions. These
operators are introduced as shorthands ¢, and ¢,  abbreviating the HOL terms
Ao Aw, Fv, (w X v A v) and Ap,Aw, Jv, (w < v A @ v), respectively. Q;H(,(p[, thus reduces
to Aw,Ju,(w 2 v A v), denoting the set of all worlds w so that ¢ holds in some world
v that is at least as good as w; analogous for ¢, . Additionally, the global existential
modality E,_,, is introduced as shorthand for the HOL term Ap,Aw,3v,(p v). The duals
02,00, 07,9 and A,_,¢ can easily be added so that they are equivalent to =02, =,
=07, .9, and 1E,_ . respectively. A special predicate |p,| (read ¢, is valid) for
o-type lifted PL formulas in HOL is defined as an abbreviation for Vw, (¢, w).

L This corresponds to the well-known standard translation to first-order logic. Observe, however, that the
additional expressivity of HOL allows us to also encode and flexibly combine non-normal modal logics
(conditional, deontic, etc.) and to encode also different kinds of quantifiers; see e.g. [6, 8, 9, 10].

2 In HOL (with Henkin semantics) sets are associated with their characteristic functions.
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12| (*betterness relation =< and strict betterness relation <¥*)
13|consts BR::vy (" < ")

14|definition SBR::~ (" < ") where "v<w = (viw) A =(w=v)"
15|abbreviation "reflexive R = ¥x. R x x"

16|abbreviation "transitive R = ¥xy z. Rxy ARy z — R x z"
17|abbreviation "is total R = ¥x y. Rxy VvV Ry x"

18|axiomatization where rBR: "reflexive BR" and tBR: "transitive BR"
19|lemma tSBR: "transitive SBR" using SBR def tBR by blast (*derived from axioms*)
20| (*modal logic connectives (operating on truth-sets)*)
21|abbreviation cl::c ("L") where "L = Mw. False"

22|abbreviation c2::0 ("T") where "T = Aw. True"

23|abbreviation c3::y ("= ") where "—p = Aw.-(p w)"
24|abbreviation c4::v (infix1"A"85) where "pAY = Aw. (¢ W)A(Y w)"
25|abbreviation c5::v (infix1"Vv"83) where "pVi¢ = Aw. (¢ W)V (¢ w)"
26/abbreviation c6::v (infix1"—"84) where "p—t = Aw.(p w)— (¢ w)"
27|abbreviation c7::v (infix1"«"84) where "pet) = . (p W)«— (¢ w)"
28|abbreviation c8::y ("O= ") where "OZp AW. V. (W=v) —(p v)"
29|abbreviation c9--u ("O= ") where "O= Aw. 3V, (W2V)A(p V)"
30/abbreviation cl10::y ('O~ ") where "O% AW YV, (W<v) —(p V)"
31|abbreviation cll::pu ("¢~ ") where "¢<p = Aw.3v.(W<V)A(p V)"
32|abbreviation ClZ::,u ("E_") where "Ep Aw.3v. (p v)"
33|abbreviation c13::x ("A ") where "Ap AW VY. (p v)"

34| (*meta-logical predicate for global and validity*)

35|abbreviation gl::x ("| |") where "|¢] Yw. ¢ w"

36| (*some tests: dualities*)

37|lemma "|(O3p) e (m02=p) | A [(O=p)e(=0%=p)| A [(Ap)e(=E-p)|" by blast (*proof*)

6 6

Figure 1 SSE of basic PL in Isabelle/HOL (extract).

= is now “lifted” to a preference relation between PL propositions (sets of worlds).?

(0o =gE Vo) u, Ut Is, wos A (Tt, Vot As < t) (u, arbitrary)
(po SEA Vo) u, Mff Tt, Yot A (Vs, o8 = s < t) (u, arbitrary)
(0o =AE Vo) u, iff Vs, ¢,8 = (Tt, Yot As <t) (u, arbitrary)
(0o =44 Vo) u, iff Vs, pos = (Vt, Yot — s < 1) (u, arbitrary)

As an illustration, we can read ¢ <24 ¥ as “every -state being better than every
p-state”, and read ¢ <A ¥ as “every @-state having a better -state” (similarly for others).
Each of these non-trivial variants can be argued for [37, 27]. However, as we will reveal in
§3, only the FA- and AE-variants satisfy the minimal conditions required for a logic of value
aggregation. Moreover, they are the only ones that satisfy transitivity.

As shown in [37], the binary preference operators above are complemented by “syntactic”
counterparts defined as derived operators using the language of PL. In fact, both sets of
definitions (“semantic” and “syntactic”) coincide in general only for the FE- and A E-variants
(other variants coincide only if < is a total/linear ordering). The “syntactic” variants are
encoded below in HOL employing the o-type lifted logic PL (using boldface to differentiate

them).
(¢o g ¥o) 1= Blps A 0740 and (¢, <pE Yo) = E(ps A O7Yy)
(¢o Zpa o) = E(e AO%2p,)  and (g5 <pa ¥o) == B(Ye ADZ2g,)
(900 jAE 1/’0) = A(SOU - ija) and (500 —<AE 7110) = A((pa - <><'¢)a)
((Pa jAA w”) = A(,(/)U - |:|_<—|(p[,) and (‘PU <AA ¢a) = A("/}o — Dj—ﬂpa)

3 The variant <g as originally presented in [37] was in fact wrongly formulated. This mistake has been
uncovered during the (iterative) formalisation process thanks to Isabelle/HOL.



C. Benzmiiller and D. Fuenmayor 7:5

We further extend the lifted logic PL by adding quantifiers. This can be done by
identifying Vs, with the HOL term A\w,Vz,(s,w) and 3z,8, with Aw,3x,(s,w). This
way quantified expressions can be seamlessly employed, e.g., for the representation of legal
and world knowledge in §4.

A note on the heavy use of abbreviations as opposed to definitions is in order. One
motivation is to show by the simplest possible means that the logic PL (and also our
subsequent encodings in this paper) can be understood as a genuine fragment of HOL, and
the introduction of the connectives of PL as syntactic sugar (abbreviations) for A-terms in
HOL does just that. No specific concepts, in particular no Isabelle/HOL specific ones, are
needed to achieve our goals, making our work easily transferrable to other higher-order proof
assistant systems. Another motivation is to show that proof automation with Sledgehammer
already works very well using only abbreviations. Of course, by using definitions we could
support, e.g., selective expansions of definitions, which could be a useful option for further
proof optimisation. However, this was not yet necessary for the proof automation results
obtained in this work. This, and related issues, are worth considering in further work.

2.3 Faithfulness of the SSE

The faithfulness (soundness & completeness) of the present SSE of PL in HOL follows
from previous results for SSEs of propositional multi-modal logics [14] and their quantified
extensions [15]. Soundness of the SSE states that our modelling does not give any “false
positives”, i.e., if EHOMT) | o | then Fp, o, and therefore Fp, ¢ in the (complete) calculus
axiomatised by [37]; here HOL(T") corresponds to HOL extended with the relevant types
and constants plus a set I' of axioms encoding PL semantic conditions, i.e., reflexivity
and transitivity of <(,.,.,). Completeness of the SSE means that our modelling does not
give “false negatives”, i.e., if Ep, ¢ then EHOMT) |4 |, Moreover, SSE completeness can

be mechanically verified by deriving the o-type lifted PL axioms and inference rules in
HOL(T).*

3 A Logic for Value-oriented Legal Reasoning

On top of object logic PL we define a domain-specific logic for reasoning with values in the
context of legal cases. We subsequently encode this logic of legal values in Isabelle/HOL and
put it to the test.

Setting the Stage: Plaintiff vs. Defendant

In a preliminary step, the contending parties in a legal case, the “plaintiff” (p) and the
“defendant” (d), are introduced as an (extensible) two-valued datatype ¢ (for “contender”)
together with a function (-)~! used to obtain for a given party the other one; i.e. p~! = d and

d=! = p. Moreover, we add a predicate For to model the ruling for a party and postulate:

For x <> —For z 1.

3| (*new datatype for parties/contenders (there could be more in principle)*)
4|datatype ¢ = p | d (*plaintiff & defendant*)

5|fun other::"c=c" ("_7") where "p* =d" | "d? = p"

6] (*new constant symbol: finding/ruling for party*)

7|consts For::"c=o"

8laxiomatization where ForAx: "|For x < (=For x7)|"

4 GSee the corresponding sources in [1], where we conducted numerous experiments mechanically verifying
meta-theoretical results on PL.

ITP 2021
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Abstract Values and Value Principles

SECURITY

Reliance | Stability
[RELI] @ [STAB]

Equity Efficiency

[EQuUI] [EFFI]
EQUALITY uTIiLITY

Fairness Personal gain

[FAIR] (GAIN)

Responsibility @l Free will
[RESP] R [WILL]

FREEDOM
Figure 2 Value theory of Lomfeld [30].

Our approach to value-oriented legal reasoning draws upon recent work in legal theory by
Lomfeld [30, 29] who considers a four-quadrant value space generated by two axes featuring
antagonistic abstract values (FREEDOM vs. SECURITY & UTILITY vs. EQUALITY) at
the extremes (Fig. 2).

A set of eight value principles are allocated to the four quadrants (two for each quadrant)
as shown in Fig. 2. Additionally, Lomfeld’s theory contemplates the encoding of legal rules as
conditional preferences between conflicting value principles of the form: R: (E1A---AE,) =
A < B. Hence, application of rule R involves balancing value principles A and B in context
(i.e. under the conditions Ej ... E,).

To provide a concrete modelling of this theory in Isabelle/HOL, we have chosen to model
value principles as sets of abstract values.® For the latter we have introduced a four-valued
datatype (‘¢ VAL). Observe that this datatype is parameterised with a type variable ‘t.
In the remainder we take ‘¢ as being c¢. In doing this, we allow for the encoding of value
principles w.r.t. a particular (favoured) legal party. In the remainder value principles are
thus encoded as functions taking objects of type ¢ (p or d) to sets of abstract values:

9| (*new parameterized datatype for abstract values (wrt. a given party)*)
10|datatype 't VAL = FREEDOM 't | UTILITY 't | SECURITY 't | EQUALITY 't

11|type_synonym v = "(c)VAL=bool" (*principles: sets of (abstract) values*)
12|type_synonym cv = "c=v" (*principles are specified wrt. a given party*)

We have also introduced some convenient type-aliases; v for the type of sets of abstract
values, and cv for its corresponding functional version (taking a legal party as parameter).

Instances of value principles (w.r.t. a legal party) are next introduced as sets of abstract
values (w.r.t. a legal party), i.e., as objects of type cv. For this we introduce set-constructor
operators for values (depicted as {...[}).

Recalling Fig. 2, we have, e.g., that the principle of STABility favouring the plaintiff
(STAB?) is encoded as a two-element set of abstract values (favouring the plaintiff), i.e.,
{SECURITY p, UTILITY p[}. We do analogously for the other value principles.

5 Here we suitably simplify Lomfeld’s value theory to the effect that, e.g., STABility becomes identified
with EFFIciency. This is enough for our modelling work in §4. A more granular encoding of value
principles is possible by adding a third axis to the value space in Fig. 2.
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13| (*notation for sets*)

14|abbreviation vsetl ("{ [}") where "{¢} = Ax::(c)VAL. x=¢"
15|abbreviation vset2 ("{_, ") where "{o,d} = Ax::(c)VAL. x=a V x=3"
16| (*value principles*)

17|abbreviation stab::cv ("STAB-") where "STABX {SECURITY x, UTILITY x}"

18|abbreviation effi::cv ("EFFI-") where "EFFI* = {UTILITY x, SECURITY x}"
19|abbreviation gain::cv ("GAIN-") where "GAIN* = {UTILITY x, FREEDOM x}"
20|abbreviation will::cv ("WILL-") where "WILL* = {FREEDOM x, UTILITY x}"
21|abbreviation resp::cv ("RESP-") where "RESP* = {FREEDOM x, EQUALITY x}"
22|abbreviation fair::cv ("FAIR-") where "FAIR* = {EQUALITY x, FREEDOM x|"
23|abbreviation equi::cv ("EQUI-") where "EQUI* = {EQUALITY x, SECURITY x}"
24|abbreviation reli::cv ("RELI-") where "RELI* = {SECURITY x, EQUALITY x}"

From a modal logic point of view it is, alternatively, convenient to conceive value principles
as truth-bearers, i.e., propositions (as sets of worlds or situations). To overcome this apparent
dichotomy in the modelling of value principles (sets of abstract values vs. sets of worlds) we
make use of the mathematical notion of a Galois connection as exemplified by the notion
of derivation operators from the theory of formal concept analysis (FCA), a mathematical
theory of concepts and concept hierarchies as formal ontologies. Below we succinctly discuss
a couple of FCA notions relevant to our work. We refer the interested reader to [22] for an
actual introduction to FCA.

Some FCA Notions

A formal context is a triple K = (G, M, I) where G is a set of objects, M is a set of attributes,
and I is a relation between G and M (so-called incidence relation), i.e., I C G x M. We
read (g,m) € I as “the object g has the attribute m”. We define two so-called derivation
operators 1 and | as follows:

At =={me M| {(g,m)elforall gec A} for ACG
Bl :={g€G | (g,m) el forall me B} for BC M

A7 is the set of all attributes shared by all objects from A, called the intent of A. Dually,
B is the set of all objects sharing all attributes from B, called the extent of B. This pair of
derivation operators thus forms an antitone Galois connection between (the powersets of) G
and M, i.e. we always have that B C A1 iff A C B|.

A formal concept (in a context K) is defined as a pair (A, B) such that A C G, B C M,
At = B, and Bl = A. We call A and B the extent and the intent of the concept (A, B),
respectively. Indeed (A1), A1) and (BJ, B|1) are always concepts.

The set of concepts in a formal context is partially ordered by set inclusion of their
extents, or, dually, by the (reversing) inclusion of their intents. In fact, for a given formal
context this ordering forms a complete lattice: its concept lattice. Conversely, it can be

shown that every complete lattice is isomorphic to the concept lattice of some formal context.

We can thus define lattice-theoretical meet and join operations on FCA concepts in order to
obtain an algebra of concepts:®

<A1,Bl> N <A2,Bg> = <(A1 N Ag) 7(Bl @] B2>\LT>
(A1, B1) V (A2, Bs) := ((A1 U A2)T! , (B1 N By))

5 This result can be seamlessly stated for infinite meets and joins (infima and suprema) in the usual way.
It corresponds to the first part of the so-called basic theorem on concept lattices [22].

17
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Value Principles

We now extend the encoding (SSE) of our object logic PL, exploiting the high expressivity
of our meta-logic HOL. We define two FCA derivation operators 1 and | employing the
corresponding definitions from above. For this we take G as the domain set of worlds
corresponding to the type ¢ and M as a domain set of abstract values, corresponding in
the current modelling approach to the type VAL. In doing this, each value principle (set
of abstract values) becomes associated with a proposition (set of worlds) by means of the
operator | (conversely for 1). We encode this by defining a binary incidence relation 7
between worlds/states (type ¢) and abstract values (type VAL). We define | so that V|
denotes the set of all worlds that are Z-related to every value in V' (analogously for V7).
We introduce an alternative notation: [V]:= V] which may enhance readability in some

cases.

29| (**Value Theory*)

30|consts Irel::"'=v" ("Z") (*incidence relation worlds-values*)

31| (*derivation operators (cf. theory of "formal concept analysis") *)

32|abbreviation intent::"s=v" (" 1") where "W] = Av. Vx. Wx — 7 x v"

33|abbreviation extent::"v=¢" (" |") where "V| = Aw. Vx. VX — 7 w x"
34|abbreviation extent brkt ("[_1") where "[V] = V|" (*alternative notation*)

Recalling the semantics of the object logic PL from our discussion in §2.1, we can give
an intuitive reading for truth at a world in a preference model to terms of the form PJ;
namely, we can read M, w E P/ as “principle P provides a reason for (state of affairs) w to
obtain”. In the same vein, we can read M F A — P as “principle P provides a reason for
proposition A being the case”.

Transferring these insights to our current modelling in Isabelle/HOL, we can intuitively
read, e.g., the formula STABY| w (of type bool) as: “the legal principle of stability is
Justifiably promoted in favour of the defendant (in situation w)”. In a similar vein, we can
read |For d — STAB?|| as “promoting (legal) stability in favour of the defendant justifies
deciding for him/her (in any situation)”.

Value Aggregation and Preference

As discussed above, our logic of legal values must provide means for expressing conditional
preferences between principles of the form: (Ey A--- A E,) = A < B. The conditional =
is modelled in this work using PL’s material conditional —, while noting that a defeasible
conditional operator can indeed be defined and added by employing PL’s modal operators
[20, 28]. We can also define a binary preference connective < for propositions by reusing
any of the eight preference “lifting” variants in PL as discussed in §2. However, this choice
cannot be arbitrary, since it needs to interact with value aggregation in an appropriate way.

Lomfeld’s theory also contemplates a mechanism for expressing aggregation of value
principles (as reasons). We thus define a binary value aggregation connective @, observing
that it should satisfy particular logical constraints in interaction with a (suitably selected)
value preference relation <:

(A<B)—=(A<B&C) butnot (A<B&C)— (A<B) aggregation on the right
(A@C<B)— (A<B) butnot (A<B)— (A®C < B) aggregation on the left
(B<AANC=<A) —-(BeC=<A) union property (optional)

The aggregation connectives are most conveniently defined using join (resp. set union)

operators, which gives us commutativity. As it happens, only the <4gp/=<ar and <gpa/=<pa
variants from §2 satisfy the first two conditions. They are also the only variants satisfying
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transitivity. Moreover, if we choose to enforce the third aggregation principle (union property),
then we are left with only one variant to consider, namely <4g/=<ag. This variant also
offers several benefits for our current modelling purposes: it can be faithfully encoded in the
language of PL [37] and its behaviour is well documented in the literature [24] [27, Ch. 4].

After extensive computer-supported experiments in Isabelle/HOL (see [1]) we have
identified the following candidate definitions satisfying all desiderata. First, for value
aggregation @:”

A D) B = (A N B)l, and A D(2) B = (A\L V B\L)
Then, for a binary preference connective < between propositions we have:

e ¥i=p=2apy¥ and ¢ <@ VY:=p <ap Y

For the rest of this work we will illustratively employ the second set of definitions indexed by

2).

Promoting Values

We still need to consider the mechanism by which we can link legal decisions, together
with other legally relevant facts, to legal values. We conceive of such a mechanism as a
sentence schema, which reads intuitively as: “Taking decision D in the presence of facts F
promotes/advances legal (value) principle V”. The formalisation of this schema corresponds
to a new predicate Promotes(F,D,V), where F is a conjunction of facts relevant to the case
(a proposition), D is the legal decision, and V is the value principle thereby promoted.®

Promotes(F,D,V) := F — 03D + 0~V])

Promotes(F,D,V) can be given an intuitive reading: “in every F-situation we have that, in all
better states, the admissibility of promoting value V' both entails and justifies (as a reason)
taking decision D”.

35| (*connective for aggregating value principles*)

36|abbreviation aggr ("[ & ") where "[Vi®V2] = (Vi]) V (V2|)"
37| (*chosen variant for preference relation (cf. Halpern (1997)%*)
38|abbreviation pref::"o=o=0¢" ("_<_") where "p < ¢ = ¢ <ne V"

39| (*schema for value principle promotion*)
40|abbreviation "Promotes F D V = |[F — O<(D « <O=(V]))]"

Value Conflict

Another important idea inspired from Lomfeld’s value theory [29, 30] is the notion of value
conflict. Recalling Fig. 2, values are disposed around two axis of value coordinates, with
values lying at contrary poles playing antagonistic roles. For our modelling purposes it makes
thus sense to consider a predicate Conflict on worlds (i.e. a proposition) signalling situations
where value conflicts appear.

41| (*proposition for testing for value conflict*)

42|abbreviation conflict ("Conflict-") where (*conflict for value support*)
43| "Conflict* = [SECURITYX] A [EQUALITY*] A [FREEDOM*X] A [UTILITY*]"

7 Observe that @ is based upon the join operation on the corresponding FCA formal concepts. @2 is a
strengthening of the first, since (A @2 B) C (A &1 B).

8 We adopt the terminology of advancing or promoting a value from the literature [16, 34, 5] understanding
it in a teleological sense: a decision promoting a value principle means taking that decision for the sake
of honouring the principle; thus seeing the value principle as a reason for taking that decision.
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1|theory ValueOntologyTestLong imports ValueOntology (** Benzmiiller, Fuenmayor & Lomfeld, 2021 **)
2|begin

3|lemma "True" nitpick[satisfy,show all,card (=10] oops

4|lemma "|[ConflictP|" nitpick[satisfy,card (=4] nitpick oops (*contingent*)
5| (*derivation operators satisfy main properties of Galois connections*)
6|lemma G: "B C Al «— A C B|" by blast

7|lemma G1: "A C ATl" by simp

8|lemma G2: "B C B[1" by simp

9|lemma G3: "A1 C A2 — A2l C A1l" by simp

10|lemma G4: "B1 C B2 — B2| C Bi|" by simp

11|lemma cll: "AT = AT|1" by blast

12|lemma cl2: "B] = B/7|" by blast

13|lemma dualla: "(A:1 U A2)7 = (A1l M A27)" by blast

14|lemma duallb: "(B: U B2)| = (Bi] M B2])" by blast

15|lemma "(A1 M A2)T C (A1l U A27)" nitpick oops (*countermodel*)
16|Lemma "(B1 M B2)] C (Bi] U B2])" nitpick oops (*countermodel*)
17|lemma dual2a: "(Ai1] U A2f) © (A1 M A2)1" by blast

fury
]

lemma dual2b: "(Bi] U Bz2]) ©& (B1 M B2)|" by blast

(*value conflict tests*)

20|lemma "|[[RELIP] A [WILLP] — ConflictP|" by simp

21|lemma "|ConflictP — [RELIP] A [WILLP]|" by simp

22|lemma "|[RELIP] A [WILLP]]" nitpick[satisfy] nitpick oops (*contingent*)

23|lemma "|[FAIRY] A [EFFIY]|" nitpick[satisfy] nitpick oops (*contingent*)

24|lemma "|(—=ConflictP) A [FAIRY] A [EFFI9]]"

25| nitpick[satisfy,show all] nitpick oops (*contingent: p & d independent*)

26|lemma "[(—Conflictd) A (=ConflictP) A [RELIY] A [WILLP]|"

27| nitpick[satisfy,show all] nitpick oops (*contingent: p & d independent*)

28| (*values in two non-opposed quadrants: no conflict*)

29|lemma "|[WILL*] A [STAB*] — Conflict*|" nitpick oops (*countermodel found*)

30|lemma "|[WILL*] A [GAINX] A [EFFIX] A [STABX] — ConflictX|" nitpick oops

31| (*values in two opposed quadrants: conflict*)

32|lemma "|[RESP*] A [STAB*] — ConflictX|" by simp

33| (*values in three quadrants: conflict*)

34|{lemma "|[WILL*] A [EFFI*] A [RELI*X] — Conflict*|" by simp

35| (*values in opposed quadrants for different parties: no conflict*)

36/lemma "|[EQUI*] A [GAINY] — (ConflictX Vv ConflictY)]" nitpick oops (*cntmdl*)

37|lemma "|[RESP*] A [STABY] — (Conflict* Vv ConflictY)|" nitpick oops (*cntmdl*)

38| (*value preferences tests*)

39|lemma "|[WILL*X]<[WILL*@STABX]|" nitpick nitpick[satisfy] oops (*contingent*)

40|lemma "[[WILLX]<[STABX]| — |[[WILLX]<[WILL*@STABX]|" by blast

41|lemma "[[WILLX]<[STABX]| — |[[WILL*]<[RELI*@STABX]|" by blast

42|lemma " [[WILLX]<[WILLX@®STAB*]] — [[WILLX]<[STABX]]" (*nitpick*) nitpick[satisfy] oops (*ctgnt?*)
43|lemma " [[WILLX]<[RELI*@®STAB*]] — [[WILLX]<[STAB*]|" nitpick nitpick[satisfy] oops (*contingent*)
44|lemma "[[WILLX@STABX]<[WILL*]]" nitpick nitpick[satisfy] oops (*contingent*)

45|lemma "|[[WILLX@STABX]<[WILL*X]] — [[STABX]<[WILLX]|" by metis

46|lemma " |[[RELI*@®STABX]<[WILLX]| — [[STABX]<[WILLX]|" by metis

47|lemma " [[STABX] <[WILLX]| — |[WILL*@®STABX]<[WILL*]|" nitpick nitpick[satisfy] oops (*contingent*)
48|lemma "[[STABX] <[WILLX]| — |[RELI*@®STABX]<[WILL*]|" nitpick nitpick[satisfy] oops (*contingent*)
49| (*basic properties*)

50|lemma "|[[X]<[X]]" nitpick nitpick[satisfy] oops (*contingent*)

51|lemma "|[(([XI=<[Y]) A ([YI<I[Z])) — ([X]1<I[Z])]" using tSBR by blast (*transitive*)

52|temma "[([X]1<[Y]) A ([Y]<I[X])] — X = Y" nitpick oops (*not antisymmetric*)

53|end

=
(=]

Figure 3 Testing the logic of legal values.

Testing the Encoding

In order to test the adequacy of our modelling, some implied and non-implied knowledge is
studied. We briefly discuss some of the conducted tests as shown in Fig. 3.

Among others, we verify that the pair of operators for extension (}) and intension (1),
cf. formal concept analysis [22], constitute indeed a Galois connection (Lines 6-18), and we
carry out some further tests on the value theory concerning value aggregation and consistency
(Lines 20ft.).

In our modelling of the notion of value conflict, promoting values (for the same party)
from two opposing value quadrants, say RELI & WILL, should entail a value conflict; theorem
provers quickly confirm this as shown in Fig. 3 (Line 20). However, promoting values from
two non-opposed quadrants, such as WILL & STAB (Line 29) should not imply conflict:
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Nitpick found a model for card . = 1:
Types:
c={d, p}
c VAL = {FREEDOM d, FREEDOM p, UTILITY d, UTILITY p, EQUALITY d, EQUALITY p, SECURITY d, SECURITY p}
Constants:
BR = (Ax. _)((c1, 1) := True)
For = (Ax. _)((d, ¢«1) := False, (p, ¢t1) := True)
I = (xx. _)
((c1, FREEDOM d) := False, (:1, FREEDOM p) := True, (c1, UTILITY d) := False, (:1, UTILITY p) := True,
(v1, EQUALITY d) := False, (c1, EQUALITY p) := True, (¢1, SECURITY d) := False, (v1, SECURITY p) := True)

other = (Ax. _)(d :=p, p :=d)

Figure 4 Satisfying model for the statement in Line 22 of Fig. 3.

the model finder Nitpick® computes and reports a countermodel (not shown here) to the
stated conjecture. A value conflict is also not implied if values from opposing quadrants are
promoted for different parties (Lines 36-37).

Note that the notion of value conflict has deliberately not been aligned with inconsistency
in meta-logic HOL. This way we can represent conflict situations in which, for instance, RELI
and WILL (being conflicting values, see Line 20 in Fig. 3) are promoted for the plaintiff

(p), without leading to a logical inconsistency in Isabelle/HOL (thus avoiding “explosion”).

In Line 22 of Fig. 3, for example, Nitpick is called simultaneously in both modes in order
to confirm the contingency of the statement; as expected both a model (cf. Fig. 4) and
countermodel (not displayed here) for the statement are returned. This value conflict (w.r.t. p)
can also be spotted by inspecting the satisfying models generated by Nitpick. One of such
models is depicted in Fig. 4, where it is shown that (in the given possible world ¢1) all of the
abstract values (EQUALITY, SECURITY, UTILITY, and FREEDOM) are simultaneously
promoted for p, which implies a value conflict according to our definition.

Analysing the model structures returned by Nitpick has indeed been very helpful to gain
a deeper insight into PL semantic structures. This becomes particularly relevant for complex
modelling tasks where a clear understanding is often initially lacking.

Further tests in Fig. 3 (Lines 39-48) assess the behaviour of the aggregation operator @
in combination with value preferences. We test for a correct behaviour when “strengthening”,
resp. “weakening”, the right-hand side (Lines 39-43). As an illustration, in line 41, if STAB
is preferred over WILL, then STAB combined with, say, RELI is also preferred over WILL
alone. Similar test are conducted for “strengthening”; resp. “weakening”, the left-hand side
(Lines 44-48).

Finally, we verify (lines 50-52) basic properties of the preference relation.

4 A Case Study in Property Law

To illustrate our approach, we formalise and assess, employing Isabelle/HOL, a well-known

benchmark case in Al & Law involving the appropriation of wild animals: Pierson vs. Post.

In a nutshell: Pierson killed and carried off a fox which Post already was hunting with hounds
on public land. The Court found for Pierson (cf. [2, 34, 16], and also [23] for the significance
of this case as a benchmark).

We start with some words on the modelling of background (legal & world) knowledge.

9 Nitpick [19] searches for, respectively enumerates, finite models or countermodels to a conjectured
statement/lemma. By default Nitpick searches for countermodels, and model finding is enforced by
stating the parameter keyword “satisfy”. These models are given as concrete interpretations of relevant
terms in the given context so that the conjectured statement is satisfied or falsified.

7:11
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4.1 Legal & World Knowledge

The realistic modelling of concrete legal cases requires further legal & world knowledge
(LWK) to be taken into account. For the sake of illustration, we introduce here only a small
and monolithic Isabelle/HOL theory'® called “GeneralKnowledge”. This includes a small
excerpt of a much simplified “animal appropriation taxonomy”, where we associate “animal
appropriation” kinds of situations with the value preferences they imply (as conditional
preference relations).

In a realistic setting this knowledge base would be further split and structured similarly
to other legal or general ontologies, e.g., in the Semantic Web. Note, however, that the
expressiveness in our approach, unlike in many other legal ontologies or taxonomies, is by
no means limited to definite underlying (but fixed) logical language foundations. We could
thus easily decide for a more realistic modelling, e.g., avoiding simplifying propositional
abstractions. For instance, the proposition “appWildAnimal”, representing the appropriation
of one or more wild animals, can anytime be replaced by a more complex formula (featuring,
e.g., quantifiers, modalities or defeasible conditionals).

We now briefly outline the encoding of our example LWK (see [1] for the full details).

First, some non-logical constants that stand for kinds of legally relevant situations (here:
of appropriation) are introduced, and their meaning is constrained by some postulates:

3| (*LWK: kinds of situations addressed*)

4|consts appObject::oc appAnimal::o (*appropriation of objects/animals in general*)
5 appWildAnimal::oc appDomAnimal::o (*appropriation of wild/domestic animals*)
6] (*LWK: postulates for kinds of situations*)

7|axiomatization where

8| Wl: "|appAnimal — appObject]|" and

9| W2: "|[-(appWildAnimal A appDomAnimal)|" and

10| W3: "|appWildAnimal — appAnimal|" and

11| W4: "|appDomAnimal — appAnimal]"

Then the “default” legal rules for several situations (here: appropriation of animals) are
formulated as conditional preference relations:

12| (*LWK: (prima facie) value preferences for kinds of situations*)
13|axiomatization where

14| R1: "|appAnimal — ([STABP] < [STABY])|" and

15| R2: "|appWildAnimal — ([WILL*] < [STAB*]1)|" and

16| R3: "|appDomAnimal — ([STAB*'] < [RELIX®RESP*])]"

For example, rule R2 could be read as: “In a wild-animals-appropriation kind of situation,
promoting STABility in favour of a party (say, the plaintiff) is preferred over promoting
WILL in favour of the other party (defendant)”. If there is no more specific legal rule from
a precedent or a codified statute then these “default’'! preference relations determine the
result. Moreover, we can have rules conditioned on more concrete legal factors.'? As a

0Tsabelle documents are suggestively called “theories”. They correspond to top-level modules bundling
together related definitions, theories, proofs, etc.

1 'We use of the term “default” in the colloquial sense, noting however, that there exist in fact several (non-
monotonic) logical systems aimed at modelling such a kind of defeasible behaviour for rules/conditionals
(i.e., meaning that they can be “overruled”). One of them has been suggestively called “default logic”.
We refer to [25] for a discussion.

12 The introduction of legal factors is an established practice in the implementation of case-based legal
systems (cf. [3] for an overview). They can be conceived —as we do— as propositions abstracted from the
facts of a case by the analyst/modeller in order to allow for assessing and comparing cases at a higher
level of abstraction. Factors are typically either pro-plaintiff or pro-defendant, and their being true or
false (resp. present or absent) in a concrete case can serve to invoke relevant precedents or statutes.
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didactic example, the legal rule R4 states that the Ownership (say, the plaintiff’s) of the
land on which the appropriation took place, together with the fact that the opposing party
(defendant) acted out of Malice implies a value preference of RELIance and RESP onsibility
over STABility. This last rule has indeed been chosen to reflect the famous common law
precedent of Keeble vs. Hickeringill [16, 2].

37| (*LWK: conditional value preferences, e.g. from precedents*)
38|laxiomatization where
39| R4: "[(Mal x* A Own x) — ([STAB**] < [RESP*®RELI*])|"

As already discussed, for ease of illustration, terms like “appWildAnimal” are modelled
here as simple propositional constants. In practice, however, they may later be replaced,
or logically implied, by a more realistic modelling of the relevant situational facts, utilising
suitably complex (even higher-order, if needed) formulas depicting states of affairs to some
desired level of granularity.

For the sake of modelling the appropriation of objects, we have introduced an additional
type e (for “entities”) that can be employed for terms denoting individuals (things, animals,
etc.) when modelling legally relevant situations. Some simple vocabulary and taxonomic
relationships (here for wild and domestic animals) are specified to illustrate this.

17| (*LWK: domain vocabulary*)

18|typedecl e (*declares new type for 'entities'*)

19|consts

20| Animal::"e=o¢" Domestic::"e=o" Fox::"e=o¢" Parrot::"e=c¢" Pet::"e=c¢" FreeRoaming::"e=0c"
21| (*LWK: domain knowledge (about animals)*)

22|axiomatization where

23| W5: "[Va. Fox a — Animal a]" and

24| W6: "[Va. Parrot a — Animal a|" and

25| W7: "|[Va. (Animal a A FreeRoaming a A —Pet a) — -Domestic a|" and

26| W8: "|Va. Animal a A Pet a — Domestic a]"

As mentioned before, we have introduced some convenient legal factors into our example
LWK to allow for the encoding of legal knowledge originating from precedents or statutes at
a more abstract level. In our approach these factors are to be logically implied (as deductive
arguments) from the concrete facts of the case (as exemplified in §4 below). Observe that
our framework also allows us to introduce definitions for those factors for which clear legal
specifications exist. At the present stage, we will provide some simple postulates constraining
factors’ interpretation.

27| (*LWK: legally-relevant, situational 'factors'¥)

28|consts Own::"c=o" (*object is owned by party c*)

29 Poss::"c=o" (*party c has actual possession of object*)
30 Intent::"c=0¢" (*party c has intention to possess object*)
31 Mal::"c=o" (*party c acts out of malice*)

32 Mtn::"c=0" (*party c respons. for maintenance of object*)

33| (*LWK: meaning postulates for general notions*)
34|axiomatization where

35| W9: "[Poss x — (=Poss x7?)|" and

36/ W10: "[Own x — (—0wn x7)]|"

Recalling §3 we relate the introduced factors to value principles and outcomes by means of
the Promotes predicate. Finally, the consistency of all axioms and rules provided is confirmed
by Nitpick.
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40| (*LWK: relate values, outcomes and situational 'factors'¥)
41|axiomatization where

42| F1: "Promotes (Intent x) (For x) WILLX" and

43| F2: "Promotes (Mal x) (For x7) RESPX" and

44| F3: "Promotes (Poss x) (For x) STAB*" and

45| F4: "Promotes (Mtn x) (For x) RESPX" and

46| F5: "Promotes (Own x) (For x) RELIX"

47| (*Theory is consistent, (non-trivial) model found*)
48|lemma True nitpick[satisfy,card :=4] oops

4.2 Pierson vs. Post

We illustrate our reasoning framework by encoding the classic property law case Pierson
vs. Post.

Ruling for Pierson

The formal modelling of an argument in favour of Pierson is outlined next (the entire
formalisation of this argument is presented in the sources [1]).

First we introduce some minimal vocabulary: a constant « of type e (denoting the
appropriated animal), and the relations pursue and capture between the animal and one of
the parties (of type ¢). A background (generic) theory as well as the (contingent) case facts
as suitably interpreted by Pierson’s party are then stipulated:

4| (*case-specific 'world-vocabulary'*)

5|consts «::"e" (*appropriated animal (fox in this case) *)

6|consts Pursue::"c=e=¢" Capture::"c=e=¢"

7 (************** pro_defendant (Pierson) argument **************)

8| (*defendant's theory*)

9 [(Jc. Capture c @ A —Domestic «) — appWildAnimal]|"
10|abbreviation "dT2 |Vc. Pursue ¢ @« — Intent c|"

11|abbreviation "dT3 |Vc. Capture ¢ o« — Poss c|"

12|abbreviation "d_theory = dT1 A dT2 A dT3"

13| (*defendant's facts*)

abbreviation "dT1

14|abbreviation "dF1l w Fox a w"
15|abbreviation "dF2 w FreeRoaming o w"
16|abbreviation "dF3 w —Pet a w"

17|abbreviation "dF4 w Pursue p o w"
18|abbreviation "dF5 w Capture d o w"
19|abbreviation "d facts = dF1 A dF2 A dF3 A dF4 A dF5"

The aforementioned decision of the court for Pierson was justified by the majority opinion.
The essential preference relation in the case is implied in the idea that appropriation of
(free-roaming) wild animals requires actual corporal possession. The manifest corporal link
to the possessor creates legal certainty, which is represented by the value stability (STAB)
and outweighs the mere will to possess (WILL) by the plaintiff; cf. the arguments of classic
lawyers cited by the majority opinion [23]: “pursuit alone vests no property” (Justinian
institutes), and “corporal possession creates legal certainty” (Pufendorf). Recalling Fig. 2 in
§3, this corresponds to a preference for the abstract value SECURITY over FREEDOM.

We can see that this legal rule R2, as introduced in the previous section (§4.1) is indeed
employed by Isabelle/HOL’s automated tools to prove that, given a suitable defendant’s
theory, the (contingent) facts imply a decision in favour of Pierson in all “better’ worlds
(which we could read deontically as a sort of obligation):

20] (*decision for defendant (Pierson) can be proven automatically*)
21|theorem Pierson: "d_theory — |d facts — O<For d|"
22| by (smt F1 F3 ForAx R2 W5 W7 other.simps tSBR)
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The previous “one-liner” proof has indeed been suggested by Sledgehammer [17, 18]
which we credit, together with Nitpick [19], for doing the heavy lifting in our work. A proof
argument in favour of Pierson that uses the same dependencies can also be constructed
interactively using Isabelle’s human-readable proof language Isar [39]. The individual steps
of the proof are this time formulated with respect to an explicit world/situation parameter
w. The argument goes roughly as follows:

1. From Pierson’s facts and theory we infer that in the disputed situation w a wild animal
has been appropriated: appWildAnimal w.

2. In this context, by applying the value preference rule R2, we get that promoting STAB
in favour of Pierson is preferred over promoting WILL in favour of Post: |[WILLP] <
[STABY||.

3. The admissibility of promoting WILL in favour of Post thus entails the admissibility of
promoting STAB in favour of Pierson: |O=[WILL?] — (<[STABY]].

4. Moreover, after instantiating the value promotion schema F1 (§4.1) for Post (p), and
acknowledging that his pursuing of the animal (Pursue p «) entails his intention to
possess (Intent p), we obtain (for the given situation w) an obligation/recommendation
to “align” any ruling for Post with the admissibility of promoting WILL in his favour:
O~ (For p <> O=[WILL"]) w.

5. Analogously, in view of Pierson’s (d) capture of the animal (Capture d «), thus having
taken possession of it (Poss d), we infer from the instantiation of value promotion schema
F3 (for Pierson) an obligation/recommendation to align a ruling for Pierson with the
admissibility of promoting the value principle STAB (in his favour): O~ (For d <>
O=[STABY)) w.

6. From (4) and (5) in combination with the courts duty to find a ruling for one of both parties
(ForAx) we infer, for the given situation w, that either the admissibility of promoting
WILL in favour of Post or the admissibility of promoting STAB in favour of Pierson (or
both) hold in every “better” world/situation (thus becoming a recommended/obligatory
condition): = (¢=[WILL?] v 0=<[STABY]) w.

7. From this and (3) we thus get that the admissibility of promoting STAB in favour of
Pierson is recommended /obligatory in the given context w: (= (¢<[STABY]) w.

8. And this together with (5) finally implies the recomendation/obligation to rule in favour
of Pierson in the given context w: O~ (For d v).

23] (*we reconstruct the reasoning process leading to the decision for the defendant*)
24]theorem Pierson': assumes d theory and "d facts w" shows "O~For d w"

25]proof -

26| have 1: "appWildAnimal w" using W5 W7 assms by blast

27| have 2: "|[WILLP]=<[STABY]|" wusing 1 R2 assms by fastforce

28| have 3: "|(O=[WILLP]) — <=[STABY]|" using 2 tSBR by smt

29 have 4: "O=(For p « <~[WILLP]) w" using F1 assms by meson

30] have 5: "O~(For d « <¢<[STABY]) w" using F3 assms by meson

31 have 6: "O<((<O<[WILLP]) V (<~[STABY])) w" using 4 5 ForAx by (smt other.simps)
32 have 7: "O<(<~[STABY]) w" using 3 6 by blast

33| have 8: "O<(For d) w" using 5 7 by simp

34| then show ?thesis by simp

35|qed

The consistency of Pierson’s assumptions (theory and facts) together with the other
postulates from the previously introduced Isabelle theories “GeneralKnowledge” and “Value-
Ontology” is verified by generating a (non-trivial) model using Nitpick (Line 38). Further
tests confirm that the decision for Pierson (and analogously for Post) is compatible with the
premises and, moreover, that for neither party value conflicts are implied.
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36 (************** Further CheCkS (using model finder) ****************)

37| (*defendant's theory and facts are logically consistent*)

38|lemma "d theory A |d facts|" nitpick[satisfy,card :=3] oops (*(non-trivial) model found*)
39| (*decision for defendant is compatible with premises and lacks value conflicts*)
40|lemma "|—ConflictP| A |=Conflictd] A d_theory A |d_facts A For d|"

41 nitpick[satisfy,card (=3] oops (* (non-trivial) model found*)

42| (*situations where decision holds for plaintiff are compatible too*)

43|lemma "|—ConflictP| A |=Conflictd] A d_theory A |d_facts A For p|"

44 nitpick[satisfy,card (=3] oops (* (non-trivial) model found*)

Finally, observe that an analogous (deductively valid) argument for Post cannot follow
from the given theory and situational facts. This is not surprising given that they have
been deliberately chosen to suit Pierson’s case. We show next, how it is indeed possible to
construct a case (theory) suiting Post using our approach.

Ruling for Post

We model a possible counterargument by Post claiming an interpretation (i.e. a distinction
in case law methodology) in that the animal, being vigorously pursued (with large dogs
and hounds) by a professional hunter, is not “free-roaming”. In doing this, the value
preference |[WILL?] < [STABY]| (for appropriation of wild animals) as in the previous
Pierson’s argument does not obtain. Furthermore, Post’s party postulates an alternative
(suitable) value preference for hunting situations.

(*case-specific 'world-vocabulary'*)
consts a::"e" (*appropriated animal (fox in this case) *)
consts Pursue::"c=e=-c" Capture::"c=e=g"

(****************** pro-pLaintiff (POSt) argument ****************)

(*acknowledges from defendant's theory#*)

abbreviation "dT2 = |Vc. Pursue ¢ o« — Intent c|"

10|abbreviation "dT3 = |Vc. Capture c a — Poss c|"
11| (*theory amendment: the animal was chased by a professional hunter (Post); protecting
12 hunters' labor, thus fostering economic efficiency, prevails over legal certainty.¥*)
13| consts Hunter::"c=¢" hunting::"¢" (*new kind of situation: hunting#*)
14] (*plaintiff's theory*)
15|abbreviation "pT1 [(3c. Hunter ¢ A Pursue ¢ «) — hunting|"
16| abbreviation "pT2 ¥x. |hunting — ([STAB**'] < [EFFI*@WILL*])|" (*case-specific rule¥)
17|abbreviation "pT3 ¥x. Promotes (hunting A Hunter x) (For x) EFFI*"
18|abbreviation "p_theory = pT1 A pT2 A pT3 A dT2 A dT3"
19| (*plaintiff's facts*)
20|abbreviation "pFl w
21|abbreviation "pF2 w
22| abbreviation "pF3 w Pursue p o w"
23|abbreviation "pF4 w Capture d a w"
24|abbreviation "p facts = pF1 A pF2 A pF3 A pF4"

Fox a w"
Hunter p w"

Note that an alternative legal rule (i.e. a possible argument for overruling in case law meth-
odology) is presented in Line 16 above, entailing a value preference of the value combination
efficiency (EFFI) and will (WILL) over stability (STAB): [[STABY] < [EFFI? @ WILL?]|.
Following the argument put forward by the dissenting opinion in the original case, we might
justify this new rule (inverting the initial value preference in the presence of EFFI) by
pointing to the alleged public benefit of hunters getting rid of foxes, since the latter cause
depredations in farms.

Accepting these modified assumptions the deductive validity of a decision for Post can in
fact be proved and confirmed automatically, again, thanks to Sledgehammer:
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25| (*decision for plaintiff (Post) can be proven automatically (needs approx. 20s)*)
26| theorem Post: "p_theory — |p_facts — O=For p|"
27| by (smt F1 F3 ForAx tBR SBR def other.simps)

Similar to above, a detailed, interactive proof for the argument in favour of Post has been
encoded and verified in Isabelle/Isar. We have also conducted further tests confirming the
consistency of the assumptions and the absence of value conflicts (see sources in [1]).

5 Conclusion

Supporting interactive and automated value-oriented legal argumentation on the computer is
a non-trivial challenge which we address, for reasons as defended e.g. by Bench-Capon [4],
with symbolic Al techniques and formal methods. Motivated by recent pleas for explainable
and trustworthy AI, our primary goal is to work towards the development of ethico-legal
governors for future generations of intelligent system, or more generally, towards some form of
(legally and ethically) reasonable machines [12], capable of exchanging rational justifications
for the actions they take. While building up a capacity to engage in value-oriented legal
argumentation is just one of a multitude of challenges this vision is faced with, it would
clearly constitute an important stepping stone.

Custom software systems for legal case-based reasoning have been developed in the Al
& law community, beginning with the influential HYPO system in the 1980s [36] (cf. also
the review paper [3]). In later years, there was a gradual shift of interest from rule-based
non-monotonic reasoning (e.g., logic programming) to argumentation-based approaches
(see [35] for an overview); however, we are not aware of any other work that uses higher-order
theorem proving and proof assistants (the argumentation logic of [26] is an early related
effort that is worth mentioning). Another important aspect of our work concerns value-based
legal reasoning and deliberation, where a considerable amount of work has been presented in
response to the challenge posed by Berman and Hafner [16]. Our approach, based mainly
on Lomfeld’s theory [30, 29], has also been influenced by some of this work, in particular
[34, 2, 5]. We think that some of the recent work that uses expressive deontic logics for value
balancing (cf. [31] and the references therein) can be integrated into our approach.

The approach presented and illustrated in this work adapts and implements the multi-
layered LOGIKEY knowledge engineering methodology [13] to enable the application of
off-the-shelf interactive and automated theorem proving technology for classical higher-order
logic in ethical-legal reasoning. LOGIKEY has been extended in this work to include an
additional modeling layer, the value ontology. The value ontology forms a bridge between the
legal and general world knowledge layer and the object logic layer in LOGIKEY. Isabelle/HOL
has proven to be an excellent base technology to support the presented formalization work
and the conducted experiments. We are particularly pleased with the good performance
of the Nitpick model finder and the integrated automated theorem provers (provided by
Sledgehammer), which provided very useful feedback at all modeling layers, including fully
automated proofs for formal justification of the discussed judgments.

Further work includes refining the modelling of Lomfeld’s value theory in combination with
providing more expressive (combinations of) object logics. With respect to the latter, the use of
material implication to model defeasible or “default” rules (among others) has proven sufficient
for the illustrative purposes of this paper, but it is important to note that more realistic
modeling of legal cases must also provide mechanisms to deal with the inevitable emergence
of conflicts and contradictions in normative reasoning (overruling, conflict resolution, etc.). In
line with the LOGIKEY approach, we can indeed introduce a defeasible conditional operator
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by reusing the modal operators of PL(as discussed, e.g., in [20, 28]), or alternatively by the
SSE of a suitable conditional logic in HOL [6]. Various kinds of paraconsistent negations could
also be considered for the non-explosive representation of (and recovery from) contradictions
by purely object-logical means (cf. [21] for an appropriate SSE). It is the pluralistic nature

of our approach, realised within a dynamic modelling framework, that enables and supports

such improvements without requiring technical adjustments to the underlying base reasoning

technology.
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