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PREFACE 

The following thesis focuses on the functional studies of Mlp37347, a poplar leaf 

rust effector. This functional genomic study will contribute to understand how the effector 

localization and interaction with their targets play a role in infection. The body of the 

thesis consists of six chapters: introduction, materials and methods, results, discussion, 

conclusion, and references. The first chapter starts with the general introduction of plant 

immunity and poplar leaf rust Melampsora larici-populina effectors, and followed by its 

sequenced genome, preliminary studies on genomics and transcriptomics, candidate 

effector discovery, the importance of heterologous model systems in plant-pathogen 

interaction studies, and subcellular localization of effectors inside plant tissues. 

Since the whole genome sequence of M lariei populina, and its host, 

Populus triehoearpa, is available, it offers access to further study the candidate effector 

proteins at the molecular level and investigate their role in pathogenesis. In this thesis, 

we chose an effector, M!p37347, for the functional studies. To this end, we used in planta 

pathogen assays, genotyping, live-cell imaging, comparative transcriptomics, proteomics, 

and yeast two-hybrid assay to infer the functional nature of Mlp3 7347. The detailed 

materia!s and methods are discussed in chapter two. In the third chapter, we explained our 

findings and discussed those findings in chapter four. To our knowledge, this is the first 

attempt showing an M larici populina effector is exploiting plasmodesmata. 

1 contributed to a review on the role of vacuolar substructure in plant immunity and 

pathogenesis, which 1 presented in Annex B. 1 carried out and additional research project 

for severa! months in Yang Zhang laboratory in Ann Arbor, Michigan Michigan where 

1 studied in-silieo analysis of Mlp124357 - Arabidopsis/poplar Protein disulfide­

isomerase docking, which resulted in published work Madina, Rahman et al. 

A poplar rust effeetor protein assoeiates with protein disuljide isomerase and enhances 

plant susceptibility. Biology, 9, 294 2020, which is presented in Annex C. 



RÉSUMÉ 

Melampsora larici-populina (Mlp) est l'un des agents pathogènes les plus dévastateurs des 
peupliers - il cause la rouille foliaire du peuplier. Au cours du processus d'infection, 
Mlp sécrète un ensemble de protéines effectrices dans les cellules hôtes via son 
haustorium. Ces protéines effectrices ciblent les compartiments cellulaires pour modifier 
les processus cellulaires de l'hôte. Déterminer la fonction des effecteurs à l'intérieur des 
cellules est essentiel pour comprendre les mécanismes de pathogénicité et faire progresser 
notre capacité à protéger les cultures contre les maladies. Des études génomiques ont 
révélé que Mlp possède un répertoire d'au moins 1184 petites protéines sécrétées (SSP) et 
certaines d'entre elles ont été caractérisées comme des effecteurs candidats. La manière 
dont ces effecteurs favorisent la virulence n'est toujours pas claire. 

Cette étude examine le rôle du candidat effecteur Mlp37347 au cours de l'infection. 
Nous avons développé une lignée transgénique stable d'Arabidopsis exprimant l'effecteur 
marqué avec la protéine fluorescente verte (GFP). Nous avons constaté que l'effecteur 
s'accumulait exclusivement dans les plasmodesmes (PD). Le profilage du transcriptome 
et une analyse de l'ontologie génique (GO) de la plante transgénique Arabidopsis 
exprimant l'effecteur et le type sauvage (WT) ont révélé que les gènes du processus 
catabolique du glucane sont spécifiquement régulés à la hausse dans les lignées exprimant 
l'effecteur, ce qui suggère que l'effecteur peut modifier l'ouverture de la PD par le 
métabolisme des glucanes. Par ailleurs, des tests de diffusion ont établi que l'effecteur 
modifie le flux de plasmodesmes. Il a été précédemment montré in vivo que cet effecteur 
interagit avec la glutamate décarboxylase 1 (GAD1). L'arrimage in silico de Mlp37347 à 
GAD 1 a montré une forte affinité. L'effecteur favorise la croissance de l' oomycète 
Hyalonoperospora arabidopsidis mais pas la croissance bactérienne. 

Notre étude suggère que l'effecteur Mlp37347 cible le PD dans les cellules de plante pour 
favoriser la croissance parasitaire en régulant le flux des plasmodesmes grâce à la 
dérégulation du catabolisme du glucane. Par conséquent, nos résultats ont établi qu'un 
effecteur de Mlp réside au plasmodesmta et module la susceptibilité des plantes. 

Mots-clés: Melampsora larici-populina, effecteur, Mlp37347, plasmodesmes, glutamate 
décarboxylase 



SUMMARY 

Melampsora larici-populina (Mlp) is one of the most devastating pathogens ofpoplar trees 
- it causes poplar leaf rust. In the process of infection, Mlp secretes an array of effector 
proteins into the ho st cells through its haustorium. These effectors proteins target cellular 
compartments to alter host cellular processes. Determining the function of effectors inside 
of cells is key to understanding pathogenicity mechanisms and advance our ability to 
prote ct crops from disease. Genomic studies have revealed that Mlp possesses a repertoire 
of 1184 small secreted proteins (SSP), and sorne of them were characterized as candidate 
effectors. How these effectors promote virulence is still unclear. 

This study investigates the candidate effector Mlp37347's role. We developed a stable 
transgenic Arabidopsis line expressing the effector tagged with the green fluorescent 
protein (GFP). We found that the effector accumulated exclusively in plasmodesmata 
(PD). Transcriptome profiling and a gene ontology (GO) analysis of transgenic 
Arabidopsis plant expressing effector compared with wild-type (WT) plant revealed that 
glucan catabolic process genes are specifically up-regulated in effector-expressing lines 
suggesting that the effector may alter PD opening through glucan metabolism. Indeed, 
diffusion assays established that the effector alters plasmodesmata flux . This effector has 
previously been shown to interact with glutamate decarboxylase 1 (GAD1). In silico 
doc king of Mlp37347 to GAD 1 showed strong affinity. The effector promotes 
Hyalonoperospora arabidopsidis growth but not bacterial growth. Our investigation 
suggests that the effector Mlp37347 targets PD in host cells to promote parasitic growth 
by regulating plasmodesmata flux through the deregulation of glucan catabolism. 

Therefore, our results established that an effector of Mlp resides at the plasmodesmata and 
modulates plant susceptibility. 

Keywords: Melampsora larici-populina, effector, Mlp37347, plasmodesmata, glutamate 
decarbox ylase 
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CHAPTERI 

GENERAL INTRODUCTION 

Why am 1 in plant-microbe research today? 1 often asked myselfthis question during 

the first year of my doctorate. 1 came across how diverse, fascinating, and unforeseen this 

part of plant-microbe research can be. Why work on plants? There is no doubt ail of us 

live off plant energy created from photosynthesis from the sunlight. Plants are frequently 

challenged by the world around them and have developed defense strategies against 

pathogens, including bacteria, viruses, fungi, and oomycetes. Therefore, biotic stress is a 

natural element in the plant lifecycle as fauna and microbes exploit nutrients from plants, 

and the fiora in response has evolved a multilayered complex defense system to counteract 

biotic stresses. Plant defense from grazing often depends on mechanical approaches and 

the production of chemical compounds that are not desired by herbivores. The interaction 

between plant and microbes can have mutually beneficial results but can also be 

detrimental to the plant to complete its life cycle. To understand the disease development 

mechanism in plants, phytopathological molecular research has focused on interactions 

between phytopathogens and their hosts. Studies revealed that plants possess a 

sophisticated innate immune system capable of recognizing ail pathogen classes (Chiang 

& Coaker, 2015, Zipfel, 2014), which consist of a large arsenal of immune receptors 

encoded in plant genomes. In order to penetrate the plant, colonize various tissues and 

cause disease, pathogens must be able to deactivate the defense responses of plants. 

An essential component required for pathogenesis is the secretion ofpathogenic proteins, 

called effectors, which modulate plant immunity and facilitate infection (Hogenhout et al. , 

2009). 



2 

1.1 Plant innate immunity 

Plants have mechanisms to detect various forms of environmental threat, including 

the attack by pathogens and damages to their own cells. The initial response in the immune 

system of a plant corresponds to the perception of the pathogen via the recognition of the 

conserved pathogen-associated molecular patterns (P AMP) by pattern recognition 

receptors (PRR). PAMPs are sometimes referred to as microbe-associated molecular 

patterns (MAMPs) due to their presence of non-pathogenic species (Ausubel, 2005). 

The plant induces the P AMP-triggered immunity (PTI)/MAMP-triggered immunity 

(MTI) as a response to the recognition ofP/MAMPs. The responses constitute the plants' 

immunity in order to resist pathogenic attack. The plant is also able to recognize 

damage-associated molecular patterns (DAMPs) or endogenous peptides. DAMPs are the 

consequential response to invading pathogens in the plant and results in plant degradation, 

whereas the plant releases endogenous peptides following a pathogenic attack (Bolier & 

Felix, 2009). 

1.1.1 The first layer of defense- Pattern-Triggered Immunity (PTI) 

The "watchtowers" of the plant are found at the cell surface as pattern-recognition 

receptors (PRR). They are the first layer of defense and activate P AMP-Triggered 

immunity. One of these P AMP is a 22 amino acid section of the C-terminal end of 

flagellin, the main subunit ofbacterial flagella (G6mez-G6mez & Bolier, 2000). The flg22 

peptide binds to the flagellin receptor FLS2 in A. thaliana, which is similar to the human 

toll-like receptor 5 (TLR5) (Hayashi et al., 2001). Since FLS2 was identified, 

other MAMPs and their receptors have been found, including the chitin receptor in 

Oryza sativa and A. thaliana, and the Elongation Factor-Tu receptor (EFR) in A. thaliana 

(Zipfel et al., 2006, Miya et al., 2007, Kaku et al., 2006) (Figure 1.1). Chitin is a 13-1,4-

linked N-acetyl-glucosamine oligomer (GleNAc) that is found as a building block in 

fungal cell walls, and EF-Tu is a protein responsible for supplying aminoacyl-tRNA to the 

ribosome during bacterial translation. The recognition of MAMP/PAMP initiates an 

innate immune response and sorne ofthe corn mon responses are discussed in the following 

paragraphs. 
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Figure 1.1. Model of activation of PRR-mediated basal defenses and their suppression by type III 
effectors. 
Plasma-membrane-localized PRRs, which in many cases consist of a leucine-rich repeat (LRR) 
extracellular domain and a serine/threonine-protein kinase (PK) cytoplasmic domain. 
In A. thaliana, FLS2 and EFR are two examples of PRRs that recognize flagellin flg22 or EF -Tu 
elfl8 peptide, respectively. The activation of PRR triggers signaling events that lead to the 
upregulation of more th an 300 plant genes. A complete pathway of the mitogen-activated protein 
kinase (MAP) and various WRKY transcription factors have been identified that function 
downstream of FLS2. Subsequent effectors are responsible for the buildup of cellular response, 
as weIl as initiating signaling in the SAR program. Delivery of effector proteins through the type 
III secretion system (T3SS) to plant cells is a strategy used by bacteria to suppress PRR-mediated 
defenses. Sorne bacterial proteins have been identified as effectors that suppress basal defenses. 
The figure highlights the effector AvrPto required to suppress the recognition of flg22 and other 
P AMPs. (Image from Abramovitch et al. , 2006) 

1.1.1.1 IonJluxes and oxidative burst 

The perception of MAMPIDAMP by their cognate receptors triggers ionic fluxes 

(including Ca2+) at the plasma membrane, rapid production of reactive oxygen species 

(ROS) and nitric oxide (NO), phosphorylation events (e.g., by mitogen-activated protein 

kinases (MAPK)) or Ca2 + -dependent protein kinases (CDPK). Depending on the elicitor's 

perception, within 1-2 minutes the channels of the plasma membrane are open and 
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increase the level of intracellular Ca2 + and H+ (Lecourieux et al., 2002). Ca2+ is known as 

the secondary mess enger in various cellular processes (Lecourieux et al. , 2006). In this 

regard, innate immunity is regulated by calcium-dependent prote in kinases (CDPK), 

where Ca2+ acts as a sensor to initiate CDPK (Boudsocq et al. , 2010). 

In table 1.1 and figure 1.2, the regulation of defensive genes of a plant is initiated 

by a set of pathogen recognition receptors (PRR) that initiates Ca2+ signaling cascades. 

The negative regulator, RASSINOSTEROID INSENSITIVE I-associated receptor kinase 

1 (BAK1)-interacting RLK (BIR), which is found in resting cells, interacts with SOBIR 

or BAKI to, seemingIy, prevent interactions with the pathogen recognition receptors. 

Wh en DAMP/MAMP is recognized in the plant, SOBIR and BAKI are recruited by the 

RLP-type and RLK-type PRRs, respectiveIy. It is important to note that RLK signaling 

has not been shown as necessary for the function of SOBIR; however, BAKI is further 

utilized for the function ofRLP. The intracellular kinase domains of the RLK-types and/or 

other related cytoplasmic kinases (e.g., BI KI) trigger phosphorylation events that are 

needed for the signaling to the Ca2+ channels. There is uncertainty related to sorne possible 

plasma membrane-Iocalized proteins that are representative of Ca2+ channels as the 

identity designation ofmany DAMP/MAMP activated channels have not been thoroughly 

identified. The Ca2+ sensors and/or decoders, such as CDPKs, CaM, and CBL-CIPK, pairs 

sense alterations of cellular Ca2+ concentration and work with MAPK activation to 

coordinate the transcriptional control of the plant's defensive gene expression. 

The coordination between Ca2+ and Respiratory burst oxidase homolog protein D 

(RBOHD), the NADPH oxidase, is accentuated by the orange arrows in figure 1.2. 

Furthermore, Ca2+ can be sensed by the EF-hands in the NADPH oxidase. The activities 

of the RBOHD are regulated by differential phosphorylation, done by the kinases. 

This phosphorylation takes place upstream ofCa2+ (i.e., directly from BIKI , the receptor­

complex component) and downstream of Ca2+ (i .e. , CDPKs). The process of dismutation 

causes the superoxide to tum into H20 2. This triggers the induction of Ca2+ fluxes as the 

H20 2 loops back. The propagation of ROS/Ca in systemic (cell-to-cell) and local 

(intracellular) waves results from an amplificatory feedback circuit. 



Table 1.1. List of receptor-Iike protein (RLP)-type and receptor-Iike kinase (RLK)-type pattern recognition receptors (or R 
proteins) and their interacting proteins 

MAMPIDAMP/effector Receptor/R protein Receptor type Partner proteins Reference a 

Flg22 FLS2 RLK BIKIIPBLs; BAKI ; SERK4/SERKs; SCDI 1,2 

Elfl8 EFR RLK BIKIIPBLs; BAKI SERK4/SERKs; SCDI 2,3 

AtPep(s) PEPR1I2 RLK BIKIIPBLs; BAKI SERK4/SERKs 4 

Chitin CERKI /L YMs/CEBiP RLK BIKI 5,6,7,8 

Peptidoglycan CERKlILYMs RLK LYMlILYM3 9 

Oligogalacturonides WAKI RLK ? 10 

Xylanase Eix2 RLP BAKI; SOBIR Il 

Verticillium dahliae Avel Vel RLP BAKI; SOBIR 12,13 

Avr2/9 Cf2/9 RLP BAKI ; SOBIR 14 

Xanthomonas eMax ReMAX RLP ? 15 
Sclerotinia sclerotiorum effector 

RLP30 RLP BAKI ; SOBIR 16 
(SsEl) 

Extracellular ATP DORNI LecRK ? 17 

RALF FERONIA RLK ? 18 

a. Selected references 

l , (Chinchilla et al., 2007); 2, (Roux et al., 20 11); 3, (Zipfel et al., 2006); 4, (Krol et al., 2010); 5, (Kaku et al., 2006); 6, (Miya et al., 2007); 7, (Shimizu et 
al., 2010); 8, (Petutschnig et al., 2010); 9, (Willmann et al., 2011); 10, (Brutus et al., 2010); Il , (Ron & Avni, 2004); 12, (Fradin et al. , 2011); 13 , (de Jonge 
et al., 2012); 14, (Stergiopoulos et al. , 2010); 15, (Jehle et al. , 2013); 16, (Zhang et al., 2013); 17, (Choi et al., 2014); 18, (Haruta et al., 2014). 
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Figure 1.2. Displays a schematic illustration of complex initiated Ca2+ signaling cascades 
carried out by PRR that regulates the plant's defensive gene expression. (Adapted from 
Seybold et al., 2014.) 

The NADPH oxidases found in both plants and animais produce reactive oxygen 

species (ROS) as a result of pathogen recognition (Canton & Grinstein, 2014). ROS are 

signaling molecules that initiate immune outputs and have distinct antimicrobial 

properties. The respiratory burst oxidase homo log D (RBOHD) contains NAD PH 

oxidases that are found in both plants and animaIs hold ten members in the model plant 

Arabidopsis thaliana (Kadota et al., 2015). During an immune response, the RBOHD will 

be released in a two-step activation process. Upon PAMP recognition, FLS2 and EFR­

which are PRRs, will activate and phosphorylate BIKI with the co-receptor BAKI. 

A higher binding affinity of RBOHD to the phosphorylated BIKI allows for the 

phosphorylation on fixed binding sites (Figure 1.3). A priming process is induced for the 

Ca2+ based regulation of RBOHD by the BIKI-mediated phosphorylation to generate 

conformational changes. These conformational changes could potentially increase the 

Ca2+ binding affinity for greater availability for CPK-mediated phosphorylation and/or for 

EF-hand motifs. At the same time, the indirect and direct activation of Ca2+ channel(s) 
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and induction ofCa2+ influx is produced through the cooperative work ofBIKl and PRRs. 

The result of the process is the binding of an EF-hand motif to Ca2+ in RBOHD and the 

phosphorylation of RBOHD that is completed through the activation of CPKs. 

The activation process of Ca2+ channel(s) is triggered by the production of H20 2, which 

leads to the full activation of Ca2+-based regulation and Ca2+ signaling of RBOHD. 

elf18/flg22 , , 
EFR/FLS2 , Positive feed-back regulation 

Figure 1.3. A schematic illustration of steps RBOHD regulation during the rapid 
BIKI-mediated phosphorylation primes RBOHD activation by increasing the sensitivity to 
the Ca2+ based regulation. (Adapted from Seybold et al., 2014.) 

The production of reactive oxygen species (ROS) IS regulated by the 

phosphorylation of the ROS-producing enzyme NADPH oxidase locates in the plasma 

membrane. This enzyme produces superoxide anion (0-2) from oxygen (02). Afterward, 

with the help of superoxide dismutase (SOD), 0-2 con verts to hydrogen peroxide (H20 2). 

This H20 2 is further converted to hypochlorite (HOCI-) by myeloperoxidase. 

The hypochlorite (HOCI-) is known as bleach, act as broad-spectrum bactericidal. 

NADPH 

\ N~P+ V SOD Myeloperoxidase 

O2 • 0"2 - H20 2 • HOCI" (bleach) Kills pathogens 
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1.1.1.2 Mitogen-activated Protein Kinases (MAPK) activation 

MAPK plays an essential role in transducing environmental and development 

signais by phosphorylation of downstream signaling. Upon PAMP perception, 

the activation of MAPK cascades transpires within five to ten minutes (Boller & Felix, 

2009). MAPK signaling depends on sequential phosphorylation events between three 

protein forms- a MAP kinase (MPK) , a MAP kinase kinase (MAPKK or MKK), and a 

MAP kinase kinase kinase (MAPKKK or MEKK) (Pedley & Martin, 2005). The initial 

proposai of the MAPK cascade that involved MAPKK1-MAPKK4/5-MPK3/6 was 

thought to be involved in flg22-triggered signaling in the A rab idopsis thaliana (Asai et al., 

2002). Nevertheless, further studies proved that MAPKKK 1 was involved in the 

activation of MPK4, and not in the activation of MPK3/6 (Gao et al. , 2008, 

Suarez-Rodriguez et al. , 2007, Nakagami et al. , 2006, Ichimura et al., 2006). 

This revelation denotes that the MAPKKK upstream of MPK3/6 is not yet identified. 

MAPKK1 and MAPKK2 are key proteins in flg22-induced activation of MPK4 

(Figure lA) (Qiu et al. , 2008, Mészaros et al. , 2006, Gao et al. , 2008). Additionally, 

MPKll, which is homologous with MPK4, was recently discovered to be an ancillary 

component ofFLS2 signaling (Figure lA) (Bethke et al., 2012). The original description 

ofMPK4 characterized it as a positive regulator of ethylene/jasmonic acid (JA)-dependent 

defense responses but as a negative regulator of salicylic acid (SA)-mediated resistance 

(Brodersen et al. , 2006, Petersen et al., 2000). This statement was disputed when it was 

shown that the MPK4 pathway is guarded by the R protein, SUMM2 (Zhang et al., 2012). 

This explains why mekkl and mpk4 mutation leads to constitutive defense activation and 

why MEKKI and MPK4 were proposed as negative regulators. It was proven that the 

MAPKKKl-MAPKK1 /2-MPK4 pathway positively regulates PTI when a genetic 

analysis of double mutants with summ2 was conducted (Kong et al., 2012). 

The phosphorylation and subsequent deactivation of the ethylene biosynthesis enzyme, 

l-amino-cyclopropane-l-carboxylic acid (ACS), is occurred by the MPK3 and MPK6 

(Li et al., 2012, Bethke et al., 2009, Yoo et al., 2008, Liu & Zhang, 2004). The induction 

of ethylene accumulation through PAMP perception could be explained through this 

observation (Felix et al., 1999). MPK phosphatases can be negative regulators ofMAPK 

cascades (Bartels et al. , 2010). The interaction between MPK2 with MPK6 and MPK3 
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controls the pathogenic defense responses and the oxidative stress in Arabidopsis 

(Lumbreras et al., 2010). The infection of the biotrophic pathogen, Rafstonia 

sofanacearum, in mkp2 mutant plants was found to decrease disease symptoms, although 

the susceptibility to the necrotrophic fungus B. cinerea is increased (Lumbreras et al. , 

2010). This is indicative of the fact that necrotrophic and biotrophic pathogens are 

regulated differently according to the functions of MPK2 (Lumbreras et al. , 2010). 

Moreover, MKP 1 and PTP 1 (protein tyrosine phosphatase 1) act as repressors of 

MPK3lMPK6-dependent stress signaling (Gonzâlez Besteiro et al., 2011, Anderson et al. , 

2011 , Bartels et al., 2009). The doubles mutants, mkpI ptpI, showed increased greater 

resistance to Plo DC3000 (Bartels et al., 2009). The enhancement of P AMP-induced 

responses was also demonstrated in mkpI mutant plants recently (Anderson et al., 2011). 

In addition, the deactivation of MAPK cascades was shown to originate from multiple 

PP2Cs. The interaction of MPK3 , MPK4, and MPK6 with AP2C3IPP2C5 and AP2Cl 

(Arabidopsis phosphatase 2C) regulate many processes, such as plant defense responses 

(Brock et al., 2010, Schweighofer et al. , 2007). Remarkably, the susceptibility to Botrytis 

cinerea, the necrotrophic fungus, is enhanced by the overexpression of AP2C 1 

(Schweighofer et al. , 2007). 

1.1.1.3 Cal/ose de position 

Cali ose, a plant polysaccharide, is mainly found in the cell wall. The plant cell wall 

is mostly made of complex carbohydrates. Many changes are triggered in the cell walls in 

response to biotic and abiotic stress. In Arabidopsis, callose deposition was detected from 

16 hours after the MAMP treatment following fixation and staining with aniline blue 

(G6mez-G6mez et al., 1999). The callose deposit becomes rigid at the plant cell wall , 

making it difficult for pathogens to propagate. 

We discuss the specific role of callose in section 1.4. 
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1.1.1.4 Hormonal integration 

Among the classic plant hormones (such as ethylene, abscissic acid, auxm, 

gibberellins, jasmonic acid, cytokinins, salicylic acid, and brassinosteroids) several are 

involved in defense responses (Shigenaga & Argueso, 2016). Amongst them, jasmonic 

acid (JA) and salicylic acid (SA) are the main phytohormones linked to plant defense. 

lA and SA are positive regulators of plant defense. SA regulates immunity against 

biotrophic pathogens while lA regulates immunity against necrotrophic pathogens 

(Berens et al., 2017, Pieterse et al., 2009). 

Hormonal crosstalk in defense responses 

The resistance to necrotrophic pathogens is usually associated with lA and ET 

signaling, whereas the resistance to biotrophic and hemibiotrophic pathogens cornes from 

SA-dependent defense (Glazebrook, 2005). The involvement of SA in the formation of 

systemic acquired resistance (SAR) is triggered by local infection to induce a 

broad-spectrum resistance (Grant & Lamb, 2006). Although SA and ET/lA defense 

response pathways act mostly antagonistically, as the activation of one often suppresses 

the activation of the other, synergistic interactions have also been reported (Beckers & 

Spoel, 2006, Kunkel & Brooks, 2002, Schenk et al., 2000). An essential regulator of the 

cross-talk between the two pathways is MPK4 (Brodersen et al., 2006, Petersen et al., 

2000). mpk4 mutant plants display elevated SA levels and constitutive expression of SA­

induced genes, whereas the expression of lA responsive genes is impaired (Brodersen et 

al., 2006, Petersen et al., 2000). This indicates that MPK4 positively regulates 

lA-mediated responses but acts as a negative regulator of SA signaling or that in the mpk4 

mutants, SUMM2 activation promotes SA accumulation and, thus, downregulation of 

lA-signaling. 

Salie ylie add: Primary regulation of the SA signaling pathway is made by NPRI as 

it conveys the induction of PR-l and other SA-responsive genes (Dong, 2004). Notably, 

it was reported recently that NPRI directly binds SA and was therefore implied to function 

as a SA receptor (Wu et al., 2012). However, another study demonstrated that the closely 
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related NPR3 and NPR4 but not NPR1 exhibit SA binding affinity (Fu et al., 2012). 

Furthermore, NPR3 and NPR4 were shown to function as adaptors for an E3 ubiquitin 

ligase to mediate SA -dependent degradation of NPR 1 (Fu et al., 2012). Thus, 

further investigation must be undertaken to explain these apparently contradictory results. 

Jasmonic acid: JA mediates defense against necrotrophic pathogens; however, 

JA was also recently implied to play a role in SAR (Robert-Seilaniantz et al., 20 Il). 

Most JA responses are mediated through the F-box protein CORONATINE 

INSENSITIVE1 (COll) (Sheard et al., 2010, Fonseca et al. , 2009, Browse, 2009, Xie 

et al., 1998). coil mutant plants display elevated SA levels and exhibit enhanced 

susceptibility to necrotrophic pathogens such as Alternaria brassicicola and B. cinerea 

(Kloek et al., 2001, Thomma et al., 1998). Using mutational and transcriptional 

approaches, a family of JASMONATE ZIM domain-containing (JAZ) proteins was 

identified that represses JA signaling (Chini et al., 2009, Yan et al., 2007, Thines et al., 

2007). JAZ proteins interact with COll and the basic helix-loop-helix (bHLH) 

transcription factor MYC2, a key regulator of JA-induced plant defense responses (Katsir 

et al., 2008, Melotto et al., 2006). Perception of JA leads to COIl-mediated degradation 

of JAZs and relieves repression on MYC2 to facilitate activation of JA-responsive genes 

(Robert-Seilaniantz et al., 2011). 

PUB12/13 

Receptor 
endocytosis 

FLS2 

BAK1/SERKs 

", 

Figure 1.4. Model of the FLS2 signaling pathway in Arabidopsis. 
Continued on next page. 
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(continued) FIg22 perception leads to rapid phosphorylation of AHAl , which was implied to 
facilitate P AMP-induced stomatal closure. Ca2+ infl ux, which is partially mediated by the A TPase 
ACA8, induces the activation of Ca2+ -dependent protein kinases and RbohD, which is required 
for P AMP-triggered ROS burst. FIg22 perception also leads to the activation of at least two MAPK 
cascades. Both cascades regulate synergistically and independently of CDPK4/5/6 and II the 
expression of defense-related genes. FIg22 perception also induced FLS2 endocytosis and 
potentially attenuates the FLS2 signaling pathway. Phosphorylated proteins are marked with a P. 
(Adapted from Taj et al. , 2010.) 

1.1.2 The second layer of defense - Effector-triggered immunity (ETI) 

Sorne pathogens have developed strategies to deceive PTI even though PTI inhibits 

infection. Successful pathogens defeat PTI by secreting virulence factors known as 

effectors that lead to effector-triggered susceptibility (ETS) (Kawarnura et al., Kawamura 

et al., 2009b) (more on effectors in section 1.3). However, plants have a second layer of 

defense narned effector-triggered imrnunity (ETI) and also known as gene-for-gene 

resistance (FIor, 1971 b, FIor, 1971a). 

The gene-for-gene hypothesis was initially defined by Harold FIor about 60 years 

ago. He defined this hypothesis based on his observation of the interaction between flax 

and flax rust fungus. According to this hypothesis, two components are needed during 

disease resistance in plants. The first is an avirulence (A vr) gene that cornes from the 

pathogen, and the second is found in the host, a matching resistance (R) gene (FIor, 

1971a). An HR-like necrotic response was observed when L6, a flax R protein in the plant, 

interacted with AvrL567, an avirulence factor from flax rust (Dodds et al. , 2006). 

The recognition of effectors has been seen through indirect interactions and has only been 

observed a handful of tirnes wh en direct interaction ensued between the R proteins and 

the effector. A different guard hypothesis was made that described that the target (guardee) 

of a pathogen effector is rnonitored by R proteins. This irnplies that the detection of 

effectors on host rnolecules is produced through their effect (Dangl & Jones, 2001). 

A c\assic exarnple of an indirect interaction is RIN4 that is guarded by the R proteins 

RPMI (Resistance to P. syringae Pv rnaculicola 1) and RPS2 (Resistant to P. syringae 2) 

(Macke y et al., 2003 , Axtell & Staskawicz, 2003 , Mackey et al. , 2002). RIN4 is a target 

of the P. syringae effectors AvrRpt2, AvrRpml , and AvrB. AvrRpt2 , a cysteine protease, 
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can degrade RIN4, while A vrRpm 1 and AvrB can induce phosphorylation ofRlN4. RIN4 

c\eavage and phosphorylation activate RPM 1 and RPS2, which leads to ETI and 

restriction ofbacterial growth (Macke y et al., 2003, Axtell & Staskawicz, 2003, Mackey 

et al., 2002). 

The decoy model is a continuation of the guard hypothesis, which implies that a 

guardee can evolve into a decoy. The effector is attracted to the decoy through the 

mimicking of the effector target, and a decoy-associated R protein prompts its perception 

(van der Hoom & Kamoun, 2008). Despite this, the decoy does not have a role in defense 

signaling, unlike the guardee. To exemplify this process, the Pseudomonas syringae 

effector, A vrPto, targets the serine/threonine kinase, Pto, that acts as a decoy (Zipfel & 

Rathjen, 2008). AvrPto is a type of kinase inhibitor that was observed to function as a 

binder and blocker of several different PRRs (Shan et al. , 2008). ET! is based on the 

recognition of effectors by resistance (R) proteins. R genes mainly code for the 

intracellular proteins NB-LRR (Nucleotide Binding Proteins with Leucine-Rich Repeat 

domains) (Jones & Dangl, 2006) (Figure 1.5). 
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Figure 1.5. Plant-microbe interactions and resistance in plants. 
Continued on next page. 

..... aTANCE 

Effector­
Trlggered 
Immune 
Responses 

~ Leuclne-rich repeats 



14 

(continued) From left to right, recognition of PAMP by extracellular RLKs instantly triggers 
PAMP triggered immunity, to exercise defensive action, MAP kinase cascades and transcription 
mediated by WRKY transcription factors are required. Pathogens use the secretion system to 
deliver effectors that target various host proteins to inactivate PAMP-triggered immunity (PTI). 
Plant resistance proteins, CC-NB-LRR or TIR-NB-LRR, recognize effector activity and restore 
resistance by effector-triggered immune responses (ETI). (Adapted from Chisholm et al. , 2006.) 

1.1.3 Systemic acquired resistance (SAR) 

Systemic acquired resistance (SAR) was first proposed by Ross and his group. 

When they observed the lower three leaves of a tobacco plant were infected with tobacco 

mosaic virus (TMV), the upper leaves developed much weaker symptoms of infection 

after a second infection 7 days after the first infection (Ross, 1961). SAR is a complex 

systemic defense mechanism in plants that is triggered by exposure to certain avirulent 

and non-pathogenic microbes (Vallad & Goodman, 2004). From a local infection, 

defense transport signais are generated (Figure 1.6), and these signaIs are transported 

through the phloem via the apoplast to the uninfected distal tissue and provide them 

immunity (Singh et al., 2017, Gao et al. , 2015, Tuzun & Kué, 1985). The nature ofthese 

systemic signais is unc1ear. But in recent years, around 13 different possible signais have 

been proposed (Gao et al., 2015). One of the main signais proposed is SA or its derivative, 

methyl salicylate, and the accumulation ofPR transcripts is required for SAR (Mishina & 

Zeier, 2007). Arabidopsis expressing SA hydroxylase did not show acquire systemic 

resistance and are unable to accumulate SA upon infection with necrotizing pathogens 

(Gaffney et al. , 1993), presumably due to the destruction of the SA signal. On the other 

hand, when Arabidopsis plants overexpressed SA, the y showed enhanced defense 

to pathogens (Conrath et al., 2006). Along with this, pathogenesis related genes 

accumulation is often seen as the molecular basis of SAR. 
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Figure 1.6. Recognition of a pathogen by an NB-LRR induces a signal transduction pathway 
(STP). 
STP causes a hypersensitive response (HR) , which kills infected plant cells. Before they die, 
they release antimicrobial molecules. Infected cells release salicylic acid, which is transported 
throughout the plant. In healthy plant cells, salicylic acid induces STP, which produces 
antimicrobial molecules, thereby preventing infection. This response is known as Acquired 
Systemic Resistance (SAR). (Adapted from Dempsey & Klessig, 2012.) 

1.2 Microbial effectors and their role in plant defense suppression 

1.2.1 Effectors: concept and definitions 

During the arms race between a pathogen and its host, the host produces its defense 

response against the attacking pathogen; to counteract this defense responses, 

many pathogens utilize a wide array of strategies, including secreted proteins, called 

effectors. Effectors are secreted proteins with diverse structural and functional 

characteristics unique to the pathogen and promote pathogenicity (Hogenhout et al., 2009, 

Win et al., 2012). They are known to change the physiology of their hosts to support 

pathogen growth. Although the term "effector" is broadly used in the studies of 

plant-microbe interaction, its definition is constantly evolving with the increased 

understanding of the molecular mechanisms involved in pathogenicity. Kamoun (2003) 

and Huitema et al. (2004) defined effectors as "all molecules (proteins, carbohydrates, and 

secondary metabolites) that alter the structure and function of host cells, thereby 

facilitating infection (virulence factors or toxins) and triggering defense response 

(avirulence factors or elicitors) (Kamoun, 2003 , Huitema et al., 2004). The notion of 
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effector was used in the field of plant-microbe interactions with protein discovery secreted 

by Gram-negative bacteria in host cells (McCann & Guttman, 2008, Abramovitch et al., 

2006). In another definition, Pritchard and colleagues (2014) referred to effectors in 

plant-pathogen interactions as "any protein synthesized by a pathogen that is exported to 

a potential host, which has the effect of making the host environ ment beneficial to the 

pathogen (Pritchard & Birch, 2014)." However, the widely accepted hallmarks of effectors 

include; small secreted proteins (SSPs) having an N-terminal signal peptide with low 

sequence homology across species, no conserved host-targeting signal capable of 

manipulating and re-programming host metabolism or immunity (Hogenhout et al., 2009). 

Although many bacterial effectors and filamentous pathogens are indeed involved in the 

suppression of immune responses, many effectors have shown far more diverse functions 

such as enzyrnatic functions (for example, AvrPphB and AvrRpt2 of Pseudomonas 

syringae have cysteine proteases activity), HopZla which has acetyltransferase activity, 

which activates transcription in Xanthomonas campestris (Deslandes & Rivas, 2012). 

Most of the described effectors are proteins; however, non-protein effectors have also 

been described such as metabolites, toxins, and small interfering RNAs (Cuomo et al., 

2011, Arias et al., 2012, Collemare & Lebrun, 2011, De Wit, 2016, Weiberg et al., 2013). 

1.2.2 Diversity and structural organization of effector proteins 

Plant-associated microbe, bacteria, fungi, oomycetes secrete effectors in the host, 

which can be either apoplastic or cytoplasmic. The apoplastic effectors are secreted and 

function extracellularly at the microbe-plant interface (apoplast), and many have been 

described as inhibitors ofhost proteases (De Wit, 2016, Song et al., 2009) (Figure 1.7A). 

These apoplastic effectors interact with ho st extracellular proteins and can also be 

recognized by sorne R proteins that are similar to PRR (Effector-triggered defense against 

apoplastic fun gal pathogens). For example, the apoplastic effectors Avr2, Avr4, and ECP6 

of the fungus Cladosporium fulvum , which causes tomato leaf mold, target various 

extracellular pro cesses in the host tomato plant (Bolton et al., 2008, Song et al., 2009, 

van den Burg et al., 2006). A vr2 is an inhibitor of tomato apoplastic cysteine proteases, 

A vr4 interact with Cf4 and protects against chitinases. ECP6 interferes with the perception 
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of C. fulvum cell wall chitin by the extracellular immune receptors of the tomato plant 

(De Jonge et al., 2010). 

Cytoplasmic effectors are translocated intracellularly and target subcellular 

compartments, where they modulate plant immunity, physiology, and metabolism to 

support pathogen growth and development (Bos et al., 2006, Rafiqi et al., 2012). 

Magnaporthe oryzae fungus effectors are accumulated into host cells at a membranous 

cap known as the biotrophic interfacial complex (BIC) (Valent & Khang, 2010). 

Cytoplasmic effectors of Melampsora larici-populina (Mlp) showed accumulation in 

plant cells in chloroplasts, nucleus, plasmodesmata, and cytoplasmic bodies (Germain 

et al. , 2018). 

The typical organization of the effector proteins of the fungal pathogen contains a 

signal peptide in the initial 60 amino acids (AA) at the N-terminal end, followed by several 

domains towards the C-terminal end (Figure 1.7B). These types of effectors are 

comparatively small and rich in cysteine residues like most serine or cysteine protease 

inhibitory proteins. For example, known effectors (Avr2, Avr4, Avr9, and ECP2) of 

Cladosporium fulvum , a tomato fungal pathogen, are small cysteine-rich proteins that are 

believed to function exclusively in the apoplast (Thomma et al. , 2005). The apoplastic 

effectors of C. fulvum and other fungal pathogens can inhibit and protect against plant 

hydrolytic enzymes, for example, glucanases, proteases, and chitinases (reviewed by 

(Misas-Villamil & Van der Hoom, 2008). RXLR (arginine, any AA, leucine, arginine) is 

the most cornmon motif found in over 700 CSEP predicted in two Phytophthora species, 

P. sojae and P. ramorum (Jiang et al., 2008). RXLR mediates the effector entry into host 

ce Ils by binding to Plasma membrane intrinsic proteins (PIPs) exposed on the plasma 

membrane, which induces endocytosis of the effectors in plant cells (Kale et al. , 2010). 

Most effectors carrying RxLR also have a second conserved motif called DEER 

(aspartate, glutamate, glutamate, arginine) towards the C-terminus. 
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Figure 1.7. Schematic illustration of effector proteins. 
(A) secreted by fungi/oomycetes in the apoplastic and cytoplasmic region of the plant cell; 
(B) typical organization ofeffector proteins. (Image from Sonah et al. , 2016.) 

1.2.3 How are effector proteins introduced into host cells? 

One of the critical functions of effector proteins is their successful entry to the site 

of action in the host cell. The plant pathogens have evolved different strategies to deliver 

effectors inside the host cells. For example, in the bacterial pathogen, the effectors are 

usually secreted into the cells using a type III secretion system, a type IV secretion system, 

or a type VI secretion system (Depluverez et al., 2016) (Figure 1.8A). Many biotrophic 

fungi and oomycetes pathogens use haustoria, a specialized structure for feeding and 

effector delivery into ho st cells (Chibucos & Tyler, 2009). Effector proteins of fungi or 

oomycetes are often secreted via the conventional endoplasmic reticulum-Golgi apparatus 

route with their N-terminal secretion signal. They are commonly expressed after contact 

with their host as their expression is tightly correlated with the different infection stages. 

Hemibiotrophic and necrotrophic fungi use specialized invasive hyphae (IH) for effector 
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delivery inside host cells. For example, the hemibiotrophic rice pathogen M oryzae 

accumulate effectors in a lobed structure at the hyphal tip called the biotrophic interfacial 

complex (BIC) before subsequent delivery into the host cytosol (Khang et aL, 2010) 

(Figure 1.8B). Other large obligate biotrophic plant-parasitic classes are Chromadorea 

and Insecta; they secrete effectors from the secretory gland into the plant cell using the 

nematode stylet (Figure 1.8C). 

Figure 1.8. Effector distribution structures of Gram-negative bacteria, oomycetes, fungi, 
and nematodes in plant cells. 
(A) The type III secretion system in Gram-negative bacteria injects effectors into the host cell. 
(B) Biotrophic and hemibiotrophic filamentous pathogens are believed to form the haustorium at 
the site of effector release into the host cell. (C) Effectors from the secretory gland are injected 
into the plant cell via the nematode stylet. (Adapted from Torto-Alalibo et aL, 2009.) 

1.3 Plasmodesmata: the battlefield against intruders 

Plasmodesmata (singular plasmodesma) are channels that connect the cytoplasm of 

neighboring plant cells, allowing the passage of small molecules such as ions, sugars, 

essential nutrients, and RNAs (Lucas & Lee, 2004) (Figure 1.9A-B). Decades ofresearch 

have demonstrated that plasmodesmata regulate cell-to-cell communication during the 

plant developmental stage and in response to abiotic and biotic stress. Because ofthis role, 

opportunistic pathogens have evolved to exploit plasmodesmata as gateways to spread 

infection from one cell to another. Although these pathogens have acquired the ability to 
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disrupt plasmodesmal traffic, it is unlikely that plants will give up control so easily over 

the structure essential to their survival. In the following paragraphs, 1 will be discussed 

how pathogens exploit plasmodesma to spread infection. 

A. 

Plasma membrane 

endopIasmic reticulum 

". 
plasmodesmata 

B. 
Cyt 1 

Figure 1.9. Cellular communication and plasmodesmata. 
A diagram illustrating the cell-to-cell communication via plasmodesmata (A). Confocal image of 
plasmodesmata as punctate green signais (B, arrowheads left side) in the Arabidopsis epidermal 
cell. Immunogold staining (lGS) of cali ose (arrowheads) at a plasmodesma (PD) (B, right-sided). 
(Adapted from Maule et al., 2012.) 

1.3.1 Virus-plasmodesmata interaction 

Plant viruses are obligate pathogens weil known to exploit the plasmodesmal 

trafficking machinery. Viruses use a non-structural specialized component called 

"movement protein" (MP) to transfer viral genomes from one infected cell to a healthy 

cell via plasmodesmata. To transfer viral genome, MPs encodes as non-tubule or tubule, 

which implies specifie molecular interactions between cargoes and transporters, as weil 

as the gating of nuc\ear pore and plasmodesmata channels (Lee et al., 2000). Studies on 
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cucumber mosaic virus (CMV), tobacco mosaic virus (TMV), and potato virus X (PVX) 

have shown that viral MP is associated either by direct targeting or indirect interactions 

with plasmodesmata (Figure 1.10A) using the elements of the cytoskeleton or secretory 

pathways. (Su et al., 2010, Haupt et al., 2005, lu et al., 2005, Brandner et al., 2008, Sasaki 

et al., 2006). In addition, an association of MPs with the ER acts for delivering the MPs 

in adjacent cells along with the appressed ER; an ER passes through plasmodesmata 

(Harries et al., 2010, Epel, 2009). 

1.3.2 Fungus-plasmodesmata interaction 

lnterestingly, the fungi appear to have a different strategy for exploiting 

plasmodesmata to spread infection. During a cell-to-cell infection, the ri ce blast fungus 

Magnaporthe oryzae initially creates a structure called invasive hyphae (lH), which is 

several microns in diameter (Kankanala et al., 2007). Live imaging suggested that within 

two hours, lH searched the cell periphery to find suitable intercellular pores and grew into 

the neighboring cell through the wall at the plasmodesmata (Figure 1.1 OB). Once the lH 

is in the intracellular space, it delivers effectors following haustorium formation. 

The diameter of the lH is highly variable, ranging from > 1.5 nm (when exploiting the 

PD channel) to up to 30 nm in diameter. This observation suggests that it is not possible 

to pass the lH through a single intact plasmodesma unless the lH becomes less constricted 

or a significant reshaping of the size of the plasmodesma channel. 

1.3.3 Plasmodesmata against bacterial pathogens 

Unlike viral and fungal pathogens, bacterial pathogens do not need to interact 

directly with plasmodesmata to spread the infection. Bacteria use the specialized type III 

secretion system (T3SS) to secrete effector proteins in the intracel\ular host space 

(Zhou & Chai, 2008, Hauck et al., 2003, Xiang et al. , 2008).These effectors target different 

ho st compartments; sorne of them target plasmodesmata channels to modulate 

plasmodesmal function by acting on cali ose production mainly or other unknown means. 

Pseudomonas syringae, a bacterial pathogen, deploys an effector HopO 1-1 that interacts 

with Arabidopsis Plasmodesmata-located protein 7 (PDLP7) and increases the PD-
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dependent molecular flux between neighboring plant cells and maximizing the spread of 

bacterial infection (Aung et al., 2020). 
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Figure 1.10. Role of plasmodesmata in defense against pathogens. 

PD occludect by 
caltoM 

Models are demonstrating the role of plasmodesmata (PD) in interactions with pathogens. 
(A) Non-tubule viruses encode MP, which modulates the plasmodesmata size exclusion limit 
(SEL) to allow transport of infectious material. In contrast, tubule-forming viruses encode MP, 
which reshapes plasmodesma by forming self-assembled tubules, through which the virions pass. 
ln response to virus by plant cell wall induces a cali ose deposit in the plasmodesma, which can 
discourage viral spread and could help control cell death by symplastic isolation of infected cells 
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during HR. (B) IH and effector hemibiotrophic fungal molecules use plasmodesmata during 
intercellular infection. The promising defense mechanism against fungal involves the 
plasmodesmata permeability by the deposition of cali ose. (C) Though bacterial pathogens do not 
directly meet plasmodesmata because since their T3SS is mainly limited to release effectors in the 
plant intracellular spaces. Still, to counter the plant defense responses, bacterial could use 
plasmodesmata channels to transport their specific effector molecules. Likewise, to prevent this 
from happening, the plant could close the plasmodesmata with cali ose or other yet unknown 
means. (Adapted from Lee & Lu, 2011 .) 

1.4 Role of eallose in the regulation of plasmodes mal permeability 

Cali ose, a ~-1 ,3-glucan polysaccharide, is a plasmodesmata marker molecule. 

The production and degradation of calloses are due to the glucan synthase-like (GSL) and 

~-1 ,3-glucanases (BG) gene, respectively, in various locations in the plant. The high level 

of callose deposition at the cell walls near the neck area of the plasmodesmata narrows 

the opening of the plasmodesmata channel and vice versa (De Storme & Geelen, 2014) 

(Figure 1.11). 

endoplasmic 

callose 
synthase 
~ 

~ 
~ l.3-glucanase 

Figure 1.11. The callose deposit regulates the plasmodesmata opening in the cell wall 
surrounding the neck of the pore. 
Cali ose synthases and ~-1 ,3-glucanases located in the plasmodesmata control the regeneration of 
cali ose, which determines wh ether a plasmodesmal is open (Ieft) or closed (right) and if the 
movement can occur freely between cells (left) or if it is obstructed (right). (Adapted from Maule 
et al. , 2012.) 

1.4.1 Specifie enzymes modulate plasmodesmal eallose levels 

The major genes that regulate cali ose levels at plasmodesmata inc\ude members of 

A. tha!iana ~-1 ,3-glucanase. AtBG ~pap (Levy et al., 2007) as weil as the family of 
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A. thaliana callose synthase (CalS), coded by CalSi 0, CaIS3, CalSi , CaIS8. Mutations in 

plasmodesmal-localized ~-1,3 glucanases 1 (PdBG 1) or PdBG2, genes increase the 

accumulation of cali ose (Benitez-Alfonso et al., 2013). In the calslO mutant plant, 

the lethality of the seedlings and pleiotropic phenotypes were observed due to lack of 

cali ose deposit on the cell plate (Guseman et al. , 2010, Han et al., 2014). calSi mutations 

decrease the callose hyperaccumulation induced by a pathogenic bacterial infection or 

salicylic acid. In addition, the cals8 mutants show an increase in basal plasmodesmal 

permeability compared to wild type plants (Cui & Lee, 2016). These observations suggest 

that a network of factors regulating callose controls the permeability of the plasmodesmal 

channels. 

1.4.2 Plasmodesmata-Iocated proteins regulate the plasmodesmal flux 

Numerous plasmodesmata-associated proteins, not related to the callose 

synthaselhydrolase family, control plasmodesmal permeability in a callose-dependent or 

independent manner (Fig 1.12). Arabidopsis Plasmodesmata Callose-Binding Protein 1 

(PDCB 1) encodes for an extracellular protein, PDCB 1, which binds to cali ose in vitro, 

and its ectopic overexpression increases the deposition of calI ose at plasmodesmata. 

L YSIN Motif Domain Containing Gpi-Anchored Protein 2 (L YM2), a chitin-binding 

receptor-like protein, is a plasma membrane protein that also accumulates in 

plasmodesmata (Faulkner et al. , 2013). In Arabidopsis lym2 mutants, reduced cell-to-cell 

movement induced by chitin is abolished, and the chitin-triggered defenses are also 

compromised. It is not c1ear ifL YM2 regulates plasmodesmata permeability by a calI ose­

dependent mechanism. The Plasmodesmata-Located Protein (PDLP) family encodes eight 

receptor-like integral membrane proteins in Arabidopsis; they consist of a short 

cytoplasmic tail across a transmembrane helix (Thomas et al., 2008) (Figure 1.12). 

The double mutants of pdlpi pdlp3 and pdlp2 pdlp3 exhibit increased GFP movement 

between cells; on the other hand, overexpressed PDLP 1 decreases GFP trafficking 

(Thomas et al., 2008). A summary of plasmodesmata-associated components and their 

functions is presented in figure 1.12. 



RLKa one! Ru>.: .1gno1_1Ion 

TIsstJe Malnlanance 01 
morphoganesis mol siam œHs 

lOKY ACR4 l 

SUB 

Chllin blndlng, _ .. '" 
PD parmeabUity 

In_ ond _1ID1ion (1) 

Koy 

\..!.'~!.J'-.-....F- RTN..B 

ModeI: Inlaradlng 
prolalns stablllZa 
appressadERst/8nd 
ln lha PD channel 

~ Adln 0 Ramorln 

ClllloMoccumulalion ln _1O __ lond 
Int1rn81 CWI 

Raqulred 
foradlvily 

PdBGl12 

Conlrol '" reverslbla callosa llCCOOlulolion 

r"I \J AV. 
V GaP 

KNl 
+- CPC 

SHR 
LFY 
wus 

• F/88 diff.-. '" smaU _ 
_ (sugar, Ions) 

• $AR stgnaling: AV. and GaP 
• T /8nscrip1ion lactors 

(likely Ihrough adlYa gatlng) 

SphIngoIipid·rIch 
membrane 

25 

Figure 1.12. Plasmodesmata-associated components and their functions. (Adapted from 
Sager & Lee, 2018.) 
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1.5 Poplar tree 

Poplar (genus Populus), a genus of sorne 35 species of trees in the willow family 

(Salicaceae), is native to the Northem Hemisphere. The native species of poplars from 

North America are divided into three major groups: 1) the cottonwoods, 2) the aspens, and 

3) the balsam poplars. Poplar is mainly cultivated for the production of wood and biomass. 

Poplar wood is relatively soft and therefore is mostly used to make cardboard boxes, 

crates, paper, and veneer. Poplar was the first tree whose genome was sequenced, 

making it a reference model species in tree biology (Tuskan et al. , 2006, Meikle, 1984). 

We have developed an interest in a particular species Populus trichocarpa, the black 

cottonwood poplar, which is a deciduous tree native to North America and abundant in 

Canada. P. trichocarpa has several qualities that make it a suitable model species for trees, 

such as - the size of the genome (although larger than other model plants su ch as 

Arabidopsis thaliana), rapid growth, it reaches reproductive maturity in 4-6 years, 

economically important, represents a phenotypically diverse genus, etc. In Canada, 

the main limitation of popular culture cornes from epidemics of poplar leaf rust caused by 

fungi of the genus Melampsora (Figure 1.13A). 

1.6 Melampsora larici-populina and Poplar ru st 

Melampsora larici-populina (Mlp) is an obligate biotrophic fungal pathogen that 

causes poplar rust. Melampsora alone has more than 50 species, 17 of which are 

pathogenic to the genus Populus (Vialle et al. , 20 Il) . Heteroecism is one ofthe remarkable 

features of Mlp; they infect two completely independent host plants to complete their life 

cycle; poplar (Populus sp. , a dicot, telial host) for asexual reproduction and larch 

(Larix sp. , conifer, aecial host) for sexual reproduction. To do this, they present a 

macrocyclic way of life, which involves the production of five different forms of 

spores; teliospores, basidiospores, pycniosopores, ecidiospores, and urediniospores 

(Figure 1. 13B). 
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(A) Poplar leaf rust caused by M larici-populina. (B) The biological macrocyclic heteroecious 
cycle of M larici-populina. (Adapted from Hacquard et al., 20 Il.) 
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The majority of Mlp pathogenic invasion is observed during the asexual 

developmental phase of the vegetative cycle (urediniospores formation and spreading) 

(Figure 1.13B). Though Mlp infects both larch and poplar, infected larch needles are 

marked by limited symptoms over time without impacting the growth and development 

of the ho st and usually leads to minor damage. The infection of poplar has extensive 

consequences and causes epidemics in the poplar population for many years . 

Infected poplars become weak, suffer from a decrease of photosynthesis efficiency, 

early defoliation, and reduce their viability (Pinon & Frey, 2005). Repeated attacks cause 

growth loss ofup to 60% every year. Poplar-poplar rust is considered a model pathosystem 

to study not only poplar rust but also other rust diseases due to the genomic information 

available on poplar and Mlp (Duplessis et al. , 20 Il a, Duplessis et al. , 20 Il b, Hacquard 

et al., 2013 , Hacquard et al. , 2010, Hacquard et al., 2012, Joly et al., 2010, Pernaci et al., 

2014, Persoons et al. , 2017, Petre & Kamoun, 2014, Tuskan et al., 2006). 

1.6.1 Pipelines of effector mining of M. larici-populina 

The combination of transcriptomic and genomic studies revealed that Mlp contains 

an estimated 1184 small secreted proteins (SSP), candidate-secreted effector proteins 

(CSEP) (Duplessis et al., 2011a). Based on the results of two independent groups 

(Figure 1.14), a distinctive pipeline for prioritizing Mlp CSEP has been described 

(Hacquard et al., 2012, Saunders et al. , 2012). These effectors are expressed in planta and 

haustoria and, for most, not in spores. No specific domain and function were recognizable 

or predicted, and in most cases, their sequences were specific to Pucciniales (Hacquard 

et al., 2010, Hacquard et al. , 2012, Joly et al., 2010) (Figure 1.14). The study showed the 

accumulation at various cellular compartments in leaf tissue such as the nucleus, 

chloroplast, mitochondria, cytosolic bodies, and the nucleolus and protein interaction of 

Mlp CSEPs (Germain et al. , 2018, Petre et al., 2015). 
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(continued) The M larici-populina effector mining pipeline consists offour main stages: stage 1: 
genome-wide predictions identify the M larici-populina secretome using prediction tools (green) 
and grouping offamilies ofgenes with Tribe ™ (orange); step 2: the catalog ofsecreted proteins 
identifies a set of secreted proteins; step 3: the CSEP selection criteria identify the CSEP by 
different characteristics; and step 4: high priority candidates give priority to CSEP for further 
functional studies. Avr = avirulence protein; EST = expressed sequence tag; SP = secreted protein; 
SSP = small secreted protein; HESP = secreted haustorial expressed secreted protein. 
(Adapted from Lorrain et al., 2015.) 

1.6.2 Heterologous system to study effectors 

In this study, we used A. thaliana and N. benthamiana as systems to perform the 

functional analysis of an Mlp candidate effector. A. thaliana appeared as a model organism 

more than three decades ago (Meyerowitz, 1989, Meyerowitz, 2001, Ossowski et al., 

2008, Rédei, 1975) and has become a powerful model system in molecular biology and 

genetics and plant-microbe interactions (Koomneef & Meinke, 2010, Bulbul 2019; 

Madina 2020). Investigating the molecular basis of rust fungi pathogenicity is hampered 

by the fact that rust fungi cannot be cultured in vitro and genetically modified. Moreover, 

in the case of poplar leaf rust, the genetic transformation of poplar is only possible with 

poplar cultivars that are not susceptible to rust, limiting our capacity to manipulate either 

the pathogen or susceptible host genetically. To circumvent this hurdle, many groups have 

resorted to using heterologous systems that still allow the study of effectors in planta 

(Sohn et al., 2007, Rafiqi et al., 2012, Fabro et al., 2011). Recently, heterologous systems 

are commonly used to investigate effector, from biotrophic pathogens, functionality 

(Caillaud et al., 2012b, Caillaud et al. , 2012a, Du et al., 2015, Gaouar et al., 2016, Germain 

et al., 2018, Kunjeti et al., 2016, Petre et al., 2016a, Petre et al., 2015). 

1.7 Research objectives 

The continuous evolution of new plant varieties and resistance development is 

crucial to minimizing the damage of crops by rust pathogen. It is crucial to understand 

better the mechanisms of plant-microbe interaction in disease development in plants. 

Molecular research in phytopathology has studied the direct interactions between 

phytopathogens and their hosts to develop effective defense strategies and pro duce more 



31 

resistant crops. Several factors are involved in developing plant disease; among them, 

effectors are an essential component required for pathogenesis, which modulates plant 

immunity and facilitates infection. It is not yet clear how these effectors promote virulence 

in plant rust interaction. 

For this thesis research, we selected a plasmodesmata-localized effector prote in 

Mlp37347 from Mlp pathogen. More specifically, the localization of Mlp37347 was 

previously described as cytosolic bodies (further demonstrated as plasmodesmata 

(Germain et al., 2018), and glutamate decarboxylase 1 (GADl) was identified as an 

interaction partner of effector Mlp37347 (Petre et al. , 2015). Glutamate decarboxylase 

(GAD 1) is an enzyme that catalyzes the conversion of glutamate to gamma-aminobutyric 

acid (GABA). 

Thus, we wanted to answer the following questions: 

a) Does the Mlp37347 candidate effector manipulate the plasmodesmata size? 

b) If so, how does it control it? 

c) Does Mlp37347 alter plant susceptibility? 

To address the questions stated above, we have combined aIl of our works to tell 

one complete story. We simply separated this thesis into the following sections- a general 

introduction, materials and methods, results, and discussion. 

The project was started a little before Ijoined the labo However, Petre et al. (2015) 

studied 24 Mlp CSEPs and found their localization using Nicotiana benthamiana in 

various cellular compartments in leaf tissue. More specifically, the localization of 

Mlp37347 was described as cytosolic bodies. Our lab further refined this localization and 

demonstrated that these cytosolic bodies were, in fact, plasmodesmata (Germain et al. , 

2018). Moreover, a single interaction protein, glutamate decarboxylase 1 (GAD 1), 

was identified through mass spectrometry (Petre et al. , 2015). This unique localization of 

Mlp37347, PD localization, made us curious to study further the impact of the effector on 
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the plasmodesmata. Since pathogen proteins, mainly from Vlruses and bacteria, 

are associated with plasmodesmata to control intercellular communication (Han et al., 

2019). However, reports of fungal proteins interfering with the plasmodesmata flux are 

limited. 

In order to know the impacts of Mlp37347 on plasmodesmata, we have developed 

several constructs and transgenics to perform an intercellular flux test by measuring the 

diffusion ofmCherry in the presence or absence ofMlp37347 as weil as Drop-ANd-See 

(DANS) assay by measuring the distribution of the carboxyfluorescein diacetate (CFDA) 

dye. Once we understood the impacts of the effector on plasmodesmata, we followed our 

interest to identify the components involved in the plasmodesmata flux mediated by the 

effector. To do that, we investigated the cali ose level and performed a full transcriptome 

analysis in an effector overexpressing line. 

Finally, we looked at whether the effector makes the plant more susceptible to the 

pathogen, and if so, how does this virulence achieve. In order to address these, 

we performed a pathogenicity assay, validated the interaction using yeast two-hybrid, 

used in-silico three-dimensional model analysis, and protein-protein docking. 

We conclude that Mlp37347may take place to cause effector-triggered susceptibility 

(ETS). 



CHAPTERII 

MATERIALS AND METHODS 

2.1 Plants material and growth 

Seeds of Arabidopsis thaliana and Nicotiana benthamiana were vemalized in dH20 

at 4 oC for 48 h. Plants were grown in soil (PV20 Agromix, Fafard), at 22 oC, 60% relative 

humidity with a 14h11 Oh 1 ightldark cycle in a growth chamber. We used A. thaliana 

accession Columbia-O as a wild type (control), and a previously described line expressing 

the Green Fluorescent Protein (GFP) as a control in the infection as well as subcellular 

localization assay (Ahmed et al., 2018). 

2.2 Transgenic production 

Arabidopsis Col-O plants were transformed using Agrobacterium tumefaciens strain 

C58Cl to develop transgenic using the modified floral dip method (Mireault et al. , 2014). 

Arabidopsis flowers (4-weeks-old) were dipped for 30 seconds into an Agrobacterium 

(OD600= 0,6) solution carrying the plasmid of interest and 0.05% OFX as a surfactant. 

In pre-culture, we inoculated Agrobacterium tumefaciens strain C58C 1 colony in 4 mL of 

yeast extract peptone (YEP) media containing spectinomycin (50 mg/L) ovemight at 

28 oC and using 1 mL of pre-culture to start the main 300 mL culture with the same 

condition until OD600= 1.0. The cells were precipitated by centrifugation at 5000 rpm for 

10 min and resuspended in 300 mL 5% suc rose, 0.05% OFX-309 in dH20 , and adjusted 

to OD600 of 1.5 . The dipped flowers were covered with a dome for 48h, and seeds were 

harvested 3-weeks later. To select the single insertion homozygous transgenic plants, 

mendelian segregation ofthe Basta resistance (15 mg/mL) was followed in Tl, T2, and T3 

generations (Figure 2.1). T3 generations were used for further experiments. 
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The Salk T-DNA mutant line, Salk_022227 (gadJ-6) was obtained from 

Arabidopsis BiologicaI Resource Center (ABRC), Columbus OH, USA. The mRNA of 

the gadJ mutant was verified previously by RT-PCR for aberrant transcript (Miyashita & 

Good, 2008). 

2.3 Crosses 

The Mlp37347-GFP line (Basta resistant) was used as the male parent and the gadJ­

knockout line as the female parent. The FI seeds were harvested, sown, and screened for 

resistance to phosphinothricin (Basta). The FI Basta resistant seedlings were transplanted, 

further grown on the soil, and observed under a confocal laser scanning microscope 

(GFP), and F2 was screened for homozygous selection by PCR using specific primers pair 

(Supplementary Table l). 

) 

Basta selection PCR Confocal microscopy 

Figure 2.1. Overview of screening T -DNA homozygous selection. 
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2.4 Plasmid constructs and c10ning procedures 

The GFP-tagged Mlp37347 construct and the transgenic line were previously 

reported (Gennain et al., 2018). To obtain the NLS-tagged construct, the Mlp37347 ORF 

was PCR amplified with a sens PCR primer encoding the NLS and overlapping with the 

5' end of the ORF and recombined in the entry vector pD0NR221 by BP reaction and then 

into vector pB7FWG2 by LR recombination reactions using Gateway technology (Karimi 

et al., 2002). The sequencing of aIl the constructs was perfonned before transfonnation in 

Agrobacterium. To generate 2XmCherry, two tandem copies of mCherry of gBlocks 

double-stranded DNA fragments were obtained from Integrated DNA Technologies, Inc. 

(Iowa, USA). The 2XmCherry fragment was amplified by PCR and cloned into the 

pD0NR221 entry vector, foIlowed by LR reaction into the pK7WG2 vector using the 

Gateway protocol. Gateway cloning is completed in two recombination reactions: 

(1) BP recombination and (II) LR recombination (Figure 2.2). 

BP Reaction 

altB1 altB2 

Gtnt 1 

.nB fIried PCR PfOduct 
or .ltB expression clone 

LR Reaction 

altU anL2 --

attP1 atlP2 

+ 

.ItR1 attR2 

+ 

Figure 2.2. Gateway recombination reactions. 

BPCIonaH 

1 

LRCIonaH 
1 

altR1 allR2 

Byproduct 

.tlU + altLl 

.ttP1 alln 

.ItB1 + .1t82 

The Gateway system adopts phage integration into the BP and LR reactions. The BP reaction 
creates and an attL-flanked entry clone. The LR reaction creates an expression clone with ail the 
components necessary for gene expression. (Image from Soriano, 2017.) 
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2.5 Expression in A. thaliana and N. benthamiana 

Transient agro-mediated transformation, a technique to introduce transient and 

high-level expression of genes of interest of N. benthamiana leaves, was performed 

according to the protocol of Krenek et al. (2015). The recombinant bacterial strains were 

grown overnight in peptone yeast extract (YEP) with appropriate antibiotics, 

then harvested and resuspended in infiltration buffer (10 mM MgCh and acetosyringone 

150 ~M). The construct's bacterial suspensions were infiltrated at an OD600 of 0.5, but the 

lXmCherry and 2XmCherry were at an OD600 of 0.1. Since we aimed to obtain a single 

or a minimum number of cells express mCherry to investigate PD-dependent flux. 

We found an OD600 of 0.5 for mCherry causes an excessive expression, making it 

challenging to select a single positive cell. 

2.6 Pathogen infection assays 

For the infection as say, we followed the method previously described (Ahmed et al., 

2018). Pseudomonas syringae pv. tomato (Pst) DC3000 cultured overnight at 28 oc and 

infiltrated using a needleless syringe on the abaxial side of the leaves at an OD600 of 0.001. 

Hyaloperonospora arabidopsidis (Hpa) Noc02 infections were performed with 

3-weeks-old Arabidopsis plants using spray inoculation method at 20 000 spores/mL. 

Spores were counted at 7 days post-inoculation (dpi) in triplicates [spores/gFW (x 104
)] 

using a hemacytometer. 

2.7 Confocal microscopy 

Live-cell imaging was performed with the Leica TCS SP8 confocal laser scanning 

microscope (Leica Microsystems) with a 40xll.40 oil immersion objective. Small excised 

young leaves from Arabidopsis or N. benthamiana were mounted in water and were 

immediately observed. The GFP was excited at 488nm, and emission was recorded at 

505- 530 nm. Excitation ofmCherry was carried out at 552 nm, and emission was captured 
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between 597-627nm. Images were taken at 512x512 resolution usmg line-by-line 

scanning and using sequential scanning (when appropriate). The LAS AF Lite software 

(Version 3.3), Adobe Photoshop CS6, ImageJ, and Illustrator were used for the post­

acquisition image processing. 

2.8 rnCherry diffusion assay 

The mCherry diffusion assay was performed in the leaves of N. benthamiana in a 

time-dependent manner (Cao et al., 2018). Briefly, suspensions of Agrobacterium ceUs 

containing a construct for IX or 2XmCherry at an OD6oo of 0.1 were infiltrated into the 

abaxial side of the leaves, containing the effector or not. Thirty-six hours later, the samples 

were examined by confocallaser scanning microscopy and microscope fields where single 

ceUs expressing mCherry (and also expressing or not the effector) were identified and 

marked. Four hours later, the same ceUs were imaged again, and the number of 

surrounding ceUs now positive for the mCherry was counted; these experiments were 

repeated three times (Figure 2.3). Statistical significance was ca1culated using the 

Student's t-test. 

1X or 2XmCherry agro-mediated 
transformation 

with (+) or without (-) Mlp37347 36th hr confocal 

Figure 2.3. The workflow of mCherry diffusion assay. 

2.9 DANS assay and callose quantification 

40th hr confocal 

Drop-ANd-See (DANS) dye loading assay was performed on fourth and fifth intact 

rosette leaves of 3.5-weeks-old Arabidopsis plants, as previously described by Cui et al. 
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(2015). Brietly, the leaves were sprayed with H202 and incubated at room temperature for 

2 hours. Subsequently, a 1 ! .. lI droplet of 1 mM carboxytluorescein diacetate (CFDA) was 

loaded on the center of the upper surface of an intact leaf, followed by confocal imaging 

of the abaxial surface of the washed leaf 5 minutes after loading CFDA dye. Confocal 

imaging was performed under a 40x/l.40 objective lens, using laser excitation of 488nm 

with an emission of 505 to 525nm (Figure 2.4). 

) 
5min 

) 

Spray HP2 Add CFDA dye droplet Wash and confocal analysis 

Figure 2.4. The workflow of Drop-ANd-See (DANS) dye loading assay. 

Image of callose deposition at plasmodesmata using aniline blue was carried out 

according to the protocol described by Zavaliev & Epel (2015) with minor modifications. 

Entire leaf of 2-weeks old Arabidopsis transgenic was submerged in 96% ethanol and 

incubated at room temperature (RT) on a slow shaker (30 rpm) until complete bleaching. 

The bleached leaf was removed from the ethanol and gently placed on a tlat surface, and 

strips of 1 mm wide were cut. Leaf strips were rehydrated by placing in dH20 with 0.01% 

Tween-20 at room tempe rature for 1 h and then transferred in 0.01 % (w/v) aniline blue 

in 0.01 M K3P04 (pH = 12). The tubes were placed in a vacuum desiccator at RT for 

10 min, and tubes were then wrapped with aluminum foil for 2h on a 100 rpm agitator. 

Confocal microscope observation was performed at 405nm for excitation and 475 to 

525nm detection at 40X. The images were analyzed by ImageJ software using the Analyze 

Particle tool to quantitY the amount of callose. 
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2.10 Y2H reporter assays 

The coding sequences of Mlp37347 (without signal peptide) and GAD] were cloned 

into pGBKT7 (binding domain) and pGADT7 (activation domain), respectively, 

by homologous recombination in the yeast strain Y2H gold. Both plasmids were extracted 

and co-transformed in strain Y2H gold. The co-transformants were plated on the medium 

of double drop out (DDO) without Leu and Trp and a selective quadruple drop out (QDO) 

without Trp, Leu, His, and Ade (Sigma-Aldrich) and incubated at 30 oC for 3 to 4 days. 

For photography, dilution series of (1 0-°, 10-1, 10-2) were prepared for each transformant, 

and lOlll were plated on DDO and QDO medium. 

2.11 Western blot analysis 

To verify the prote in expression, western blotting was carried out as described by 

(Germain et al., 2008) with minor modification. 3-weeks-old plant leaves were collected 

for protein extracts, and leaves were ground to a fine powder with liquid nitrogen and 

immediately transferred to 1.5 ml Eppendorf tube with extraction buffer 100 mM 

(Tris-HCl pH8 0.1 % SDS, 2% beta-mercaptoethanol and protease cocktail inhibitor IX). 

Eppendorf tubes were kept on ice for 5 minutes and centrifuged at 13000 rpm for 

10 minutes. The supernatant was transferred to a clean tube. Samples were mixed with 

loading buffer and boiled for 5 minutes before loading. 

The presence of Mlp37347-GFP, NLS-Mlp37347-GFP, and GFP was determined 

by western blotting. The blot was probed with an a-GFP-HRP antibody (1 :500 dilution, 

Molecular Probes, Santa Cruz Biotechnology, USA). The bands were revealed with the 

ClarityTM western ECL substrate (Bio-Rad) according to the manufacturer's instruction. 

2.12 RNA extraction and transcriptome analysis 

Total RNA was extracted from 4-days-old A. thaliana Col-O and transgenic plants 

expressing GFP alone (control) or effector Mlp37347-GFP using Total RNA Mini Kit 
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(Geneaid). The samples were treated with DNAse, and the RNA quality was evaluated by 

agarose gel electrophoresis. Using lOOng of total RNA and TruSeq strand mRNA library 

preparation kit (Illumina), the libraries (triplicates for each) were generated with the 

NeoPrep library preparation system (Illumina). The libraries were then sequenced with 

Illumina HiSeq 4000 sequencer. The gene ontological (GO) enrichment of up and down­

regulated genes (having a Q value :s 0.05 and a fold change 2 2) was studied using 

Cytoscape software (version 3.1 .1) with the ClueGO and CluePedia plug-in (Bindea et al., 

2013) (Figure 2.5). 

• CoUl, MIp37347 

• Total RNA Isolation 
(4 days oId arabidopsis CoUl, GFP, MIp37347 plants) 

• Illumina l-iSeq 

• Filtre (~2 foIds & SO,05 Q value) 

• Up & down regtJated genes 

• GO analysis by Cytoscape platfonn 

Figure 2.5. Worktlow of transcriptome analysis. 

2.13 In silico protein-protein binding 

The three-dimensional (3D) structures of Mlp37347 were produced by homology 

modeling using the 1-TASSER server (Yang et al. , 2015). This server works in three basics 

steps. 

a) Once an amino acid sequence is submitted to the server, the server tries to 

retrieve model proteins of similar folds or super-secondary structures from the 

PDB library by LOMETS, a meta-threading approach installed locally. 

b) In the second step, the continuous fragments extracted from the PDB templates 

are reassembled into complete models by Monte Carlo simulations of replica 
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exchange with the non-aligned threading regions (mainly loops). When no 

suitable template is identified by LOMETS, I-TASSER builds the structures by 

ab initia modeling. 

c) In this step, the fragment assembly simulation is performed using SPICKER, 

a clustering algorithm to identify the close by native models, where the spatial 

restrictions are collected from both LOMETS and PDB by template modeling 

(TM)-alignment (Figure 2.6). The value of the TM score scales the structural 

similarity; TM-score has the value from 0 to 1, where 1 indicates a perfect match 

between two structures. 
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Figure 2.6. 1-TASSER protocol for protein structure and function prediction. 
The Arabidopsis GAD! structure (PDB ID: 3HBX) was obtained from the Protein Data Bank 
database Chttps://www.rcsb.orgl). The binding efficiency ofMlp37347 to GADI was determined 
using four different protein-protein docking ho st servers Cluspro, Grammx, Patchdock, 
and ZDock (Kozakov et al. , 2017, Pierce et al. , 2011 , Schneidman-Duhovny et al. , 2005, 
Tovchigrechko & Vakser, 2006). 



CHAPTERIII 

RESULTS 

3.1 Selection and features ofMlp37347 

M larici-populina secretes ~1184 potential small secreted proteins (SSP) as 

revealed by genomic study (Duplessis et al. , 2011). Three main selection criteria were 

considered to identify candidate effectors: i) the effector is expressed during infection 

(in planta and haustoria) but not in spores, ii) no specific domain and function was 

recognizable or predicted iii) the sequence is specific to Pucciniales. Among them, 

the effectors Mlp3 7347 encodes for the putative homo log of the avirulence protein 

AvrL567 protein of Melampsora lini (Wang et al. , 2007). Melampsora lini IS a 

phytopathogenic fungus responsible for a rust disease In cultivated flax 

(Linum us itatiss imum). 

Mlp37347 displays a plasmodesmata localization (Germain et al., 2018). For the 

above-mentioned reasons, the mature peptide (corresponding to 128 amino acids, 

molecular weight 15-17kDa) was investigated for functional studies (Figure 3.1). 



Signal peptide (SP) ElJec:tordomain (128 M) 

/ 
MKlHlSlKAFTllSIVSlGGIHA 

MIp37347 M V E PL PLO 39 

AvrL567 - - - - - R VS E G Y T~S P T~S G L~ 0 NE Q M T M P 44 

1 • ~ ; C MIp37347 78 

AVrL567~I GGE~L[i! F CVH $S SG PK(LNR}lJRS LG~ SNM 84 

MIp37347 - al8 VV 117 

AvrL567 OQHWA~QRN SGAT~G FHL FENOI - - - PN F P Dy l Kil 121 

MIp37347 P K K W 

AvrL567 EL - ~K- - --

128 

126 

44 

Figure 3.1. Features ofMlp37347 and sequence alignment between Mlp37347 and AvrL567. 
(A) Signal peptide residues in the N-terminus region and is followed by the effector domain of 
128 amino acids. (B) Secondary structure prediction based on sequence homology. Arrows and 
boxes denote template homology among Mlp37347 and AvrL567. 

3.2 Plasmodes mata localization of Mlp37347 

To set up the diffusion assay in N. benthamiana, we first assessed ifMlp37347-GFP 

localization correlated to the plasmodesmata localization previously observed III 

A. thaliana (Germain et al., 2018). To this end, we expressed Mlp37347-GFP by 

agro-infiltration, and its subcellular localization was determined by confocal microscopy; 

most importantly, we evaluated its co-Iocalization with the plasmodesmata marker 

PDCB I-mCherry. Both fluorescent proteins overlapped in punctate structures 

(Figure 3.2), confirming that Mlp37347-GFP accumulates at the plasmodesmata in 

N. benthamiana as it did in A. thaliana. 



45 

Mlp37347-GFP POCB 1-mCherry 

Merge 

Figure 3.2. Co-Iocalization of Mlp37347-GFP with the plasmodesmata marker 
PDCBl-mCherry in N. benthamiana. 
Co-localization between Mlp37347-GFP and PDCBl-mCherry, a plasmodesmata marker to 
confirm Mlp37347-GFP localization. Upper left panel, green channel; upper right panel, 
red channel; lower panel, overiay with differential interference contrast (DIC). 

3.3 Mlp37347 enhances plasmodes mata flux 

In order to assess if Mlp37347 could be involved in the manipulation of the 

plasmodesmata flux, we performed an intercellular flux assay by measuring the diffusion 

ofmCherry in the presence or absence ofMlp37347. 

lt was previously shown that fluorescent proteins could diffuse across the 

plasmodesmata, whereas tandem fluorescent proteins exceed the size exclusion limit 

(SEL) of plasmodesmata, i.e., its size would prevent the diffusion of the protein to the 

neighboring cells unless the plasmodesmata in enlarged (Zambryski & Crawford, 2000). 
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For this assay, we use a single and a tandem mCherry (thereafter lXmCherry and 

2XmCherry). Thirty-six ho urs after co-agroinfiltration, mCherry positive cells were 

identified and marked. Four hours later, the same fields were re-imaged, and the positive 

cells neighboring the initial positive cells were counted (Figure 3.3). As expected, 

the lXmCherry could diffuse to neighboring cells, and its diffusion was accelerated in the 

presence ofMlp37347 (Figure 3.3). 

However, the 2XmCherry did not diffuse to neighboring cells when Mlp37347 was 

not present, but diffusion was observed when co-expressed with Mlp37347 (Figure 3.3). 

These observations suggest that 2XmCherry through the plasmodesmata is facilitated in 

the presence ofMlp37347. 
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Figure 3.3. Mlp37347 enhances plasmodes mata flux. 
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(A) lXmCherry expressing cells at 36-hour and 40-hours when infiltrated with the lXmCherry 
without Mlp37347-GFP. (B) 2XmCherry expressing cells at 36-hour and 40-hours when 
infiltrated with the 2XmCherry without Mlp37347-GFP and with Mlp37347-GFP Quantification 
of diffusion of mCherry to surrounding cells provided a measure of molecular flux through 
plasmodesmata. Data represent mean ± SD, n = 8 observations. Student's t-test determined the 
statistical difference from the controlleaves without Mlp37347-GFP; asterisks indicate statistical 
significance. Experiments were repeated three times (N = 3). 



48 

3.4 Mlp37347 localization at plasmodesmata is required for diffusion 

To determine if the localization ofMlp37347 at the plasmodesmata is important for 

the increased flux observed using the mCherry diffusion assay, we developed an 

Arabidopsis stable transgenic li ne in which a nuclear localization signal was added to the 

N-terminal of the effector (NLS-Mlp37347-GFP). We also verified the integrity of the 

GFP recombinant proteins by Western Blotting and conc\uded that aIl constructs were at 

the expected molecular weight (Figure 3.4). 

75 kDa 

50kDa _._ 

37kDa _._ 

10 kDa 

Figure 3.4. Expression of Mlp37347-GFP variants in Arabidopsis. 
Immunodetection of GFP prote in in wild-type (Col-O) and stable transgenic seedlings expressing 
Mlp37347 from 14 days old plantlets. 

Because DAPI staining is more easily performed in N. benthamiana, we verified 

that the new construct co-localized with DAPI in Nicotiana . The NLS-tagged effector 

Mlp37347-GFP now segregates in the nucleus and no longer accumulated at the 

plasmodesmata (Figure 3.5A-B). 
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A. 

B. 

Figure 3.5. Nuclear localization of NLS-Mlp37347-GFP in N. benthamiana and A thaliana. 
Subcellular accumulation of NLS-Mlp37347-GFP in N. benthamiana epidennal cells at 3-days 
post-infiltration, the nucleus was stained by DAPI, and epidennal cells were observed under the 
green channel (Ieft panel), blue channel (middle panel), and merge of the two channels +DIC 
(right panel). (B) Subcellular localization of NLS-Mlp37347-GFP in A thaliana cells at 3-days 
post -infiltration. 

To test plasmodesmata permeability in plants expressing this new construct, we th en 

performed a dye diffusion assay called Drop-ANd-See (DANS) (as described by Sun et al. 

(2019) in wild type (Col-O), Mlp37347-GFP and NLS-Mlp37347-GFP plants. 

We measured the diffusion area of CF dye. This assay showed a significant flux increase, 

revealed by the larger are a stained by the CF dye, in the presence of Mlp3 7347 -GFP 

(Figure 3.6); however, this increase not observed wh en the effector is restricted to the 

nucleus. This result demonstrates that the localization ofMlp37347 at the plasmodesmata 

is indeed required to increase the intercellular flux. 



ro;? 
ro~ 
~~1 
0)= 
-0.0 
o co 1 E 0) 
en E co .... 
-0) 
a.. a. 

50 

Col-O 

*p = 0.01 *p = 0.04 

Figure 3.6. Plasmodesmata localization of Mlp37347 is required for enhanced plasmodesmal 
flux. 
DANS experiments were performed on the fifth and sixth leaves of 3.5-week-old A. thaliana 
plants. After mock or chemical treatment, DANS assays were performed by loading a 1 j.li droplet 
of the probe on each side of the leaf surface in the central region. For the ROS treatment, 
plants were sprayed with either water (for mock treatment) or 10 mM H20 2 and incubated for 2 h 
before measurement. Permeabilities were measured in percentage compared to control. 
Data represent mean ± percent ofSD error. The statistical difference from the control Col-O leaves 
was determined by Student's t-test, asterisks indicate statistical significance, P-values as indicated. 
Experiments were repeated at least three times (N=3), and representative data are shown. 

3.5 Mlp37347 interacts with Arabidopsis GAD1 and Populus GAD1 

In an effort to dissect the molecular mechanisms responsible for the effect of 

Mlp37347-GFP in planta, we focused our attention on its only known interactant, GADI . 

First, we used the yeast-two hybrid (Y2H) method to support the interaction between 

GAD 1 and Mlp37347 previously identified by immunoprecipitation and mass 

spectrometry (Petre et al., 2015). Independent co-transformation experiments showed that 
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yeast co-express mg a bait-Mlp37347 construct with a prey- Arabidopsis thaliana 

(AtGADl) or Populus trichocarpa (PtGAD1) construct was able to grow on quadruple 

dropout (QDO) medium (Figure 3.7), confirming their ability to establish contact. 

50/- LW (000) 50/- LWHA (QOO) 

EV pGBKT7+AtGAD1 

Mlp37347+AtGAD1 

EV pGBKT7+PtGAD1 

Mlp37347+PtGAD1 
L...:::!~ 

Figure 3.7. Mlp37347 interacts with AtGADl and PtGAD1. 
Co-expression of AtGADlIPtGAOlwith Mlp37347 in yeast shows interaction assay between 
GAD 1 and Mlp37347. Yeast co-expressing the indicated combination of bait and prey were 
spotted on the synthetic double drop out medium lacking leucine and tryptophan (SOI-LW (000)) 
and quadruple drop out medium lacking leucine, tryptophan, histidine, and adenine (SOI -L WHA 
(QDO)). The plates were photographed 3-4 days after inoculation. 

3.6 Molecular modeling also supports the association of GAD1 and Mlp37347 

In silico approaches have been of crucial importance in the evaluation of protein­

protein interactions (Rao & Srinivas, 2011). To further characterize this interaction, 

a 3D structure model ofMlp37347 was constructed by iterative template-based fragment 

assembly simulations using I-TASSER (Zhang, 2008). This model (Figure 3.8) estimated 

a template modeling score (TM-score) of 0.85 and showed a structural homology with the 

avirulence protein from Melampsora fini, AvrL567-A (PDB ID: 20PC), and their known 

sequence identity was calculated which is 40%. 
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Crystal sIruc:Ue of Superimpose 
Me/ampsonJ fini avinMence 

protein, AvrL5fiT-A 

Figure 3.8. Molecular modeling of Mlp37347. 
Predicated structure ofMlp37347 (red ribbon). TM-score value is 0.85, where 1 indicates a perfect 
match between two structures. On the right, superimposition between Mlp37347 and AvrL567 
(green ribbon). 

This simulation result gave us the confidence to perform a molecular docking 

with the plant GAD!. We used A. thaliana (At) GAD1 (PDB ID: 3HBX) and prepared 

the monomer AtGADl (chain B) by removing the polymer chain and the 

endogenous ligand (2S)-2-amino-6-[[3-hydroxy-2-methyl-5-(phosphonooxymethyI) 

pyridin-4-yl] methylideneamino] hexanoic acid (LLP). Both Mlp37347 and AtGADl 
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structures were then executed an energy minimization (MMFF94), and obtained 

conformations were subjected as preliminary structures to carry out docking analysis 

(Figure 3.9). 

A. 

B. 

GAD1 monomer 
(macromolecule) 

GAD 1-Mlp3734 7 
docking 

Figure 3.9. Functional approach of docking between Mlp37347 and AtGAD1. 
(A) Structure of AtGADl from A. thaliana, POB ID: 3HBX. AtGADI monomer with B- chain is 
prepared for docking. The red square box indicates the binding pocket of GAO 1. (B) The general 
scheme of docking between AtGAOl (blue) and Mlp37347 (red) using different servers. 
Mlp37347 in different colored ribbons represent binding results from different servers. 

The docking between Mlp37347 and AtGADl was performed with different 

methods (Z-DOCK, ClusPro, PatchDock) (Duhovny et al., 2002, Pierce et al. , 2014, 

Kozakov et al., 2017). The highest-ranked docking results from these different servers 

showed similar binding of Mlp37347 linked to AtGADl (Figure 3.10; a representative 

image from Z-DOCK). In figure 3.10, hydrogen bonding networks show Glu46, Asn79, 

Arg80, and Sel04 of Mlp37347 binding to Arg139, Phe302, His303-Asn305, and Arg29 

of AtGADl , respectively. 



54 

His303 

AS 
1 

• GAD1 

• MIp37347 

Figure 3.10. Hydrogen bon ding networks and interaction confirmation ofMlp37347-GAD1. 
Close-up views of the hydrogen bonding network orientation of the GADI-Mlp37347 complex. 
The GAD 1 and MIp37347 are shown as blue and red colors, respectiveIy. 

An alignment of the GAD 1 prote in sequences from Arabidopsis and 

Populus trichocarpa showed 84.26% identity, and importantly same hydrogen bonding 

network residues are present in PtGADI (Figure 3.11, marked in the blue box); 

this indicates that PtGAD 1 also shared a similar protein binding fold as AtGAD 1. 

Taken together, our yeast two-hybrid result, the molecular modeling approach, 

the previous immunoprecipitation results, and the amino acid sequence homology with 

poplar GAD! strongly suggest that Mlp37347 could interact either with GADI ofits ho st 

(poplar) or Arabidopsis GAD l. 
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Figure 3.11. Sequence alignment of AtGADl and PtGAD1. 
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An amino acid sequence alignment between A. thaliana GAD l (AtGAD) and Populus trichocarpa 
GADI (PtGAD). Identical hydrogen-bonding network residues in PtGADl (marked in the blue 
box). 

We have constructed an Mlp37347 homology model based on sequence and 

structure alignments with the bacterial A vrL567 protein, whose crystal structure has been 

defined. Mlp37347 model contributes to the formation of a resonant network near the 

catalytic site of AtGAD1. This binding network provides significant information on the 

positioning of Mlp37347 within this catalytic pocket. These critical amino acids may 

cause the active site to undergo a change in its conformation, which ultimately interferes 

with a better fit between the active site and the GAD1 substrate CaM. According to the 

induced fit theory of the mechanism of enzyme catalysis, loss of substrate binding site 

may lead to loss of catalytic activity to a maximum extent because precise catalytic site 

forms only after substrate binding. 

3.7 Mlp37347 decreases plasmodesmata callose deposition 

As the primary known regulatory mechanism of plasmodesmal flux during a 

pathogen attack is callose deposition, we compared the callose levels in A. thaliana 

transgenic lines expressing Mlp37347-GFP and NLS-Mlp37347-GFP (and in Col-O as a 

control). We also looked at agadJ knock-out line and a cross between this gadJ knock-out 

line and expressing Mlp37347-GFP. To quantify callose deposition, we used the Image] 

software to quantify the fluorescence of aniline blue staining of callose. Callose was 



56 

significantly reduced in the stable Mlp37347-GFP line (Figure 3.12) compared to Col-O. 

By contrast, in the stable gadJ knock-outline, the cross between gadJ and Mlp37347-

GFP, and the transgenic expressing NLS-Mlp37347-GFP, the amount of cali ose 

deposition did not vary significantly. These data confirrn our previous observation that 

Mlp37347-GFP localization to the plasmodesmata is important for its action on 

plasmodesmata openmg and points to the physiologically relevant target of this 

Melampsora effector. 
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Figure 3.12. Cali ose deposition in Arabidopsis transgenics. 
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Aniline blue staining to visualize the callose levels in A. thaliana transgenic lines expressing 
Mlp37347-GFP, NLS-Mlp37347-GFP (and in Col-O as a control), gadl , and gadl x Mlp37347-
GFP. Images of callose deposition taken at 40 x/ lAO magnification and excitation of 488 nm with 
an emission of 505 to 550 nm using a Leica SP8 confocal microscope. Absolute quantification of 
callose deposition in different lines. Data represent mean± SD. The statistical difference from the 
control Col-O leaves was determined by Student's t-test, asterisks indicate statistical significance. 
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3.8 Mlp37347 affects callose metabolism gene expression 

To further investigate the rnechanisrn by which Mlp37347 influences callose 

deposition, we performed transcriptornic profiling of 4-days-old A. thaliana stable 

transgenic seedlings expressing Mlp37347-0FP and control plant expressing only OFP. 

To determine the relevant biological processes affected by Mlp37347-0FP 

overexpression, a gene ontology (00) terms enrichrnent analysis was carried out on the 

deregulated genes (filtered by a Q-value :S 0.05 and a fold change ~ 2) using the Cytoscape 

software (version 3.1.1). In the Mlp37347 transgenic line, 84 and 395 genes were up and 

down-regulated by 2-fold or greater, respectively (ANNEX A, Supplernentary Table 2), 

in cornparison with control plants (ANNEX A, Supplernentary Table 2). This analysis 

revealed that rnany genes for the catabolic process of glucan (ISA3 , DPE1 , PHS1, PHS2) 

are significantly up-regulated while sorne genes linked to the synthesis of glucan (OSL04, 

XTH 19) and plant defense-related genes are down-regulated in the line expressing 

Mlp37347-0FP (Figure 3.13), reinforcing the link between Mlp37347 and the control of 

plasrnodesrnata by the control of callose deposition. 
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Figure 3.13. Transcriptional changes induced by the expression of Mlp37347-GFP. 
Term enrichment analysis was performed with deregulated genes filtered with Q-value::::O.05 and fold-change2:2 using the Cytoscape software 
(version 3.1.1). Cytoscape plug-in ClueGO and CluePedia were used to visualize functions enriched in the deregulated genes. The GO terms presented 
are significantly enriched in up-regulated and down-regulated genes with FDR::::O.05 (Benjamini-Hochberg p-value correction). 
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3.9 Mlp37347 does Dot modify the morphology of A. thaliana leaves 

To evaluate the biological outcomes of the presence and absence of Mlp37347 and 

GAD1, respectively, in plant cells. We compared the phenotype ofMlp37347 expressing 

and gadl lines with wild type Col-O plants. No significant morphological difference was 

observed in 3-weeks-old plants (Figure 3.14; upper panel), but the gadJ line displayed 

delayed bolting in the 5-weeks-old plant (Figure 3.14; lower panel) compare to Col-O and 

Mlp37347. This observation suggests that the constitutive expression in planta of 

Mlp3 7347 does not modify the morphology of the plant. Whereas the absence of GAD 1 

protein has an impact on plant growth and development. 

3weeks 

5weeks 

Figure 3.14. Phenotype of Mlp37347 and gadl knock-out in A. thaliana transgenic. 
Morphology of3-5-weeks old Col-O, stable transgenic Mlp37347, and gadl knock-out plants were 
soil-grown at 22 oC. 
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3.10 Mlp37347 increases the susceptibility of A. thaliana to H. arabidopsidis 

To assess Mlp37347 in planta expression on plant susceptibility to pathogens, 

we perfonned growth assays with two different kinds of organisms: an oomycete and a 

bacterium. We measured the plant susceptibility in control plants (Col-O and Col-O-GFP) 

and enhanced disease susceptibility 1-1 (eds 1-1) plants (positive controls hypersensitive 

to H. arabidopsidis) as well as in the following transgenic lines: Mlp37347-GFP, 

NLS-Mlp37347-GFP, gad1, and Mlp37347-GFP x gad1. At 7 dpi, we quantified the 

number of spores. We observed that Mlp37347-GFP significantly increases Arabidopsis 

susceptibility to H. a. Noc02 (Figure 3.15). ln contrast, this increase in pathogen growth 

was not observed when Mlp37347 was sequestered in the nucleus (NLS-37347-GFP) nor 

in the gad1 line (expressing Mlp37347-GFP or not) (Figure 3.15). This result suggests 

that the localization of the effector at the plasmodesmata and its interaction with GAD 1 

protein are necessary for Mlp37347 to increase the susceptibility of Arabidopsis to the 

oomycete Hyaloperenospora arabidopsidis. 
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Figure 3.15. Mlp37347 increases the susceptibility of A. thaliana to H. arabidopsidis. 
The growth of Hyaloperonospora arabidopsidis Noco2 (20000 conidiospores/ml). The number of 
spores/g fresh weight was quantified seven days after inoculation. Bars represent the mean of four 
replicates. Data represent mean± SD. Statistical significance between Col-O and Mlp37347 or eds 1 
was evaluated using Student's t-test (P < 0.05); was denoted as an asterisk. 
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To investigate wh ether Mlp37347 could enhance susceptibility to bacterial 

pathogens, we infiltrated 4-weeks-old control plants (Col-O and Col-O-GFP) and 

the following transgenic lines: Mlp37347-GFP, NLS-Mlp37347-GFP, gadJ as weIl as 

Mlp37347-GFP x gadJ leaves with Pseudomonas syringae pv. tomato (Pst) 

DC3000 bacteria. Infection assays showed no significant alteration in the pathogen 

growth in any genotypes (Figure 3.16). 
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Figure 3.16. Mlp37347 does not promote the growth of Pst DC3000 in A. thaliana. 
Growth of Pst DC3000 in Arabidopsis was measured on the day of infection and three days after 
infection of 4-week-old soil-grown plants by leaf infiltration. A bacterial suspension with 
OD600 = 0.001 was used as inoculum. Data represent mean± SD. Statistical significance was 
evaluated using Student's t-test (P < 0.05). 

From this experiment, we conclude that Mlp37347 promotes the growth of the 

filamentous fungi-like pathogen H. arabidopsidis, which produces haustoria like Mlp, 

but not of the bacterial pathogen P. syringae in A. thaliana. 
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DISCUSSION 

Although our laboratory had previously characterized the localization of the effector 

and the Kamoun group had found an interactor, no functional assay had been performed 

with this effector, let alone decipher its potential role during infection. We also knew that 

Mlp3 7347 encodes for the putative homolog of the avirulence protein A vrL567 protein of 

Melampsora fini (Wang et al., 2007). AvrL567 has been thoroughly characterized in the 

context of avirulence in flax. The recognition of individual matching A vrL proteins is 

performed by 13 allelic protein variants- L, LI to L Il, LH. These variants are encoded by 

a single gene located in L resistance locus (Ellis et al., 1999). More than 90% of amino 

acid identity is shared between the L alleles, while the LRR do main is seen to have a 

positively selected variation. The LRR domain is observed to control the recognition 

specificities, demonstrated through domain-swap experiments conducted on L2, L6, and 

LlO alleles (Luck et al., 2000, Ellis et al., 1999). Furthermore, in the LRR domain, it was 

shown that the L6 and L Il proteins differed by only 32 amino acids. Aiso found in the 

C-terminal region of the LRR domain, a chimeric protein with Il amino acid changes was 

shown to exhibit novel specificity with a lower recognition spectrum (Ellis et al., 2007, 

Dodds et al., 2006). 

The Melampsora fini contains the L5, L6, and L 7 proteins that perceive allelic 

variants of A vrL567, the effector protein. The A vrL567 is a secreted protein with 

127 amino acids that express in haustoria and translocate to host cells during the infection 

(Lawrence et al., 2010, Rafiqi et al., 2010, Dodds et al. , 2004). Seven variant forms of 

AvrL567 (-A, -B, -D, -E, -F, -J, -L) are avirulent alleles as they prompt L5 and/or L6, 

and/or L 7 -dependent hypersensitive response (HR) in transient expression assays. 

Meanwhile, the other 5 variant forms (-C, -G, -H, -I, -K) do not trigger a hypersensitive 

response, meaning they are virulent alleles (Dodds et al., 2006). The interaction between 

A vrL567 and L5, L6, and L 7 were shown in yeast-two-hybrid (Y2H) assays and 
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demonstrate that the HR-inducing perception in planta correlates with the specificity 

of the protein-protein recognition (Dodds et al. , 2006). In the TIR domain, 

only Il polymorphisms differentiate the L6 and L 7 allele and show identical recognition 

specificities in AvrL567. Despite this, weaker interactions in yeast and in planta 

hypersensitive responses can be observed in L 7 (Bernoux et al. , 20 Il, Luck et al., 2000). 

The divergence in L proteins is most apparent between the L5 and L6 proteins, which 

differ by 89 amino acid polymorphisms, 61 amino acid polymorphisms in the LRR, 

and four sm ail indels, although they continue to have recognition specificities that overlap. 

The distinction between L5 and L6 is observed through the interaction of L6 with 

AvrL567-D, as L5 do es not partake in such interaction. Despite these thorough 

investigations over many years, no experiment has paid attention to the virulence target 

of AvrL567 in the host cell. In an agronomical context, the most important is to counter 

an effector, understanding the role of an effector is not a priority. However, understand its 

role is key to understanding pathogenesis and find the weak spot of the plant, the ones 

targeted by the pathogens. Improving those weak spots may lead to lasting resistance, 

perhaps more than resistance base on R-A vr matches. This is why we sought to investigate 

the role of an effector in planta, using various approaches. 

4.1 Heterologous systems 

The study of the molecular mechanism of pathogenicity of rust fungi has been 

hampered by the fact that rust fungi can neither be grown in vitro nor genetically modified. 

In the case of poplar leaf rust, the genetic transformation of poplar is only possible with 

poplar cultivars that are not susceptible to rust. This significantly limits our ability to 

genetically manipulate either the pathogen or susceptible ho st. To overcome this obstacle, 

heterologous systems are used to study the function, localization, and interaction of the 

effectors from a biotrophic pathogen (Win et al., 2012, Petre et al., 2016b). In this study, 

we found that the Mlp37347 expression in the heterologous systems A. thaliana and 

N. benthamiana doubled the plasmodes mal diffusion rate and increased the 

plasmodes mata size exclusion limit. The information retrieved was vital for the 

formulation of hypotheses concerning the function of specific effector and for the 
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initiation of mechanistic studies. The manipulation executed by the effectors on the host 

structures and functions were demonstrated through these studies and expanded our 

knowledge regarding the molecular interactions between plants and pathogens. Although, 

it is widely debated during scientific meetings whether the use of non-host systems for 

effector screens is the most effective way to study. Most importantly, false effector 

interactors and localisations can be observed during 'artificial' screens (advantages and 

disadvantages are discussed below). Despite this, the utilization ofheterologous plants to 

study effectors is a sensible way to avoid bottlenecks and other events when looking at 

pathosystems with limited methodological alternatives. 

4.1.1 Advantage and disadvantages of heterologous protein expression systems 

The heterologous expression means that a gene is expressed outside of its natural 

context, in a "foreign" host system (often a model system). For example, a fungal gene 

(e.g., encoding a candidate effector) is expressed in plant cells (e.g., leaf cells of 

Nicotiana benthamiana). 

4.1.1.1 Advantage 

• A reliable assay: Researchers have developed and optimized tests in model 

systems used for the expression ofheterologous proteins. The disadvantages and 

the pitfalls of data interpretation are known, specifically for protein-protein 

interaction assays. 

• Using model systems is quick, inexpensive, and easy: Required information can 

be obtained quickly and easily in a co st-effective way, which makes it ideal for 

performing screens. 

• Anyone can review the results: As they are more accessible to a wide community 

than more emerging systems. Thus, the systems promote reproducibility. 

Other research groups may reproduce experiences and evaluate, develop, or 

challenge them. 



66 

4.1.1.2 Disadvantage 

• An incomplete conclusion: Using a heterologous system, the biological 

significance of the observed phenomenon cannot be tested. Further 

confirmations are suggested. Therefore, conclusions are limited to the level of 

the molecular or cellular mechanisms. 

• The data may be uninformative: heterologous systems may not be suitable for 

studying molecules or processes that only occur in specific biological contexts. 

For example, in heterologous systems, critical components may not reach in a 

way such as found in native systems, many proteins may not fold properly, 

will not be in the correct cellular context, will not find their true molecular 

targets, and so on. 

• You are spoiled: Being used to working with heterologous systems can lead to 

less investment in time and energy to develop methods and tools for the original 

systems. Go around to both systems studies are necessary. 

4.2 Plasmodesmata localization Mlp37347 is required for enhanced 
plasmodes mata flux 

Several groups have recently reported that pathogen proteins, mainly from viruses 

and bacteria, associate with plasmodesmata to influence intercellular communication 

(Han et al., 2019). However, reports of fungal proteins interfering with the plasmodesmata 

flux are scarce. Mlp37347 seems to be one of such proteins. Mlp37347 is one of the 

Melampsora larici-populina CSEPs studied by Petre in 2015, whose role as a true effector 

has been supported by its effect during infection, Mlp37347, did not display bacterial 

growth, but increased oomycete growth. (Germain et al. , 2018). The sequencing of the 

M larici-populina genome provided access to DNA sequences encoding 1,184 small 

secreted proteins. It allowed the functional characterization of potential candidate 

secretory effector proteins (CSEP). Among them exists Mlp37347, it does not have any 

close relative (other than AvrL567) and does not belong to a specific effector family. 

More importantly, Mlp37347 displays a unique plasmodesmata localization (Germain 
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et al., 2018). For pathogens, an augmentation in plasmodesmal flow can be favorable, as 

once they gain access to one cell, they could more easily draw the soluble nutrients from 

neighboring cells. Studies have shown that cell to cell propagation through plasmodesmata 

is used by viruses (Benitez-Alfonso et al., 2010). It would also an interesting feature for 

biotrophs as it could allow effectors, which are small soluble proteins, to move through 

the plant to favor infection, for example, by neutralizing the plant systemic responses and 

to facilitate access to the resources of the surrounding cells. Pathogenic effectors act as 

disease-promoting factors that target specific host proteins with roles in plant immunity, 

nutrients scavenging or other. 

Tomczynska and his colleagues studied the function of the RxLR3 effector of the 

oomycete phytopathogen, Phytophthora brassicae. RxLR3 interacts with three callose 

synthase family, CalSl, CaIS2, and CaIS3. RxLR3 co-Iocalized with the plasmodesmal 

marker, PDLP5, and with deposits associated with the plasmodesmata of the ~-1 ,3-glucan 

pol ymer, callose. Effector inhibitors function of plasmodesmal cali ose synthase enzymes 

(CalS) and callose deposits were reduced, and intracellular trafficking (evaluated using 

GFP tracer) was improved in the presence of RxLR3. In Arabidopsis lines expressing 

RxLR3, cali ose level was decreased in response to infection compared to wild type. 

Tomczynska et al. conc1uded that the virulence function of the RxLR3 effector was to act 

as a positive regulator of plasmodesmal transport and provided evidence of competition 

between P. brassicae and Arabidopsis for the control of cell-to-cell trafficking 

(Tomczynska et al., 2020). 

A more recent study showed that the effector prote in HopO 1-1 from Pseudomonas 

syringae modulates the plasmodesmata function. HopO 1-1 is necessary for P. syringae to 

spread locally to nearby tissues during infection. In Arabidopsis lines expressing 

HopO 1-1, there is an observed increase in the distance of plasmodesmata-dependent 

molecular flux between neighboring plant cells. The catalytic activity of HopO 1-1 is 

necessary for the regulation of plasmodesmata. HopO 1-1 physically interacts with and 

destabilizes the PDLP7 and PDLP5 proteins in order to manipulate host cell-to-cell 
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mediated communication and maximize the spread of bacterial infection (Aung et al., 

2020). 

Another interesting study has shown that the effectors A vr2 and Six5 of the fungus 

Fusarium oxysporum are essential for resistance to 1-2-induced disease in tomato. 

Both Avr2 and Six5 have been found to interact at the plasmodesmata. Single-celI 

transformation revealed that a 2XmCherry marker protein and A vr2-GFP move only to 

neighboring celIs in the presence of Six5. Six5 al one does not modify plasmodesmal 

transduction because 2xmCherry requires the presence ofboth effectors to be translocated. 

In the presence of Six5, A vr2 moves from celI to ce Il , which in susceptible plants 

contributes to virulence (Cao et al., 2018). 

Our primary goal was to answer the question: Does Mlp37347 manipulate the 

plasmodesmata? To address this question, we carried out the diffusion assay in 

N. benthamiana. Firstly, we evaluated the Mlp37347 localization at the plasmodesmata, 

as previously observed in A. thaliana (Germain et al., 2018). To this end, we expressed 

Mlp37347-GFP by agroinfiltration, and its subcelIular localization was determined by 

confocal microscopy. Most importantly, we evaluated its co-Iocalization with the 

plasmodesmata marker PDCB I-mCherry. Both fluorescent proteins overlapped in 

punctate structures, confirming that Mlp37347 accumulates at the plasmodesmata in 

N. benthamiana as weIl. 

It is presumed that soluble molecules are transported passively through the 

plasmodesmal cytoplasmic sleeves, approximately 3-4 nm in diameter (Robards & Lucas, 

1990, Wright et al., 2003 , Maule, 2008). IdealIy, plasmodesmata channels should restrict 

the cytoplasmic diffusion of molecules larger than 4 nm in size. As we expected, 

2XmCherry (MW: 65 KDa, and diameter: 8 nm) CZcalculated by Calctool, 

http: //www.calctool.org/CALC/proflbio/protein_size) did not show diffusion to 

neighboring celis in the absence ofMlp37347. The diffusion of2XmCherry is not possible 

without modifying the plasmodesmata size. A few plasmodesmata-localized proteins have 

been found to regulate plasmodesmal permeability (Ueki & Citovsky, 2014). Our data 
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indicate that the presence ofMlp37347 at plasmodesmata modifies the physical properties 

of plasmodesmata, allowing the general size constrained 2XmCherry to move between 

cells. 

Induction of beta-l ,3-glucanases is also observed in the transgenic line expressing 

Mlp3 7347, as it is observed in viruses that hijack the plasmodesmata for their propagation. 

This makes sense because beta-l,3-glucanases are responsible for glucan degradation at 

the plasmodesmata; once glucan has been degraded, the plasmodesmata is more open. 

The opening of the plasmodesmata caused by Mlp37347 can prove to be a double-edged 

sword, as intercellular signaling is required for the coordination of plant defense. 

Plasmodesmata exploitation by fungi for intercellular propagation has been reported for 

Magnaporthe oryzae (Ascomycota), the hemibiotrophic fungus that causes the rice blast 

disease (Kankan al a et al., 2007). In their work Kankanala et al. (2007) report that 

intracellular invasive hyphae can propagate from cell to cell by invading neighboring 

cells, most likely through plasmodesmata. More precisely, Kankanala reported that the 

hemibiotrophic fun gus Magnaporthe oryzae, invades living plant cells using invasive 

intracellular hyphae (HI), which grow from cell to cell. Their time-Iapse imaging and 

transmission electron microscopy (TEM) showed that HI preferably contacted or crossed 

ce Il walls m pit fields usmg plasmodesmata for cell-to-cell movement. 

Yamaoka demonstrated a different strategy; the work of Blumeria graminis (Ascomycota) 

intercellular propagation was reduced wh en plasmodesmata were mechanically destroyed, 

again supporting a propagation through plasmodesmata. 

To the best of our knowledge, rusts have never been shown to use or manipulate 

plasmodesmata. In our case, this Mlp effector seems to manipulate plasmodesmata flux 

through the deregulation of callose metabolism, which is more akin to what has been 

observed for viruses. Our work does not show any evidence of propagation through the 

plasmodesmata, nor did we attempt to assess this phenomenon because of the limitations 

imposed by the use of our heterologous systems. 
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4.3 Mlp37347 decreases plasmodesmata callose deposition and affects callose 
metabolism gene expression 

The callose-dependent constriction of the plasmodesmata is the primary regulatory 

mechanism ofplasmodesmal permeability (Zavaliev et al., 2011). It is used by plants both 

during development and cell differentiation and as part of the PR defense response (Vatén 

et al., 2011, Sevilem et al., 2013). The two opposite pathways, callose synthesis, and 

cali ose degradation, are targeted by viruses, either directly or through transcriptional 

regulation (Wu & Gallagher, 2011, Conti et al., 2012). 

It has already been shown that fungal effectors can also alter transcription (Madina 

et al., 2020, Wu & Gallagher, 2011, Conti et al., 2012, Ahmed et al., 2018). 

Our transcriptional analysis of Arabidopsis expressing Mlp37347-GFP indicates that the 

genes (ISA3, OPE 1, PHS 1, PHS2) for the catabolic processing of glucan are significantly 

up-regulated. In particular, a second allele, PHS 1-3, is hypersensitive to abscisic acid, 

indicating a possible involvement of PHS 1 in the degradation of callose via ABA 

signaling (Tang et al., 2016), while the genes (GSL4, XTH9) linked to the synthesis of 

glucan are downregulated. 

GSL4/CaIS4 encodes a protein similar to cali ose synthase 1 (CalS 1) and CaIS8. 

CalS 1 and CalS8 have been identified as key genes involved in the callose synthase 

process and have been integrated into signaling pathways that control biotic and abiotic 

stress responses (Cui & Lee, 2016). The Xyloglucan Endotransglucosylase-Hydrolase 

(XTH), a gene who se expression is regulated by the transcription factor HY5 (Xu et al., 

2016). HY5 family is a large group of enzymes involved in cell wall remodeling 

(Cosgrove, 2016). 

Consistently, we have observed that the amount of cali ose was significantly reduced 

in the stable Mlp37347 expressing line compared to Col-O. Although we did not assess if 

Mlp37347's disruption of callose deposition is sufficient to recreate the aberrant guard 

cells localization and proliferative c1usters observed in the epithelium of plants deficient 

in the cali ose synthase GSL8 (De Storme et al., 2013) we did not observe any guard cell 
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abnormality. This result suggests that the plasmodesmata localization of Mlp3747 is 

required for enhanced plasmodesmata flux , as this increase was not observed when the 

effector (NLS-Mlp37347-GFP) was segregated in the nucleus. 

The exact mechanism by which Mlp37347 regulates cali ose remams to be 

elucidated. Plasmodesmata functions are also regulated by the composition of their 

membranes, as nanodomains lipids and prote in constituents are crucial for controlling the 

flexibility of the PD membrane and by the cell cytoskeleton (Grison et al., 2019). It has 

been shown that sorne viruses increase the size exclusion limit ofplasmodesmata through 

depolymerization of actin filaments (F-actin) (Su et al., 2010). It would be interesting to 

see ifMlp37347 also has an impact on these plasmodesmata regulatory components. 

4.4 Mlp37347-GADI interaction 

To study the molecular virulence mechanisms ofMlp3 7347, we have focused on the 

effector's known interactant, GAD1. GAD catalyzes the conversion of glutamate to 

gamma-aminobutyric acid (GABA) in the presence of the pyridoxal phosphate (PLP) 

cofactor. GAD is present in two isoforms in plants (Kumar & Punekar, 1997). The enzyme 

has a unique characteristic, a Calmodulin (CaM) binding domain at the C-terminus 

(Gallego et al. , 1995, Arazi et al. , 1995, Baum et al., 1993). In vitro analysis has shown 

that Ca2+ and CaM stimulate GAD activity 1- to 9-fold (Bitanihirwe & Cunningham, 2009, 

Snedden et al. , 1995, Ling et al., 1994) in partially purified prote in preparations, and 

nearly 20-fold in purified preparations and have suggested that GAD can be stimulated 

in vivo by Ca2+ signal pathways (Snedden et al. , 1995). 

Studies demonstrated rapid increases in cytoplasmic concentrations of Ca2+ and 

GABA (Price et al., 1994, Knight et al. , 1992) in plant cells upon exposure to various 

environmental stimuli such as abiotic and biotic stress response, growth, and development 

(Yang & Poovaiah, 2002, Bouché et al., 2002). We followed our interest in in silico study 

on Mlp37347-AtGADI or PtGADI interaction. The top-ranked docking results from 

different servers showed similar binding poses of Mlp37347 bound to GAD1, and a 
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co mm on hydrogen bonding networks show Glu46, Asn79, Arg80, and Sel04 of 

Mlp37347 binding to Arg, Phe, His Asn, and Arg ofboth AtGADl and PtGADl. It should 

be noted that all different servers use different algorithms to calculated binding interfaces. 

Thus, a common Mlp37347-GADI interaction pattern obtained from all four servers is 

convincing to process further analysis. 

A well-known pathway involved in the abiotic and biotic stress response is the 

activation of GAD by CaM. Although, in recent years, little has been understood about 

the role of GABA in plant pathogenesis. An increased-GABA level is a typical response 

to various stresses, and strict control ofGABA synthesis by GAD and CaM appears to be 

essential for the development of the plant. The N-terminal (1-57) of GAD 1 is involved in 

the formation of the multimer. The C-terminus (471-502) binds to CaM in a calcium­

dependent manner and possibly encompasses an auto-inhibitory domain. In our docking 

results, GAD 1 residues (Arg139, Phe302, His303 , Asn305) bind to the effector Mlp37347. 

It would be interesting to see wh ether this effector interaction interferes with calmodulin­

binding and GABA production by altering the overall structure as weil as solving the 

three-dimensional structure ofMlp37347. Although, recently, de Guillen and colleagues 

used a strategy based on the production of eleven recombinant Mlp effectors in 

Escherichia coli and successfully purified and solved the structure of two effectors, 

Mlp124266 and Mlp124017, using NMR spectroscopy. They were unable to improve the 

solubility and sufficiently stabilize the purification procedure ofMlp124111, Mlp124561 , 

Mlp37347, Mlpl07772, and Mlp124202. They decided to keep these proteins for 

subsequent analyzes (de Guillen et al. , 2019). 

4.5 Mlp37347 increases the susceptibility of A. thaliana to H. arabidopsidis 

The two main factors that affect the virulence studies of poplar rust fungi are 1) the 

prolonged amount of time required for genetic transformation and development of a 

transgenic poplar and 2) the fact that the one poplar genotype which is amenable to genetic 

transformation is resistant to Mlp. Until recently, such methods are not fully available in 
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poplar rust pathosystems. Thus, we generated A. thaliana transgenic lines to investigate 

the virulence activities of rust in a heterologous system. 

M larici-populina and Hyaloperonospora arabidopsidis are both obligate 

biotrophic filamentous pathogens of dicotyledonous plants. They share similar modes of 

propagation in leaf tissue. Consequently, the pathogenicity of H. arabidopsidis would be 

more likely than the bacterial pathogenicity of P. syringae to be affected by rust effectors. 

Indeed, the Mlp37347-0FP line promoted the growth of H. arabidopsidis, but not to an 

equivalent level with the infection controlline enhanced diseased susceptibility 1 (edsI) , 

which is hyper susceptible to H. arabidopsidis. We conclude that Mlp37347 significantly 

increases susceptibility to H. arabidopsidis var. Noc02. Furtherrnore, this increase in 

sensitivitywas not observed when Mlp37347 was sequestered in the nucleus (NLS-37347-

OFP) or in the gadi line. Meanwhile, in Pseudomonas syringae pv. tomato DC3000, 

bacterial infection assays showed no significant alteration in pathogen growth between 

genotypes. It is possible that Mlp3 7347 interaction with GAD assists in leaf infection by 

fungal-like biotrophic pathogens. 

4.6 DoorMan Hypothetical Model 

Based on concurrent studies and our results, we drew a hypothetical mode l, which 

we called DoorMan (Figure 4.1). This model ai ms to answer the main question presented 

in this thesis. After being secreted from the M larici-populina, effector Mlp37347 

localizes at the plasmodesmata. Once the Mlp3 7347 is at the plasmodesmata, it works like 

a "doorrnan" to act on the opening of the plasmodesmata channel and may favor other 

invasive effector proteins, invasive hyphae (IH), or enhance molecular cell to cell flux by 

increasing their intracellular movement. This unique characteristic ofthe effector appears 

to promote the growth of Mlp. It is not impossible that the invasive hyphae (IH) of Mlp 

use dilated plasmodesmata caused by Mlp37347 for their cell-to-cell movement to reach 

more intracellular spaces and spread infection, but we have no evidence supporting this 

possibility, and although this strategy is used by Ascomycota, it has never been 

demonstrated for Basidiomycota. 
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Since it does not explain how Mlp37347 manipulates the transcriptional process 

since the effector is localized at the plasmodesmata, not the nuc\ei, to find the answer, 

we hypothesized the possible involvement ofCa2+; calmodulin-dependent prote in kinases 

(CDPK) in this process. Calmodulin is an intracellular target of the secondary Ca2
+ 

messenger, and Ca2+ binding is required to activate calmodulin. Upon the binding to Ca2
+, 

calmodulin tums into a vital part of a calcium signal transduction pathway by modifying 

its interactions with various target proteins such as kinases or phosphatases (Chin & 

Means, 2000, Stevens, 1983). As a result of interactions between Mlp37347 and GAD1 , 

the conformation of the Mlp37347-GAD-Calmodulin complex may interfere with the 

activation of CDPK. 

Our second hypothesis involves retrograde signaling. Retrograde signaling states 

the regulation of nuc\ear gene expression in response to functional changes in organelles, 

which are carefully coordinated to balance their activities. Recently, Ganusova et al. 

have shown that retro grade signaling from the chloroplast to the nucleus controls 

intercellular trafficking via the formation of plasmodesmata (Ganusova et al., 2020). 

In addition, more recently, Liu Xian showed that the RipI effector of 

Ralstonia solanacearum promotes the interaction of GADs with calmodulin, increasing 

the production of GABA. R. solanacearum can replicate efficiently using GABA as a 

nutrient, RipI and plant GABA contribute to successful infection (Xian et al. , 2020). 

One of our hypotheses is that the Mlp37347-GAD 1 interaction could increase the level of 

GABA, which can be used by Mlp as nutrients; this might be the reason thatgadJ mutation 

do es not promote the infection. 



Healthy cell 

PD 
Closed 

Infected cell ETS 

PTI 

GSL04, XTH19 

* Closed PD 

Callose 
degradation 

Glucan synthase 

Infected œil death 
and self defense 

---~ 

Cellwall 

* * * * PD flux proteins Mlp37347 

* * * * ______ -- -- . --- ___ o. * 
* 

GADl 

75 

Figure 4.1. A hypothetical model iIIustrating a potential role of Mlp37347 and 
plasmodesmata during infection. 



CHAPTERV 

CONCLUSION 

Fungi can colonize plants, and they have adopted very diverse lifestyles. 

Colonization is ruled in ail systems by the secretion of hundreds of effector proteins. 

These effectors suppress plant defense responses and alter plant physiology to 

accommodate fungal invaders and provide them with nutrients. Effectors function at the 

site of interaction between fun gal hyphae and the ho st, or they are transferred to cellular 

compartments. Therefore, the identification and functional characterization of effectors 

will increase our knowledge of the concepts of biotrophy, thus allowing a better 

understanding of the plant-microbe interaction. In this thesis, we focus on the mechanisms 

of Mlp37347, an effector candidate of the rust fungi M larici-populina that promotes 

virulence. We address the issue of uptake of effectors in plant cells and highlight open 

questions and future challenges. With the following conclusion, this research establishes 

a better understanding of plant-pathogen interactions. 

Here we show that Mlp37347 is present at plasmodesmata. The Mlp37347's 

presence in a plant cell , only when localized at the plasmodesmata, alters the physical 

properties of the plasmodesmata, allowing 2xmCherry to move neighboring cells. 

Whereas, 2xmCherry flux is restricted to adjacent cells in the absence of Mlp37347. 

Several research groups reported that 2XmCherry do es not diffuse through 

plasmodesmata because its size prevents the distribution of the protein to the neighboring 

cells unless the size exclusion limit (SEL) of plasmodesmata is increased. From these 

observations, we conclude that the diffusion through the plasmodesmata is facilitated in 

the presence ofMlp37347. 

Once we understood that the presence ofMlp37347 facilitates plasmodesmal flux, 

we then investigated if the localization of Mlp37347 at the plasmodesmata is important 

for the increased SEL observed using the Drop-ANd-See (DANS) assay. Here we measure 
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symplastic dye diffused area in different stable transgenic lines. Results showed a 

significant flux increase, revealed by the larger area stained by the CF dye, in the presence 

of Mlp3 7347 -GFP; however, this increase is not observed when the effector is restricted 

to the nucleus. This result concludes that the localization of Mlp37347 at the 

plasmodesmata is required to increase the intercellular flux. 

In relation to the plasmodesmata flux mechanism, we followed our interest to 

understand the responsible components for the effect of Mlp37347-GFP on 

plasmodesmata flux . We started with the effector's known interactant, GADl. 

We confirmed the Mlp37347- A. thaliana (At) GAD1 interaction by the yeast-two hybrid 

(Y2H) experiment. Later, different in-silico docking analyses showed a common 

hydrogen-bonding network ofMlp37347linked to both AtGAD1 and PtGADl. Given the 

importance of callose for plasmodesmata permeability, we looked at the callose level in 

response to Mlp37347, NLS-Mlp37347-GPF, and gadJ knock out. The amount of callose 

was significantly reduced in the stable Mlp37347-GFP line compared to Col-O. On the 

other han d, in the stable gadJ mutant, gadJ x Mlp37347-GFP, and NLS-Mlp37347-GFP, 

the amount of callose deposition did not vary significantly. In relation to callose 

deposition, our transcriptomic profiling of 4-days old A. thaliana stable transgenic 

seedlings expressing Mlp37347-GFP revealed that genes for the catabolic process of 

glucan are significantly up-regulated. These results establish a direct link to our previous 

observation that Mlp37347 localization to the plasmodesmata is important for its action 

on plasmodesmata opening and indicates the importance of GAD 1 in diffusion processes 

facilitated by Melampsora effector. 

The GAD1 was then investigated as a potential virulence target of Mlp37347 

through a series of infection assays in Arabidopsis where GAD1 was either knocked out 

and crossed gadJ x Mlp37347. The presence of Mlp37347-GFP significantly increases 

Arabidopsis susceptibility to H. arabidopsidis. In contrast, this increase in pathogen 

growth was not observed when Mlp37347 was sequestered in the nucleus (NLS-37347-

GFP) nor in the gadJ line (expressing Mlp37347-GFP or not) . We conclude that 

Mlp37347 promotes the growth of H. arabidopsidis, which is a filamentous fungal-like 
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pathogen that produces haustorium like Melampsora larici-populina by enlarging 

plasmodesmata channel, which may allow growing hyphae to gain more intercellular 

access and delivers other virulent effectors to manipulate ho st defenses. 

This study can essentially expand our knowledge of the poplar-Melampsora larici­

populina pathosystem and highlight the importance of associated proteins as plant 

susceptibility. The forthcoming work will be aimed at understanding the specific 

mechanism by which Mlp37347 affects plant defense, which could help plan rust 

pathogen control strategies. 

5.1 Perspectives 

5.1.1 Short term perspectives 

5.1.1.1 Validation of gene expression based on transcriptome sequence data 

Our transcriptomic analysis showed genes for the catabolic process of glucan are 

significantly up-regulated in 4-days old A. thaliana stable transgenic seedlings expressing 

Mlp37347-GFP. Plant defense-related and cali ose synthase-like genes are down-regulated 

in the line expressing Mlp37347-GFP. Therefore, we would like to validate gene 

expression based on transcriptome sequence data. To this end, we will select the up/down­

regulated genes of greater fold change from the gene list, and then we will synthesize 

cDNA from the RNAs isolated from different genotypes. Afterward, RT-qPCR will be 

performed using a gene-specific primer for the analysis of gene expression. 

5.1.1.2 Quantification ofGABA level 

Since GABA has been in the spotlight lately, we sought to measure GABA content 

in different genotypes further using the HPLC method as described by Koike et al. (2013). 
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5.1.2 Long term perspectives 

5.1.2.1 Confirmation of Mlp37347's doorman effect 

We conc\uded from the hypothetical DoorMan model that Mlp37347 may assist 

other invasive effectors and IH to gain intracellular access to spread the infection. 

The agrobacterium-mediated transient expression of multiple Mlp effectors with or 

without Mlp37347 could be implemented to verify the DoorMan effect. 

5.1.2.2 Retrograde signaling 

It is not yet known where the Mlp3 7347 -GAD 1 interaction takes place in the plant, 

maybe in the cytosol or at the plasmodesmata, and how a PD-Iocalized effector 

manipulates the transcriptional process. We could look at the retrograde signaling path for 

the answer since the retro grade response pathway initiates a signaling cascade to modulate 

the expression of nuc\ear genes in response to changes in mitochondrial and chloroplast 

function. 

5.1.2.3 Crystal structure studies 

A successfully solved Mlp3747 structure cou Id show us that unrelated effectors can 

adopt folds similar to known proteins. That kind of information will encourage the use of 

biochemical and structural approaches for functionally characterized rust effectors. 

Apart from this, the proteomic analysis of plasmodesmata purified from the walls of 

transgenic Arabidopsis suspension cells could tell us more about membrane-rich 

structures and immunoreactive markers for the plasma membrane using nano-liquid 

chromatography and an Orbitrap ion-trap tandem mass spectrometer. 

5.1.2.4 Host-induced gene silencing (HIGS) of Mlp37347 

Mlp37347 was found to increase virulence activity. Therefore, it wou Id be 

interesting to use one of the RNA interference (RNAi) approaches to downregulate or 
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silence the level of Mlp37347 transcription to control M larici-populina. Host-induced 

gene inhibition (HIGS) is one of the new RNA-based approaches that have been used 

successfully to control pathogenic fungi that infect various crops of agronomie 

importance, for example, powdery mildew Blumeria graminis, (Nowara et al. 2010). 

5.2 Final conclusions 

Collectively, the present thesis presents the important role effector Mlp37347 plays 

In M larici-populina pathogenesis. After being secreted from M larici-populina, 

Mlp37347 localizes at the plasmodesmata, and it binds to the Glutamate decarboxylase 1 

and facilitates plasmodesmata flux to improves plant sensitivity. Our findings are also 

relevant to the development of a pathogen model to study other rust pathogen and will 

contribute to future rust disease prevention efforts. 



FOOTNOTES 

1 https://www.rcsb.org/ 

2 http://www.ca\ctool.org/CALC/prof/bio/protein SlZe 
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ANNEXA 

SUPPLEMENTARY TABLES AND FIGURES 

Supplementary Table: 1. List of Primers 

Name 

pCambia 1380 (NOS) Seq. R 
pCambia 35SP F 
72bp-Re.S.pCam-F 

Name 

NLS-347. F 
NLS-347. R 

Attbt-NLS-347. F 
Attb2-NLS-347. R 

SALK 022227-LP 
SALK 022227-RP 

pCambia-overlap-mCherry _ Ft 

pCambia-overlap-mCherry _ Rt 

2xmCherry-F 

Sequence 

GAT CTA GTA ACA TAG ATG ACA CC 
TGAGACTTTTCAACAAAGGG 
CCACTGACGTAAGGGATGACG 

Primer (5'-3') 

ATG CCA AAA AAG AAG AGA AAG G 
CCA CTT CTT GGG TTT TGG TAC 

GGG GAC AAG TTT GT A CAA AAA AGC AGG CTT CA T GCC AAA AAA GAA GAG AAA GGT AG 
GGG GAC CAC TTT GT A CAA GAA AGC TGG GTC CCA CTT CTT GGG TTT TGG TAC TTG 

CATGGAATCTGATTTCCATGC 
CATGTTCACACATCGGTTCTG 

CTATATAAGGAAGTTCATTTCATTTGGAGAGGACAGCCCAATGGTGAGCAAGGGCGAGGA 
GATGATGGCCATGTTATCCTCCTCGCCCTTGCTCACCATGCTTGTACAGCTCGTCCATGC 

GCATGAAAGCTTATGGTGAGCAAGGGCGAGGAG 
o w 



2xmCherry-R 

Re.S.pCam-F 
Re.S.pCam-R 

pCam.ovlap-mCh-F 
pCam.ovlap-mCh-R 

Attbl-GADI-F 
Attb2-GADI-R 

Attbl-347-F 
Attb2-347-R 

pGBKT7_0L_347-F 
pGBKT7_0L_347-R 

pGADT7 _ OL _ bnding-l-F 
pGADT7 _ OL _ bnding-l-R 

pGADT7_0L_center-lO-F 
pGADT7_0L_center-lO-R 

pGADT7_0L_GADI-F 
pGADT7_0L_GADI-R 

pGADT7 overlap PtGAD-F: 
pGADT7 overlap PtGAD-R: 

GCATGAGGATCCTTACTTGTACAGCTCGTCCATG 

CCAAGCTTCGACTCTAGAGGATC 
CTTGTACAGCTCGTCCATGC 

GAAGTTCATTTCATTTGGAGAGGACAGCCCAATGGTGAGCAAGGGCGAGG 
GCCATGTTATCCTCCTCGCCCTTGCTCACCATGCTTGTACAGCTCGTCCATGC 

GGG GAC AAG TTT GT A CAA AAA AGC AGG CTTC ATGGTGCTCTCCCACGCCGT A TC 
GGG GAC CAC TTT GT A CAA GAA AGC TGG GTCGCAGAT ACCACTCGTCTTCTTCC 

GGG GAC AAG TTT GT A CAA AAA AGC AGG CTTC ATGAAGATTCATCT ATCA TTGAAAG 
GGG GAC CAC TTT GTA CAA GAA AGC TGG GTCCCACTTCTTGGGTTTTGGT AC 

CAGAGGAGGACCTGCATATGGCCATGGAGGCCGAATTCCCTATGGTAGAACCACTCCCAC 
TTATGCTAGTTATGCGGCCGCTGCAGGTCGACGGATCCCCCCACTTCTTGGGTTTTGGTAC 

ATTACGCTCATATGGCCATGGAGGCCAGTGAATTCCACCCTATGAATATGATGTTGAACCTGGC 
TGCAGCTCGAGCTCGATGGATCCCGTATCGATGCCCACCCAATAAGTTCCTCCAACTCACGC 

ATTACGCTCATATGGCCATGGAGGCCAGTGAATTCCACCCTATGAACATGTTGTTGAATTTAGC 
TGCAGCTCGAGCTCGATGGATCCCGTATCGATGCCCACCCTAAAATGCGTTCTAAAATCTCAAG 

ATTACGCTCATATGGCCATGGAGGCCAGTGAATTCCACCCTATGGTGCTCTCCCACGCCG 
TGCAGCTCGAGCTCGATGGATCCCGTATCGATGCCCACCCGCAGATACCACTCGTCTTC 

ATTACGCTCATATGGCCATGGAGGCCAGTGAATTCCACCCTATGGTTCTCTCCAAGACAT 
TGCAGCTCGAGCTCGATGGATCCCGTATCGATGCCCACCCCTAACACACACCATTCATCT 

o 
.j::.. 



Supplementary Table 2. List of up-regulated and down regulated gene 

U p-regulated gene 

Initial Alias Fold Change P-value Name Description 

ATIG53480 4.33866979 9.32E-20 MRDI Mto 1 responding down 1 

[Source: UniProtKB/TrEMBL;Acc:Q9LPG4] 

ATIG72416 3.55546213 1.45E-07 ATIG72416 Chaperone DnaJ-domain superfamily prote in 

[Source: UniProtKB/TrEMBL;Acc:B3H5X6] 

AT4G27440 3.33595934 3.20E-19 PORB Protochlorophyllide reductase B, chloroplastic 

[Source: UniProtKB/Swiss-Prot;Acc:P21218] 

ATIG49230 3.29108142 2.83E-08 ATL78 RING-H2 finger prote in ATL 78 [Source: UniProtKB/Swiss-

Prot;Acc:Q6NQG7] 

ATIG56300 3.22108984 1.38E-06 ATIG56300 Atlg56300 [Source:UniProtKB/TrEMBL;Acc:Q8L7R1] 

AT4G34950 3.01791245 3.66E-12 AT4G34950 Major facilitator superfamily prote in 

[Source:UniProtKB/TrEMBL;Acc:Q9SW40] 

ATIG12030 2.98669847 7.36E-06 AT1G12030 Atlg12030 [Source:UniProtKB/TrEMBL;Acc:065376] 

o 
VI 



AT5G61290 2.94586299 2.44E-08 

AT2G34510 2.92746854 4.86E-17 

AT2G18150 2.91640874 1.99E-06 

AT3G02885 2.9083609 3.75E-07 

AT5G62360 2.90683488 2.59E-06 

ATIG76790 2.87745578 2.90E-08 

AT2G14230 2.84727891 0.000269906 

AT5G24470 2.82105887 8.69E-05 

AT5G61290 

AT2G34510 

PER15 

GASA5 

AT5G62360 

IGMT5 

None 

APRR5 

Flavin-containing monooxygenase FMO GS-OX-like 8 

[Source: U niProtKB/S wiss-Prot;Acc: Q9FLK 4] 

Uncharacterized protein At2g3451 0 

[Source:UniProtKB/TrEMBL;Acc:064696] 

Peroxidase 15 [Source:UniProtKB/Swiss-Prot;Acc:Q9SI16] 

Gibberellin-regulated protein 5 [Source:UniProtKB/Swiss-

Prot;Acc:Q84195] 

Plant invertase/pectin methylesterase inhibitor superfamily 

protein [Source:UniProtKB/TrEMBL;Acc:Q9L V A3] 

Indole glucosinolate O-methyltransferase 5 

[Source:UniProtKB/Swiss-Prot;Acc:Q9SRD4] 

None 

Two-component response regulator-like APRR5 

[Source:UniProtKB/Swiss-Prot;Acc:Q6LA42] 

o 
0\ 



AT5G62730 2.77426802 0.00010753 NPF4.7 

AT4G30660 2.73903386 1.35E-06 AT4G30660 

AT1G22570 2.73054075 1.45E-14 NPF5.15 

AT1G13609 2.70561931 0.000582729 ATIG13609 

A T5G51550 2.62900496 4.70E-17 EXL3 

AT5G04150 2.60361833 0.000259825 BHLH101 

AT4G26670 2.58927171 2.22E-07 TIM22-2 

Protein NRTlI PTR FAMIL Y 4.7 [Source:UniProtKB/Swiss-

Prot;Acc:Q9FM20] 

UPF0057 membrane protein At4g30660 

[Source:UniProtKB/Swiss-Prot;Acc:Q9SUIO] 

Protein NRT1/ PTR FAMILY 5.15 [Source:UniProtKB/Swiss-

Prot;Acc:Q9SK99] 

Defensin-like protein 287 [Source:UniProtKB/Swiss-

Prot;Acc:Q2V 4N4] 

Prote in EXORDIUM-like 3 [Source:UniProtKB/Swiss­

Prot;Acc:Q9FHM9] 

basic helix-loop-helix (bHLH) DNA-binding superfamily 

protein [Source:TAIR;Acc:A T5G04150] 

Chloroplastic import inner membrane translocase subunit 

TIM22-2 [Source:UniProtKB/Swiss-Prot;Acc:Q94EH2] 

...... 
o 
--.) 



AT2G47870 2.56453748 0.000301836 

AT2G21660 2.5608628 9.25E-06 

AT2G30210 2.53517516 0.000139373 

AT5G38020 2.52125869 0.000121462 

AT4G03210 2.51916312 7.49E-13 

AT1G47395 2.49820609 0.001241213 

AT1G11600 2.48989933 7.06E-ll 

AT2G14245 2.46832113 0.001612216 

AT4G09020 2.4655905 8.72E-IO 

GRXC12 

RBG7 

LAC3 

AT5G38020 

XTH9 

AT1G47395 

CYP77Bl 

None 

ISA3 

Putative glutaredoxin-Cl2 [Source:UniProtKB/Swiss-

Prot;Acc:082254 ] 

Glycine-rich RNA-binding prote in 7 [Source:UniProtKB/Swiss-

Prot;Acc:Q03250] 

Laccase-3 [Source:UniProtKB/Swiss-Prot;Acc:Q56YTO] 

At5g38020 [Source:UniProtKB/TrEMBL;Acc:Q84MB 1] 

Xyloglucan endotransglucosylase/hydrolase (Fragment) 

[Source:UniProtKB/TrEMBL;Acc:COSVH2] 

At1g47390 [Source:UniProtKB/TrEMBL;Acc:Q8GUL3] 

Cytochrome P450 like protein 

[Source: U niProtKB/TrEMBL;Acc:Q9SAB7] 

None 

Isoamylase 3, chloroplastic [Source:UniProtKB/Swiss-

Prot;Acc:Q9MOS5] 

o 
00 



AT2G01520 2.46271703 0.000726475 

AT3G45970 2.42426187 5.99E-06 

AT2G38380 2.41231909 3.57E-05 

AT4G01l30 2.37266441 2.07E-07 

AT2G21130 2.37062641 2.59E-05 

AT1G31690 2.36834605 0.00014107 

AT5G64860 2.36255947 7.56E-12 

AT5G05250 2.35412743 0.000776809 

AT5G08030 2.34191701 0.001079325 

MLP328 

EX LA 1 

PER22 

AT4GOl130 

CYP19-2 

AT1G31690 

DPE1 

AT5G05250 

AT5G08030 

MLP-like protein 328 [Source:UniProtKB/Swiss-

Prot;Acc:Q9ZVF3 ] 

Expansin -1 ike A 1 [Source: U niProtKB/S wi ss-Prot;Acc: Q9 LZT 4] 

Peroxidase 22 [Source:UniProtKB/Swiss-Prot;Acc:P241 02] 

GDSL esterase/lipase At4g01130 [Source:UniProtKB/Swiss-

Prot;Acc:Q9M153] 

Peptidyl-prolyl cis-trans isomerase CYP19-2 

[Source:UniProtKB/Swiss-Prot;Acc:Q9SKQO] 

Amine oxidase [Source:UniProtKB/TrEMBL;Acc:F4IAXO] 

4-alpha-glucanotransferase DPE l , chloroplastic/amyloplastic 

[Source: UniProtKB/Swiss-Prot;Acc:Q9L V91] 

A T5g052501K18123_5 

[Source:UniProtKB/TrEMBL;Acc:Q9FLC9] 

PLC-like phosphodiesterases superfamily protein 

[Source:T AIR;Acc:A T5G08030] 

o 
\0 



ATIG47400 2.33727669 

ATIG20030 2.32944201 

AT3G22800 2.31852458 

ATIG62262 2.29283893 

ATIG06100 2.28486266 

AT5G23210 2.28031015 

AT3G63160 2.26019l75 

0.003454085 ATIG47400 unknown protein; BEST Arabidopsis thaliana protein match is: 

unknown protein (TAIR:ATIG47395 .1); Ha. 

[Source:TAIR;Acc:ATIG47400] 

3.30E-05 A Tl G20030 Pathogenesis-related thaumatin superfamily protein 

[Source: UniProtKB/TrEMBL;Acc:Q9LNTO] 

0.000681221 LRX6 Leucine-rich repeat extensin-like prote in 6 

[Source:UniProtKB/Swiss-Prot;Acc:Q9LUIl] 

0.003960262 SLAH4 S-type anion channel SLAH4 [Source:UniProtKB/Swiss­

Prot;Acc:A8MRV9] 

0.001418675 ATIG06100 Delta-9 desaturase-like 2 prote in [Source:UniProtKB/Swiss­

Prot;Acc:Q9LND8] 

1.49E-13 

1.38E-07 

SCPL34 Serine carboxypeptidase-like 34 [Source:UniProtKB/Swiss­

Prot;Acc:QOWPR4 ] 

AT3G63160 OEP6 [Source:UniProtKB/TrEMBL;Acc:AOA384KZL8] 

o 



AT1G28230 2.25734435 0.000569211 PUP1 Purine permease 1 [Source:UniProtKB/Swiss-

Prot;Acc:Q9FZ96] 

AT4G16563 2.25217007 2.38E-06 AT4G16563 Probable aspartyl protease At4g 16563 

[Source: U niProtKB/S wiss-Prot;Acc: Q940R 4] 

AT2G34700 2.25215419 0.003686267 AT2G34700 Pollen Ole e 1 allergen and extensin family protein 

[Source:UniProtKB/TrEMBL;Acc:064586] 

AT3G53460 2.25144864 9.04E-13 CP29 Chloroplast RNA-binding protein 29 

[Source:UniProtKB/TrEMBL;Acc:F4JAF3] 

AT5G49525 2.24643786 0.002066782 AT5G49525 At5g49525 [Source:UniProtKB/TrEMBL;Acc:Q8L 7FO] 

AT2G14247 2.23955357 0.00553205 AT2G14247 Expressed protein [Source:UniProtKB/TrEMBL;Acc:Q8GWCO] 

AT4G29610 2.23679669 0.000609663 CDA6 Cytidine deaminase 6 [Source:UniProtKB/Swiss-

Prot;Acc:Q9SU86] 

AT2G39900 2.20929072 3.01E-08 WLIN2A WLIM2a [Source:UniProtKB/TrEMBL;Acc:AOA178VU35] 

AT5G45750 2.20586821 2.52E-13 RABA1C RABA 1 c [Source: UniProtKB/TrEMBL;Acc:AOA 178UDB2] 

...... 



AT3G18900 2.20216276 

A T3G45070 2.19342961 

AT2G38390 2.18582288 

A T3G23870 2.18544245 

AT5G38030 2.16674855 

ATIG22370 2.16576078 

AT3G46970 2.15121317 

AT4G04330 2.14903855 

1.32E-06 AT3G 18900 Temary complex factor MlP 1 leucine-zipper protein 

[Source: UniProtKB/TrEMBL;Acc:AOA 1 I9LMH3] 

0.003602024 AT3G45070 Sulfotransferase 

[Source: UniProtKB/TrEMBL;Acc:AOA 1 I9LRV5] 

0.000515462 PER23 Peroxidase 23 [Source:UniProtKB/Swiss-Prot;Acc:080912] 

2.68E-05 A T3G23 870 Probable magnesium transporter NIP AI 

[Source:UniProtKB/Swiss-Prot;Acc:Q9LIR9] 

0.000813957 DTX30 

7.23E-07 UGT85A5 

1.24E-05 PHS2 

0.002234617 RBCX1 

Protein DETOXIFICA TION 30 [Source: UniProtKB/Swiss­

Prot;Acc:Q9LS 19] 

UDP-glycosyltransferase 85A5 [Source:UniProtKB/Swiss­

Prot;Acc:Q9LMFO] 

Alpha-glucan phosphorylase 2, cytosolic 

[Source:UniProtKB/Swiss-Prot;Acc:Q9SD76] 

Chaperonin-like RBCX protein 1, chloroplastic 

[Source:UniProtKB/Swiss-Prot;Acc:Q94AU9] 

....... 
N 



AT5G13170 2.14896201 

AT3G29320 2.14124926 

A T5G24 770 2.1159172 

AT4G 14060 2.11300712 

A T3G 12700 2.10894259 

AT4G 10695 2.10748014 

AT2G31360 2.10180509 

0.006541172 SWEET15 

5.45E-09 PHSI 

0.000150451 VSP2 

Bidirectional sugar transporter SWEET15 

[Source:UniProtKB/Swiss-Prot;Acc:Q9FY94] 

Alpha-glucan phosphorylase 1 [Source:UniProtKB/Swiss­

Prot;Acc:Q9LIB2] 

Vegetative storage protein 2 [Source:UniProtKB/Swiss­

Prot;Acc:082122] 

0.007794694 AT4G14060 AT4g14060/d13070w 

7.61E-08 NANA 

[Source: U niProtKB/TrEMBL;Acc:023 267] 

Aspartic proteinase NANA, chloroplast 

[Source: UniProtKB/Swiss-Prot;Acc:Q9L TW 4] 

0.006638724 AT4G 1 0695 CDC68-like protein 

3.06E-08 ADS2 

[Source: U niProtKB/TrEMBL;Acc:Q3 EA5 8] 

Delta-9 acyl-lipid desaturase 2 [Source:UniProtKB/Swiss­

Prot;Acc:Q9SID2] 

----w 



AT5Gl7700 2.08863313 0.00224124 DTX25 Prote in DETOXIFICA TION 

[Source:UniProtKB/TrEMBL;Acc:AOA178UJQ3] 

AT5G62210 2.08219118 0.00074632 AT5G62210 Embryo-specific protein 3, (ATS3) 

[Source: UniProtKB/TrEMBL;Acc:Q9L VB5] 

ATIG69880 2.07488505 0.008133009 TRX8 Thioredoxin H8 [Source: UniProtKB/Swiss-Prot;Acc:Q9CAS 1] 

AT5G46600 2.06863709 0.000553259 ALMT13 Aluminum-activated malate transporter 13 

[Source: UniProtKB/Swiss-Prot;Acc:Q9LS23] 

AT5G55340 2.05990256 0.001669494 AT5 Probable long-chain-alcohol O-fatty-acyltransferase 5 

[Source:UniProtKB/Swiss-Prot;Acc:Q9FJ76] 

AT3G1l415 2.05654234 0.004609403 AT3Gl1415 None 

AT5G42800 2.05262884 0.008288956 DFRA Dihydroflavonol reductase 

[Source:UniProtKB/TrEMBL;Acc:BIGV15] 

AT3G02480 2.03300048 0.010378758 AT3G02480 A T3 g02480/F 16B3 _ 11 

[Source:UniProtKB/TrEMBL;Acc:Q9M892] 

...... 
~ 



A T4G 17920 2.03152542 

AT1G13130 2.02412615 

AT2G41240 2.01256417 

AT5G62350 2.01171319 

AT4G30650 2.00144368 

0.013121577 ATL29 RING-H2 finger protein ATL29 [Source:UniProtKB/Swiss­

Prot;Acc:049691 ] 

0.010400032 AT1G13130 Atlgl3130 [Source:UniProtKB/TrEMBL;Acc:Q66GP7] 

0.014462172 BHLHI00 BHLHI00 [Source:UniProtKB/TrEMBL;Acc:AOA384LFW4] 

5.43E-11 AT5G62350 Plant invertase/pectin methylesterase inhibitor superfamily 

prote in [Source:UniProtKB/TrEMBL;Acc:Q9LV A4] 

0.003049274 AT4G30650 UPF0057 membrane protein At4g30650 

[Source:UniProtKB/Swiss-Prot;Acc:Q9M095] 

Down-regulated gene 

Initial Alias Fold Change P-value Name Description 

ATIG61550 -5.10880695 4.57E-18 A Tl G61550 G-type lectin S-receptor-like serine/threonine-protein kinase 

At1g61550 [Source:UniProtKB/Swiss-Prot;Acc:Q9SY95] 

VI 



AT5G07010 -4.60172873 1.64E-15 SOT15 Sul fotran sferase 

[Source: UniProtKB/TrEMBL;Acc:AOA 178UG65] 

ATIG69490 -4.45858245 1.83E-23 NAC029 NAP [Source:UniProtKB/TrEMBL;Acc:AOAI78W8KO] 

ATIG77760 -4.45533948 8.27E-27 NIAI Nitrate reductase 

[Source: UniProtKB/TrEMBL;Acc:AOA 1 78WBR8] 

AT2G46970 -4.26003539 6.88E-14 PILI Transcription factor PILI [Source:UniProtKB/Swiss-

Prot;Acc:Q8L5W8] 

AT4G31380 -4.00265979 1.99E-09 FLP1 Flowering-promoting factor l-like prote in 1 

[Source:UniProtKB/Swiss-Prot;Acc:Q5QOB3] 

AT5G50335 -3.94684846 5.66E-16 AT5G50335 At5g50335 [Source:UniProtKB/TrEMBL;Acc:Q8LEB7] 

AT3G49160 -3.94562642 9.64E-26 PKP4 Plastidial pyruvate kinase 4, chloroplastic 

[Source:UniProtKB/Swiss-Prot;Acc:Q9M3B6] 

ATIG37130 -3.84532013 3.06E-21 NIA2 Nitrate reductase [NADH] 2 [Source:UniProtKB/Swiss-

Prot;Acc:Pll035] 

0\ 



AT3G54510 -3.61607391 2.35E-I0 AT3G54510 Hyperosmolality-gated Ca2+ permeable channel 2.5 

[Source: UniProtKB/TrEMBL;Acc:AOA097NUQ7] 

AT3G09450 -3.56474605 8.73E-07 AT3G09450 F3L24.34 protein [Source:UniProtKB/TrEMBL;Acc:Q9S71O] 

AT3G17609 -3.54412836 1.77E-09 HYH HYH [Source:UniProtKB/TrEMBL;Acc:AOA178VIU6] 

AT2G28190 -3.53195723 4.69E-22 CSD2 Superoxide dismutase [Cu-Zn] 2, chloroplastic 

[Source:UniProtKB/Swiss-Prot;Acc:078310] 

ATIG75450 -3.4983461 5.72E-17 CKX5 Cytokinin dehydrogenase 5 [Source: UniProtKB/Swiss-

Prot;Acc:Q67YUO] 

ATCGOO770 -3.49003796 7.67E-07 RPS8 30S ribosomal protein S8, chloroplastic 

[Source: UniProtKB/Swiss-Prot;Acc:P5680 1] 

ATIG14540 -3.459773 1.47E-09 PER4 Peroxidase [Source:UniProtKB/TrEMBL;Acc:AOA 178WND9] 

ATIG52830 -3.4312261 2.71E-09 IAA6 SHYl [Source:UniProtKB/TrEMBL;Acc:AOA384LEJ2] 

ATIG01060 -3.40336552 1.23E-07 LHY LHY1 [Source:UniProtKB/TrEMBL;Acc:AOA178W761] 

....... 
-J 



AT5G53980 -3 .35957747 6.19E-08 ATHB-52 Homeobox-leucine zipper protein A THB-52 

[Source: U niProtKB/S wiss-Prot;Acc: Q9 FN2 9] 

AT1G55960 -3 .34946129 7.97E-17 AT1G55960 Polyketide cyc1ase/dehydrase and lipid transport superfamily 

protein [Source:UniProtKB/TrEMBL;Acc:Q93YV2] 

ATIG52565 -3 .34251487 2.63E-l1 ATIG52565 At1g52565 [Source:UniProtKB/TrEMBL;Acc:AOJPU2] 

AT2G28056 -3.34098571 3.81E-09 MIRl72A MIRl72/MIR172A; miRNA [Source:T AIR;Acc:AT2G28056] 

ATCG00760 -3.3317866 6.39E-06 RPL36 50S ribosomal prote in L36, chloroplastic 

[Source:UniProtKB/TrEMBL;Acc:AOAlB 1 W4X9] 

AT2G47270 -3.31313202 5.29E-07 UPBl UPB 1 [Source:UniProtKB/TrEMBL;Acc:AOA178VV95] 

AT4G15550 -3.29403548 2.39E-12 UGT75Dl UDP-glycosyltransferase 75D1 [Source:UniProtKB/Swiss-

Prot;Acc:023406] 

ATCG00750 -3.25493638 6.67E-06 RPSll 30S ribosomal protein SIl , chloroplastic 

[Source:UniProtKB/TrEMBL;Acc:AOA1Bl W4X8] 

AT2G21910 -3.25059589 1 AOE-05 CYP96A5 Cytochrome P450, family 96, subfamily A, polypeptide 5 

[Source: UniProtKB/TrEMBL;Acc:Q9SJ08] 

00 



AT5G54470 -3.19349774 1.28E-07 AT5G54470 BBX29 [Source:UniProtKB/TrEMBL;Acc:AOA178UJVO] 

AT5G01540 -3.1909726 1.43E-07 LECRK62 L-type lectin-domain containing receptor kinase VI.2 

[Source: U niProtKB/S wiss-Prot;Acc :Q9M 021 ] 

AT5G24110 -3.18360444 2.49E-10 WRKY30 Probable WRKY transcription factor 30 

[Source:UniProtKB/Swiss-Prot;Acc:Q9FL62] 

AT5G25260 -3.17918713 1.65E-07 FLOT2 Flotillin-like protein 2 [Source:UniProtKB/Swiss-

Prot;Acc:Q4 V3D6] 

AT5G01600 -3.14371931 3.64E-12 FER1 Ferritin-1, chloroplastic [Source:UniProtKB/Swiss-

Prot;Acc:Q39101] 

AT2G40610 -3.13170838 4.72E-12 EXPA8 Expansin-A8 [Source: UniProtKB/Swiss-Prot;Acc:02287 4] 

AT5G02540 -3.12556569 4.18E-08 AT5G02540 NAD(P)-binding Rossmann-fold superfamily protein 

[Source:UniProtKB/TrEMBL;Acc:F4KCF2] 

AT5G02020 -3.12501642 9.68E-07 SIS AT5g02020/T7H20 _70 

[Source:UniProtKB/TrEMBL;Acc:Q9LZM9] 

AT2G15020 -3 .09029228 4.21E-05 AT2G15020 At2g 15020 [Source: UniProtKB/TrEMBL;Acc:Q9ZUK9] 

........ 

'-0 



AT3G09600 -3.07652366 1.47E-09 

AT3G10815 -3.04888789 5.68E-06 

AT1G64660 -3.0123163 1. 14E-06 

AT1G56060 -3.01203328 6.39E-06 

AT2G24165 -3.00328874 5.12E-05 

ATIG57640 -2 .9571278 1.57E-05 

ATIG57650 -2.95657421 1.54E-05 

AT5G16023 -2.95301071 5.l8E-05 

ATIG68238 -2.94882412 2.51E-06 

RVE8 

AT3GI0815 

MGL 

ATIG56060 

None 

None 

AT1G57650 

RTFL18 

ATIG68238 

Protein REVEILLE 8 [Source:UniProtKB/Swiss-

Prot;Acc:Q8R WU3] 

Putative RING zinc finger protein 

[Source: UniProtKB/TrEMBL;Acc:Q8L 729] 

Methionine gamma-lyase [Source:UniProtKB/Swiss-

Prot;Acc:Q9SGU9] 

unknown protein; BE ST Arabidopsis thaliana prote in match is: 

unknown protein (TAIR:AT2G32210.1); Ha. 

[Source:TAIR;Acc:ATI G56060] 

None 

None 

ATP binding protein [Source:UniProtKB/TrEMBL;Acc:F4I847] 

DVL 1 [Source: UniProtKB/TrEMBL;Acc:Q6X5VO] 

Putative uncharacterized protein 

[Source:UniProtKB/TrEMBL;Acc:Q1G3X3] 

IV 
o 



AT3G21150 -2.94581094 5.57E-05 BBX32 B-box zinc finger protein 32 [Source:UniProtKB/Swiss-

Prot;Acc:Q9LJB7] 

AT5G24580 -2.93558353 7.59E-l1 HIPP09 Heavy metal-associated isoprenylated plant protein 9 

[Source:UniProtKB/Swiss-Prot;Acc:Q9FLU5] 

AT1G03010 -2.93457373 4.82E-07 ATIG03010 BTB/POZ domain-containing prote in Atlg0301 0 

[Source: U niProtKB/S wiss-Prot;Acc: Q9 SA69] 

AT5G35525 -2.93206005 2.67E-07 PCR3 Protein PLANT CADMIUM RESISTANCE 3 

[Source: U niProtKB/S wiss-Prot;Acc:POCW97] 

AT5G37260 -2 .93096439 3.18E-09 RVE2 Protein REVEILLE 2 [Source:UniProtKB/Swiss-

Prot;Acc:F4K5X6] 

AT5G53200 -2.93046741 1.95E-05 TRY TRY [Source:UniProtKB/TrEMBL;Acc:AOA178UFU9] 

AT1G26790 -2.92903107 0.000169229 ATIG26790 Dof-type zinc finger DNA-binding family protein 

[Source:TAIR;Acc:AT1 G26790] 

AT5G02580 -2.92865436 7.39E-06 AT5G02580 Argininosuccinate lyase 

[Source:UniProtKB/TrEMBL;Acc:Q84TGO] 

t'V 



ATCG00810 -2.92607887 7.84E-05 RPL22 50S ribosomal protein L22, chloroplastic 

[Source:UniProtKB/Swiss-Prot;Acc:P56795] 

AT3G15310 -2.9127224 0.000175337 None None 

AT3G21320 -2.88767174 2.18E-05 AT3G21320 EARL Y FLOWERING protein 

[Source:UniProtKB/TrEMBL;Acc:Q5QOC8] 

AT5G22520 -2.87235686 1.31E-05 AT5G22520 At5 g22520 [Source: UniProtKB/TrEMBL;Acc:Q9FK87] 

AT4G16780 -2.87225955 2.29E-I0 HAT4 Homeobox-leucine zipper protein HAT4 

[Source:UniProtKB/Swiss-Prot;Acc:Q05466] 

AT3G55150 -2.86900705 5.73E-07 ATEX070Hl Exocyst complex component EX070Hl 

[Source:UniProtKB/Swiss-Prot;Acc:Q8VY27] 

AT3G62090 -2.86458499 2.65E-IO PIF6 PIL2 [Source:UniProtKB/TrEMBL;Acc:AOA178VFI3] 

AT5G01595 -2.86355516 7.57E-05 AT5G01595 other RNA [Source:TAIR;Acc:AT5G01595] 

AT3G59220 -2.85492603 2.82E-05 PRNI Pirin-l [Source: UniProtKB/Swiss-Prot;Acc:Q9LX49] 

-N 
N 



AT4G26120 -2.85202591 1.65E-11 

AT4G12520 -2.8490l335 7.74E-05 

AT3G60420 -2.84647987 6.18E-06 

AT1G01520 -2.82l33457 0.000216315 

AT3G15540 -2.81981592 2.52E-09 

AT1G64500 -2.81739937 5.82E-07 

ATIG65870 -2.80353633 0.0002315 

AT5G41730 -2.79838718 0.000330101 

AT5G19600 -2.79791574 1.28E-05 

AT4G26120 

AT4G12520 

AT3G60420 

AT1G01520 

IAA19 

AT1G64500 

DIR21 

AT5G41730 

SULTR3;5 

Ankyrin repeat family protein / BTBIPOZ domain-containing 

protein [Source:T AIR;Acc:A T4G26120] 

At4g12520 [Source:UniProtKB/TrEMBL;Acc:Q9S7U3] 

Phosphoglycerate mutase family protein 

[Source: UniProtKB/TrEMBL;Acc:F 4JBT8] 

ASG4 [Source:UniProtKB/TrEMBL;Acc:AOA384LJW3] 

Auxin-responsive protein 

[Source:UniProtKB/TrEMBL;Acc:Q2VWA2] 

F1N19.7 [Source:UniProtKB/TrEMBL;Acc:Q9SGW5] 

Dirigent protein 21 [Source:UniProtKB/Swiss-

Prot;Acc:Q9SS03 ] 

Protein kinase family protein 

[Source:UniProtKB/TrEMBL;Acc:Q9FGG5] 

Probable sulfate transporter 3.5 [Source:UniProtKB/Swiss-

Prot;Acc:Q94LW6] 

N 
w 



AT1G33960 -2.78932346 0.000139795 

AT3GI1340 -2.78874967 0.000126528 

ATCG00290 -2.77822214 0.000352683 

ATIG 16420 -2.76386703 0.000116941 

ATCG00740 -2.76051757 0.000187118 

AT5G44255 -2.74877543 0.000154127 

AT1G44830 -2.74205178 2.51E-05 

AT2G35980 -2.74178003 5.09E-05 

AT5G65080 -2.74004773 3.79E-09 

AIG1 

UGT76B1 

TRNS.2 

AMC8 

RPOA 

None 

ERF014 

NHLI0 

MAF5 

P-loop containing nucleoside triphosphate hydrolases 

superfamily prote in [Source:TAIR;Acc:AT1 G33960] 

UDP-glycosyltransferase 76B 1 [Source:UniProtKB/Swiss-

Prot;Acc:Q9C768] 

tRNA-Ser [Source:TAIR;Acc:ATCG00290] 

Metacaspase-8 [Source: U niProtKB/S wiss-Prot;Acc :Q9 SA 41 ] 

DNA-directed RNA polymerase subunit alpha 

[Source:UniProtKB/Swiss-Prot;Acc:P56762] 

None 

Ethylene-responsive transcription factor ERFO 14 

[Source:UniProtKB/Swiss-Prot;Acc:Q9LPE8] 

NDR1/HIN1-like protein 10 [Source:UniProtKB/Swiss-

Prot;Acc:Q9SJ52] 

K-box region and MADS-box transcription factor family protein 

[Source:TAIR;Acc:A T5G65080] 

IV 
~ 



ATIGOl680 -2.73866643 

AT1G53625 -2.73408793 

AT2G26020 -2.72862163 

AT1G68620 -2.71745803 

AT5G61160 -2.71373224 

AT1G02340 -2.71211399 

AT2G04450 -2.7007366 

AT5G56960 -2.68610947 

0.000191084 PUB54 U-box domain-containing protein 54 [Source:UniProtKB/Swiss-

Prot;Acc:Q9LQ92] 

0.000101231 AT1G53625 At1g53625 [Source:UniProtKB/TrEMBL;Acc:Q9LPH9] 

0.000520884 PDF1.2B PDF1.2b [Source:UniProtKB/TrEMBL;Acc:AOA178VQC3] 

1.78E-08 CXE6 Probable carboxylesterase 6 [Source:UniProtKB/Swiss-

Prot;Acc:Q9SX25] 

9.70E-05 ACT Agmatine coumaroyltransferase [Source: UniProtKB/Swiss-

Prot;Acc:Q9FNP9] 

2.80E-05 HFR1 Transcription factor HFR1 [Source:UniProtKB/Swiss-

Prot;Acc:Q9FE22] 

6.52E-07 NUDT6 Nudix hydrolase 6 [Source:UniProtKB/Swiss-

Prot;Acc:Q9SJC4] 

0.000116624 AT5G56960 basic helix-Ioop-helix (bHLH) DNA-binding family protein 

[Source:T AIR;Acc:A T5G56960] 

N 
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AT1 G02400 -2.68464895 

AT1G48320 -2.66950415 

AT1G69572 -2.66825412 

AT3G54770 -2.65100307 

ATCG01300 -2.64893394 

ATCG00840 -2.64860139 

A Tl G 13550 -2.6458285 

AT5G56544 -2.64456988 

AT1G66725 -2.63790933 

1.17E-09 

2.75E-05 

GA20X6 

DHNATI 

Gibberellin 2-beta-dioxygenase 6 [Source:UniProtKB/Swiss­

Prot;Acc:Q9FZ21 ] 

DHNA Tl [Source: UniProtKB/TrEMBL;Acc:AOA 178WIC5] 

0.000723276 ATIG69572 other RNA [Source:TAIR;Acc:ATIG69572] 

2.75E-05 ARP 1 

2.96E-05 RPL23-A 

2.96E-05 RPL23-A 

Probable RNA-binding protein ARP 1 

[Source:UniProtKB/Swiss-Prot;Acc:Q9MlS3] 

50S ribosomal protein L23, chloroplastic 

[Source: U niProtKB/S wiss-Prot;Acc :P6184 5] 

50S ribosomal protein L23, chloroplastic 

[Source: UniProtKB/Swiss-Prot;Acc:P61845] 

0.000274688 ATIG13550 Putative uncharacterized protein 

[Source:UniProtKB/TrEMBL;Acc:Q3EDD3] 

0.000733607 None None 

3.56E-05 MIR163 MIR163; miRNA [Source:TAIR;Acc:ATIG66725] 

N 
0\ 



AT5G24120 -2.63507477 5.53E-08 SIGE 

AT1G04310 -2.63493072 6.23E-09 ERS2 

AT1G12520 -2.6339652 1.83E-34 CCS 

AT3G61390 -2.63133889 0.000779672 PUB36 

AT5G42380 -2.63032016 0.00020361 CML37 

ATCG00330 -2.62775476 4.53E-05 RPS14 

ATCG01120 -2.62502323 0.000861805 RPS15 

RNA polymerase sigma factor sigE, chloroplastic/mitochondrial 

[Source:UniProtKB/Swiss-Prot;Acc:Q9ZNX9] 

Ethylene response sensor 2 [Source:UniProtKB/Swiss-

Prot;Acc:P93825] 

Copper chaperone for superoxide dismutase, 

chloroplastic/cytosolic [Source:UniProtKB/Swiss-

Prot;Acc:Q9LD47] 

U-box domain-containing protein 36 [Source:UniProtKB/Swiss­

Prot;Acc:Q8GZ84 ] 

Calcium-binding prote in CML37 [Source:UniProtKB/Swiss­

Prot;Acc:Q9FIH9] 

30S ribosomal protein S14, chloroplastic 

[Source: UniProtKB/TrEMBL;Acc:AOA 1 B 1 W 4 T5] 

30S ribosomal protein S 15, chloroplastic 

[Source:UniProtKB/Swiss-Prot;Acc:P56805] 

...... 
N 
-....J 



AT1G75590 -2.61606347 

ATCG00340 -2.61604027 

AT5G22530 -2 .61033363 

AT3G 14780 -2.5986099 

AT1G21120 -2.59477707 

A T3G21520 -2.5918463 

A T5G38200 -2.58998636 

AT4G12510 -2.58982118 

A T4G03450 -2.56750404 

5.53E-06 

9.50E-05 

AT1G75590 SAUR-like auxin-responsive protein family 

[Source:UniProtKB/TrEMBL;Acc:F4HZ54] 

PSAB Photosystem 1 P700 chlorophyll a apoprotein A2 

[Source:UniProtKB/TrEMBL;Acc:AOA1B1 W4U2] 

0.000508169 AT5G22530 Uncharacterized protein At5g22530 

1.47E-06 

7.39E-06 

[Source: U niProtKB/TrEMBL;Acc:Q9FK86] 

AT3G 14780 CalI ose synthase [Source:UniProtKB/TrEMBL;Acc:Q8GW77] 

ATIG21120 O-methyltransferase family protein 

[Source:TAIR;Acc:ATIG21120] 

0.000397896 DMP1 Protein DMP 1 [Source: UniProtKB/Swiss-Prot;Acc:Q9L VF4] 

9.36E-07 A T5G38200 Class 1 glutamine amidotransferase-like superfamily protein 

[Source: U niProtKB/TrEMBL;Acc:F 4KA45] 

0.000560158 AT4G12510 At4g12520 [Source:UniProtKB/TrEMBL;Acc:Q9S7U3] 

0.000613326 A T4G03450 Ankyrin repeat family protein 

[Source:UniProtKB/TrEMBL;Acc:Q9ZT73] 

-N 
00 



AT3G13438 -2.56430806 0.0010538 None None 

AT1G05880 -2.56270397 0.001150901 ARI12 Probable E3 ubiquitin-protein ligase ARI12 

[Source:UniProtKB/Swiss-Prot;Acc:Q84RQ9] 

ATIG72070 -2.55965707 3.13E-05 AT1G72070 Chaperone DnaJ-domain superfamily prote in 

[Source:UniProtKB/TrEMBL;Acc:F4IBN6] 

AT3G25510 -2.55332494 1.37E-06 AT3G25510 Disease resistance protein (TIR-NBS-LRR class) family protein 

[Source:UniProtKB/TrEMBL;Acc:F4J910] 

AT3G02670 -2.5518899 0.000566831 AT3G02670 F16B3 .30 protein [Source:UniProtKB/TrEMBL;Acc:Q9M875] 

AT5G13320 -2.55064066 0.000458671 PBS3 Auxin-responsive GH3 family protein 

[Source:TAIR;Acc:AT5G 13320] 

AT1G80130 -2 .54435448 0.000480917 ATIG80130 F 18B 13 .21 protein [Source:UniProtKB/TrEMBL;Acc:Q9SSC6] 

ATIG08830 -2.54352593 2.29E-IO CSDI Superoxide dismutase [Cu-Zn] 1 [Source:UniProtKB/Swiss-

Prot;Acc:P24704] 

AT3G23800 -2.53822352 0.000207552 SBP3 SBP3 [Source:UniProtKB/TrEMBL;Acc:AOA178VEQ9] 

-N 
'D 



AT5G26920 -2.53709235 

AT5G38212 -2.53309468 

A T4G2321 0 -2.53288205 

AT4G37553 -2.53059095 

ATI G23060 -2.52192225 

ATIG78290 -2.52166155 

ATCG00350 -2.52090501 

AT5G39660 -2 .51989714 

1.10E-07 CBP60G Calmodulin-binding protein 60 G [Source:UniProtKB/Swiss­

Prot;Acc:F4K2R6] 

0.001262187 AT5G38212 Potential natural antisense gene, locus overlaps with 

AT5G38210 [Source:TAIR;Acc:AT5G38212] 

1.45E-07 CRK13 Cysteine-rich receptor-like protein kinase 13 

[Source: U niProtKB/S wiss-Prot;Acc: QOPW 40] 

0.001133897 AT4G37553 Potential natural antisense gene, locus overlaps with 

AT4G37550 and AT4G37560 [Source:TAIR;Acc:AT4G37553] 

6.60E-06 AT1 G23060 MDP40 [Source:UniProtKB/TrEMBL;Acc:AOA384LAT5] 

3.46E-07 SRK2C SRK2C [Source:UniProtKB/TrEMBL;Acc:AOA178W6S8] 

0.000244497 PSAA Photosystem 1 P700 chlorophyll a apoprotein AI 

[Source:UniProtKB/Swiss-Prot;Acc:P56766] 

4.04E-I0 CDF2 Cyclic doffactor 2 [Source:UniProtKB/Swiss­

Prot;Acc:Q93ZL5] 

........ 
w 
o 



AT2G39518 -2.51424033 3.64E-05 AT2G39518 CASP-like protein 4D2 [Source:UniProtKB/Swiss-

Prot;Acc:Q56X75] 

AT3G24518 -2.51237769 0.000786655 AT3G24518 other RNA [Source:TAIR;Acc:A T3G24518] 

AT3G53150 -2.50646954 0.000919831 UGT73D1 UDP-glucosyl transferase 73D 1 

[Source:TAIR;Acc:AT3G53150] 

AT1G57630 -2.49724637 0.000783384 ATIG57630 Disease resistance protein RPP 1-W sB, putative 

[Source:UniProtKB/TrEMBL;Acc:Q9FVT9] 

ATIG75490 -2.49247252 8.04E-05 DREB2D Dehydration-responsive element-binding protein 2D 

[Source:UniProtKB/Swiss-Prot;Acc:Q9LQZ2] 

AT2G46830 -2.48804354 3.57E-05 CCAI Protein CCAI [Source:UniProtKB/Swiss-Prot;Acc:P92973] 

AT5G54585 -2.48043831 1.17E-06 AT5G54585 Uncharacterized prote in At5g54585 

[Source:UniProtKB/TrEMBL;Acc:Q8VZU6] 

ATIG69570 -2.46178952 4. 19E-09 CDF5 Cyc1ic dof factor 5 [Source:UniProtKB/Swiss-

Prot;Acc:Q9SEZ3 ] 

w 



AT4G25070 -2.45715498 

AT5G54610 -2.4554414 

AT4G04540 -2.45228323 

AT5G01542 -2.45143419 

AT3G46650 -2.4480778 

ATCG00820 -2.44322152 

AT5G53048 -2.44271651 

AT5G 15845 -2.44074257 

AT3G12910 -2.43263142 

1.67E-05 AT4G25070 Caldesmon-like protein 

[Source:UniProtKB/TrEMBL;Acc:AOMFT2] 

0.00193698 BADI Ankyrin repeat-containing protein BDA 1 

[Source:UniProtKB/Swiss-Prot;Acc:Q8GYH5] 

0.001008187 CRK39 Putative cysteine-rich receptor-like protein kinase 39 

[Source:UniProtKB/Swiss-Prot;Acc:Q9SYS7] 

0.002050571 AT5G01542 Potential natural antisense gene, locus overlaps with 

AT5GO 1540 [Source:T AIR;Acc:A T5GO 1542] 

0.000399355 AT3G46650 UDP-Glycosyltransferase superfamily protein 

[Source: UniProtKB/TrEMBL;Acc:F 41962] 

0.000319541 RPS19 ribosomal protein S 19 [Source:TAIR;Acc:ATCG00820] 

0.001746331 AT5G53048 other RNA [Source:TAIR;Acc:AT5G53048] 

0.001906673 AT5G15845 other RNA [Source:TAIR;Acc:AT5G15845] 

0.000749971 AT3G12910 NAC (No Apical Meristem) domain transcriptional regulator 

superfamily protein [Source: UniProtKB/TrEMBL;Acc:Q9LSI4] 

....­
w 
N 



AT4G38545 -2.43184264 0.000308932 

ATIG23965 -2.43170181 0.000515462 

AT3G08885 -2.42995273 3.33E-05 

AT5G36220 -2.42664 1.62E-07 

AT3G28857 -2.426520 Il 5.05E-05 

AT2G39530 -2.42614952 0.002010435 

AT4G10310 -2.42567097 1.59E-08 

AT3G2l670 -2.42203135 0.000130597 

AT4G38545 

AT1G23965 

None 

CYP81D1 

PRE5 

AT2G39530 

HKT1 

NPF6.4 

other RNA [Source:TAIR;Acc:AT4G38545] 

Transcription factor 

[Source: UniProtKB/TrEMBL;Acc:Q 1 G3U2] 

None 

Cytochrome P450 81D1 [Source:UniProtKB/Swiss-

Prot;Acc:Q9FG65] 

Transcription factor PRE5 [Source:UniProtKB/Swiss-

Prot;Acc:Q9LJX 1] 

CASP-like prote in 4Dl [Source:UniProtKB/Swiss-

Prot;Acc:Q8GWD5] 

Sodium transporter HKT1 [Source:UniProtKB/Swiss-

Prot;Acc:Q84TI7] 

Protein NRTlI PTR FAMILY 6.4 [Source:UniProtKB/Swiss-

Prot;Acc:Q9L VEO] 

w 
w 



AT2G41250 -2.42056176 

AT2G34940 -2.41906023 

ATCGOll10 -2.41070161 

AT1G24145 -2.40991645 

ATIGI0340 -2.40946059 

AT5G04190 -2.40828618 

A T5G08760 -2.39566957 

5.2IE-10 AT2G41250 

0.000354317 VSR5 

0.002336603 NDHH 

9.81E-05 AT1G24145 

2.00E-09 ATIG10340 

7.10E-06 PKS4 

Haloacid dehalogenase-like hydrolase (HAD) superfamily 

prote in [Source: U niProtKB/TrEMBL;Acc:Q9ZVB6] 

VSR5 [Source: UniProtKB/TrEMBL;Acc:AOA3 84 KPH5] 

NAD(P)H-quinone oxidoreductase subunit H, chloroplastic 

[Source: U niProtKB/S wiss-Prot;Acc:P 5 6753] 

At! g24145 [Source: UniProtKB/TrEMBL;Acc:Q8GYP2] 

Ankyrin repeat family protein 

[Source:UniProtKB/TrEMBL;Acc:Q9SY76] 

Protein PHYTOCHROME KINASE SUBSTRA TE 4 

[Source:UniProtKB/Swiss-Prot;Acc:Q9FYE2] 

0.000142702 AT5G08760 unknown protein; FUNCTIONS IN: molecular_function 

unknown; INVOL VED IN: biologicalJ)rocess unknown; 

LOCATED IN: endomembrane system; Ha. 

[Source:TAIR;Acc:AT5G08760] 
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AT4G 10150 -2.39252677 

AT3G29370 -2.39100783 

AT1G03020 -2.38817803 

AT5G63650 -2.38798161 

ATIG78970 -2.38707835 

AT5G44420 -2.37756193 

AT4G25260 -2.37618454 

6.73E-06 ATL7 RING-H2 finger protein ATL 7 [Source:UniProtKB/Swiss­

Prot;Acc:Q9SN28] 

0.000155838 AT3G29370 Uncharacterized protein At3g29370 

[Source:UniProtKB/TrEMBL;Acc:Q8LD48] 

0.001582297 GRXS1 

4.18E-08 SRK2H 

8.47E-17 LUPI 

0.002828762 PDF1.2A 

9.13E-09 PMEI7 

Monothiol glutaredoxin-S 1 [Source: UniProtKB/Swiss­

Prot;Acc:Q9SA68] 

Serine/threonine-protein kinase SRK2H 

[Source:UniProtKB/Swiss-Prot;Acc:Q9FFP9] 

Lupeol synthase 1 [Source:UniProtKB/Swiss­

Prot;Acc:Q9C5M3] 

Defensin-like protein 16 [Source:UniProtKB/Swiss­

Prot;Acc:Q9FI23 ] 

Pectinesterase inhibitor 7 [Source:UniProtKB/Swiss­

Prot;Acc:Q9SB37] 

-w 
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ATIG20120 -2.37527053 6.50E-07 

ATIG26945 -2.37469345 2.79E-08 

AT5G42830 -2.37428626 0.000292731 

ATIG01340 -2.37131875 1.81E-07 

AT4G34380 -2.36785098 0.00040348 

AT2G31980 -2.36605309 1.70E-05 

AT3G27170 -2.36358926 9.98E-06 

AT2G33020 -2.35277495 0.000213345 

ATIG20120 

PRE6 

AT5G42830 

CNGClO 

AT4G34380 

CYS2 

CLC-B 

AtRLP24 

GDSL esterase/lipase Atlg20120 [Source:UniProtKB/Swiss-

Prot;Acc:PODKJ6] 

Transcription factor PRE6 [Source:UniProtKB/Swiss-

Prot;Acc:Q8GW32] 

HXXXD-type acyl-transferase family protein 

[Source:UniProtKB/TrEMBL;Acc:Q9FMN6] 

Probable cyc1ic nuc1eotide-gated ion channel 10 

[Source:UniProtKB/Swiss-Prot;Acc:Q9LNJO] 

At4g34380 [Source: UniProtKB/TrEMBL;Acc:Q9SZ03] 

Cysteine proteinase inhibitor 

[Source:UniProtKB/TrEMBL;Acc:AOAI78VSQ8] 

CLC-B [Source:UniProtKB/TrEMBL;Acc:AOA 178VKG6] 

Receptor like protein 24 [Source:UniProtKB/Swiss-

Prot;Acc:049329] 

W 
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A T2G28400 -2.34944824 

AT5G 15265 -2.34930699 

AT5G25190 -2.34373716 

AT3G12710 -2.34054501 

AT5G22380 -2.33355474 

AT2G02990 -2.32558203 

A T5G 17300 -2.32006458 

AT3G29575 -2.31255119 

1.07E-06 AT2G28400 Uncharacterized protein At2g28400 

[Source: UniProtKB/TrEMBL;Acc:Q9SKNO] 

0.001202481 AT5G15265 Transmembrane protein 

4.42E-06 ERF003 

[Source: UniProtKB/TrEMBL;Acc:Q56YM4] 

Ethylene-responsive transcription factor ERF003 

[Source:UniProtKB/Swiss-Prot;Acc:Q94AW5] 

3.10E-16 AT3G12710 DNA glycosylase superfamily protein 

[Source:UniProtKB/TrEMBL;Acc:Q9LTW3] 

0.002138065 NAC090 

0.00209011 RNSI 

0.000204984 RVEI 

0.0002213 5 8 AFP3 

NAC-domain protein-like 

[Source:UniProtKB/TrEMBL;Acc:Q680Rl] 

Ribonuclease 1 [Source:UniProtKB/Swiss-Prot;Acc:P42813] 

Prote in REVEILLE 1 [Source:UniProtKB/Swiss­

Prot;Acc:F4KGY6] 

Ninja-family protein AFP3 [Source:UniProtKB/Swiss­

Prot;Acc:Q94F39] 
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AT2G35945 -2.31207975 0.003901223 

AT3G15760 -2.30950576 5.81E-09 

AT1G53700 -2.30933288 3.34E-05 

AT4G38560 -2.30870913 0.000851668 

AT1G09932 -2.30546423 0.000329389 

AT3G12220 -2.30527251 0.002934498 

ATIG49000 -2.29795237 1.11E-06 

AT5G26200 -2.29581726 6.27E-06 

AT4Gl1890 -2.29545547 3.20E-06 

AT2G35945 

AT3G15760 

WAG1 

AT4G38560 

AT1G09932 

SCPL16 

ATIG49000 

AT5G26200 

AT4G11890 

other RNA [Source:TAIR;Acc:AT2G35945] 

At3g15760 [Source:UniProtKB/TrEMBL;Acc:Q9LW03] 

Serine/threonine-protein kinase W AG 1 

[Source:UniProtKB/Swiss-Prot;Acc:Q9C8M5] 

Phospholipase like protein 

[Source: U niProtKB/TrEMBL;Acc:QOWVO 1 ] 

Phosphoglycerate mutase family protein 

[Source: UniProtKB/TrEMBL;Acc:Q8GWG 7] 

Serine carboxypeptidase-like 16 [Source:UniProtKB/Swiss-

Prot;Acc:Q9C7D4 ] 

Atl g49000 [Source: UniProtKB/TrEMBL;Acc:Q9M9 A2] 

AT5g26200/T19G 15_50 

[Source:UniProtKB/TrEMBL;Acc:Q93YZ9] 

Protein kinase superfamily protein 

[Source:UniProtKB/TrEMBL;Acc:F4JPT7] 
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AT5G57510 -2.29261363 0.002908408 

AT4G39670 -2.29103147 0.000756913 

AT5G02490 -2.29064996 0.000726475 

AT4G15248 -2.28998635 0.004638883 

AT2G28053 -2.28566335 0.003701082 

AT5G43630 -2.28115411 2.02E-05 

AT4G11170 -2.28029541 0.00217263 

AT4G32280 -2.27560031 0.000791879 

AT5G57510 

AT4G39670 

MED37D 

MIPIA 

None 

TZP 

AT4GI1170 

IAA29 

Cotton fiber protein 

[Source: UniProtKB/TrEMBL;Acc:Q9FKMO] 

ACDll homolog protein [Source:UniProtKB/Swiss-

Prot;Acc:Q8L 7U7] 

Probable mediator of RNA polymerase II transcription subunit 

37c [Source:UniProtKB/Swiss-Prot;Acc:P22954] 

B-box domain protein 30 [Source:UniProtKB/Swiss-

Prot;Acc:Q 1 G312] 

None 

Zinc knuckle (CCHC-type) family protein 

[Source: UniProtKB/TrEMBL;Acc:Q9FIX7] 

Putative disease resistance protein At4g11170 

[Source:UniProtKB/Swiss-Prot;Acc:0825 00] 

Auxin-responsive protein 

[Source:UniProtKB/TrEMBL;Acc:Q2VWAO] 
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AT5G39670 -2.27130776 0.001290645 

AT1G02820 -2.27100938 0.000478902 

AT4G13395 -2.26645154 0.001906673 

AT3G50770 -2.26418375 0.001474861 

AT4G02520 -2.26243262 4.21E-05 

AT4G31370 -2.26048688 0.00252467 

AT3G46080 -2.25533768 0.001932282 

AT4G15380 -2.25435732 0.000308435 

AT4G22040 -2.25349178 0.003401149 

CML46 

LEA2 

DVL10 

CML41 

GSTF2 

FLA5 

ZAT8 

CYP705A4 

None 

Probable calciurn-binding prote in CML46 

[Source:UniProtKB/Swiss-Prot;Acc:Q93Z27] 

LEA3 [Source:UniProtKB/TrEMBL;Acc:AOA178WJ88] 

DVL10 [Source:UniProtKB/TrEMBL;Acc:Q6IM91] 

Probable calciurn-binding protein CML41 

[Source:UniProtKB/Swiss-Prot;Acc:Q8L3R2] 

Glutathione S-transferase F2 [Source:UniProtKB/Swiss-

Prot;Acc:P46422] 

Fasciclin-like arabinogalactan prote in 5 

[Source:UniProtKB/Swiss-Prot;Acc:049586] 

Zinc finger protein ZAT8 [Source:UniProtKB/Swiss-

Prot;Acc:Q9LX85] 

Cytochrorne P450, farnily 705, subfarnily A, polypeptide 4 

[Source: UniProtKB/TrEMBL;Acc:Q8L 7H7] 

None 

+>­o 



ATIG06080 -2.25309769 0.000705647 ADSI Delta-9 acyl-lipid desaturase 1 [Source:UniProtKB/Swiss-

Prot;Acc:065797] 

AT3G48640 -2.2528849 0.003960337 AT3G48640 Transmembrane prote in 

[Source: UniProtKB/TrEMBL;Acc:Q9SMN 5] 

AT2G20150 -2.24783633 0.004455106 AT2G20150 Uncharacterized protein At2g20 150/T2G 17.5 

[Source:UniProtKB/TrEMBL;Acc:Q84X45] 

AT3G17050 -2.24645606 3.47E-06 None None 

AT5G18050 -2.24481922 3.20E-06 SAUR22 Auxin-responsive protein SAUR22 [Source:UniProtKB/Swiss-

Prot;Acc:Q9F JF7] 

AT5G35935 -2.23822396 2.38E-06 None None 

AT2G36630 -2.23764031 4.59E-08 AT2G36630 Sulfite exporter TauE/SafE family protein 4 

[Source:UniProtKB/Swiss-Prot;Acc:Q8S9JO] 

AT3G23120 -2.23081776 0.003462465 AtRLP38 Receptor-like protein 38 [Source:UniProtKB/Swiss-

Prot;Acc:Q9LS79] 

-+>-



AT5G26690 -2.22844217 0.003649956 HIPP02 

AT2G47015 -2.22735099 0.006016585 MIR408 

AT3G54500 -2.22545106 2.35E-07 AT3G54500 

AT5G54203 -2.2252884 0.002405826 None 

ATCG00420 -2.2250407 0.003271058 NDHJ 

AT2G16720 -2.22340086 3.64E-05 MYB7 

AT2G46940 -2.22277386 0.000308932 AT2G46940 

Heavy metal-associated isoprenylated plant protein 2 

[Source:UniProtKB/Swiss-Prot;Acc:Q8GWS3] 

MIR408; miRNA [Source:TAIR;Acc:AT2G4 7015] 

BEST Arabidopsis thaliana protein match is: dentin 

sialophosphoprotein-related (TAIR:A T5G64170.1); Ha. 

[Source:TAIR;Acc:AT3G54500] 

None 

NAD(P)H-quinone oxidoreductase subunit J, chloroplastic 

[Source: UniProtKB/Swiss-Prot;Acc:P567 54] 

Transcription factor MYB7 [Source:UniProtKB/Swiss-

Prot;Acc:Q42379] 

unknown protein; BE ST Arabidopsis thaliana protein match is: 

unknown protein (TAIR:A T3G62070.1); Ha. 

[Source:TAIR;Acc:A T2G46940] 

........ 
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AT4G17090 -2.21945763 

AT2G18970 -2.21809561 

A T2G42250 -2.2175626 

AT3G24520 -2.21719574 

AT5G01215 -2.21408156 

AT3G57460 -2.21016888 

AT5G64905 -2.20969675 

ATIG72770 -2.20938907 

3.44E-05 BAM3 Beta-amylase 3, chloroplastic [Source:UniProtKB/Swiss­

Prot;Acc:023553] 

0.00613071 AT2G18970 At2g18970 [Source:UniProtKB/TrEMBL;Acc:064627] 

0.006311388 CYP712Al 

0.000742122 HSFCl 

Cytochrome P450, family 712, subfamily A, polypeptide 1 

[Source:UniProtKB/TrEMBL;Acc:048532] 

Heat stress transcription factor C-l [Source:UniProtKB/Swiss­

Prot;Acc:Q9L V52] 

0.004199682 AT5G01215 other RNA [Source:TAIR;Acc:AT5GOI215] 

0.001472543 AT3G57460 Catalytic/ metal ion binding / metalloendopeptidase/ zinc ion 

binding protein [Source:UniProtKB/TrEMBL;Acc:F4J3D6] 

0.005301192 PEP3 Elicitor peptide 3 [Source:UniProtKB/Swiss­

Prot;Acc:Q8LAX3 ] 

4.97E-I0 HAB 1 Protein phosphatase 2C 16 [Source: UniProtKB/Swiss­

Prot;Acc:Q9CAJO] 
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AT2G27660 -2.20928146 0.001027535 

AT2G07682 -2.20863546 0.00461610 1 

AT3G28580 -2.2082802 0.005077725 

AT2G30140 -2.20633123 1.17E-06 

AT5G63195 -2.20614237 0.006412343 

AT1G61680 -2.20320995 0.001590559 

AT5G17760 -2.2030497 1AOE-05 

AT3G23240 -2.19656923 0.002095607 

AT2G27660 

None 

AT3G28580 

UGT87A2 

AT5G63195 

TPS14 

AT5Gl7760 

ERF1B 

Cysteine/Histidine-rich Cl domain family protein 

[Source:UniProtKB/TrEMBL;Acc:Q9ZUW8] 

None 

AAA-ATPase At3g28580 [Source:UniProtKB/Swiss-

Prot;Acc:Q9LJJ7] 

UDP-glycosyltransferase 87 A2 [Source:UniProtKB/Swiss-

Prot;Acc:064733] 

other RNA [Source:TAIR;Acc:A T5G63195] 

S-( + )-linalool synthase, chloroplastic [Source: UniProtKB/Swiss-

Prot;Acc:Q84UVO] 

AAA-ATPase At5g17760 [Source:UniProtKB/Swiss-

Prot;Acc:Q9FN75] 

Ethylene-responsive transcription factor lB 

[Source:UniProtKB/Swiss-Prot;Acc:Q8LDC8] 
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AT5G66620 -2.19531029 2.58E-05 

AT3G20395 -2.19333443 0.0020256 

AT4G15430 -2.18594351 7.57E-05 

AT1G33950 -2.18544595 0.006165375 

AT2G19190 -2.18402966 0.000789592 

AT4G27590 -2.17690162 0.000780566 

AT4G27260 -2.17662789 0.0004431 

DAR6 

AT3G20395 

AT4G15430 

IAN7 

SIRK 

AT4G27590 

GH3.5 

Protein DA 1-related 6 [Source: UniProtKB/Swiss-

Prot;Acc:Q9FJX8] 

RINGIU-box superfamily protein 

[Source: UniProtKB/TrEMBL;Acc:Q 1 G3M 1] 

CSC1-like protein At4g15430 [Source:UniProtKB/Swiss-

Prot;Acc:Q8VZM5] 

Immune-associated nucleotide-binding protein 7 

[Source:UniProtKB/Swiss-Prot;Acc:Q9C8V2] 

Senescence-induced receptor-like serine/threonine-protein 

kinase [Source:UniProtKB/Swiss-Prot;Acc:064483] 

Heavy metal transport/detoxification superfamily protein 

[Source: U niProtKB/TrEMBL;Acc:F 4J JN9] 

Indole-3-acetic acid-amido synthetase GH3.5 

[Source:UniProtKB/Swiss-Prot;Acc:081829] 
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ATIG51890 -2.17387098 0.000516699 ATIG51890 Leucine-rich repeat protein kinase family protein 

[Source:TAIR;Acc:ATI G51890] 

AT4G21500 -2.17335317 2.13E-08 AT4G21500 At4g21500 [Source: UniProtKB/TrEMBL;Acc:065415] 

ATIG32960 -2.17231332 0.004783473 SBT3.3 Subtilisin-like protease SBT3.3 [Source:UniProtKB/Swiss-

Prot;Acc:Q9MAP5] 

AT3G30180 -2.16998555 3.20E-19 CYP85A2 Cytochrome P450 85A2 [Source:UniProtKB/Swiss-

Prot;Acc:Q940V4] 

AT3G56408 -2.16960133 0.007675897 AT3G56408 other RNA [Source:TAIR;Acc:A T3G56408] 

AT4G24700 -2.16888738 0.000451968 AT4G24700 Uncharacterized prote in At4g24700 

[Source: UniProtKB/TrEMBL;Acc:Q9SB65] 

AT1G09540 -2.16846026 0.003329841 MYB61 MYB61 [Source:UniProtKB/TrEMBL;Acc:AOA178WLE4] 

AT2G38470 -2.16782242 8.60E-05 WRKY33 WRKY33 [Source:UniProtKB/TrEMBL;Acc:AOA384L4W4] 

AT4G30180 -2.16659025 2.75E-05 BHLH146 Transcription factor bHLH146 [Source:UniProtKB/Swiss-

Prot;Acc:Q9SUM5] 

--~ 
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AT1G13340 -2.16515636 

AT5G64810 -2.16358582 

AT1G79270 -2.16222786 

AT1G33420 -2.16204733 

ATCG00160 -2.16197075 

AT5G 15581 -2.16062816 

AT5G60900 -2.15920542 

ATIG21050 -2.15915282 

0.001906673 ATIG13340 Regulator ofVps4 activity in the MVB pathway protein 

[Source: UniProtKB/TrEMBL;Acc:Q9FX63] 

0.007786217 WRKY51 Probable WRKY transcription factor 51 

[Source: UniProtKB/Swiss-Prot;Acc:Q93 WU9] 

2.98E-05 ECT8 Evolutionarily conserved C-terminal region 8 

[Source:UniProtKB/TrEMBL;Acc:Q9FPE7] 

0.00201343 ATIG33420 PHD finger protein Atlg33420 [Source:UniProtKB/Swiss­

Prot;Acc:Q9C810] 

4.58E-05 RPS2 30S ribosomal protein S2, chloroplastic 

[Source: U niProtKB/S wiss-Prot;Acc:P 5 6 797] 

0.007225424 AT5G 15581 Putative uncharacterized protein T20K14_200 

[Source:UniProtKB/TrEMBL;Acc:Q9LF23] 

0.00160841 RLKI receptor-like protein kinase 1 [Source:TAIR;Acc:AT5G60900] 

5.35E-09 ATIG21050 Protein ofunknown function, DUF617 

[Source:T AIR;Acc:A TI G21 050] 
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AT3G54830 -2.15804248 

ATIGI0155 -2.15435119 

ATIG29195 -2.15365625 

AT2G46400 -2.15275612 

A T5G59670 -2.15252948 

ATMG00370 -2.1518881 

ATIG69260 -2.14747118 

AT3G12320 -2.14461238 

1.30E-06 AT3G54830 None 

0.001654387 ATPP2-AI0 Phloem protein 2-AI0 

[Source: UniProtKB/TrEMBL;Acc:F 4 12R3] 

1.91E-05 ATIG29195 Atlg291901F28N24_12 

[Source:UniProtKB/TrEMBL;Acc:Q9LP48] 

0.005153719 WRKY46 Probable WRKY transcription factor 46 

[Source:UniProtKB/Swiss-Prot;Acc:Q9SKD9] 

0.001865764 AT5G59670 Receptor-like protein kinase At5g59670 

[Source: U niProtKB/S wiss-Prot;Acc: Q9FN94 ] 

0.006964196 ORF199 

0.001920011 AFPl 

2.77E-06 LNK3 

Uncharacterized mitochondrial protein AtMg00370 

[Source:UniProtKB/Swiss-Prot;Acc:P93296] 

Ninja-family prote in AFPl [Source:UniProtKB/Swiss­

Prot;Acc:Q9LQ98] 

LNK3 [Source:UniProtKB/TrEMBL;Acc:AOAI78VJK8] 
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AT5G52760 -2.14218511 

AT1G07390 -2.14132959 

AT5G14760 -2.14032207 

ATIG01560 -2.1399495 

AT2G02930 -2.13893175 

AT5G66640 -2.1380394 

AT4G 16690 -2.13390019 

AT4G 14390 -2.13371601 

0.005416496 HIPP14 

4.27E-08 AtRLPl 

0.000490961 AO 

0.002564184 MPK11 

0.00038919 GSTF3 

0.001443061 DAR3 

0.000649132 PPD 

Heavy metal-associated isoprenylated plant protein 14 

[Source: U niProtKB/S wiss-Prot;Acc: Q9L TE 1 ] 

Receptor like protein 1 

[Source: UniProtKB/TrEMBL;Acc:F 4HQM4] 

L-aspartate oxidase, chloroplastic [Source:UniProtKB/Swiss­

Prot;Acc:Q94AY1] 

Mitogen-activated prote in kinase Il [Source:UniProtKB/Swiss­

Prot;Acc:Q9LMM5] 

Glutathione S-transferase F3 [Source:UniProtKB/Swiss­

Prot;Acc:Q9SLM6] 

DA 1-related prote in 3 [Source:T AIR;Acc:A T5G66640] 

Probable pheophorbidase [Source:UniProtKB/Swiss­

Prot;Acc:023512] 

0.006288326 AT4G 14390 Ankyrin repeat family protein 

[Source:UniProtKB/TrEMBL;Acc:F4JVF4] 
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ATIG47510 -2.13162194 0.002732398 IP5Pll 

AT2G21560 -2.13118895 0.000285463 AT2G21560 

AT2G32680 -2.12965495 0.002979499 AtRLP23 

AT2G26692 -2.12957972 0.0069795 AT2G26692 

AT5G61350 -2.12952908 0.004852321 AT5G61350 

AT3G48630 -2.12929971 0.005554434 AT3G48630 

AT3G02380 -2.12796911 0.000587401 COL2 

AT3G04300 -2.12777006 0.000336321 AT3G04300 

Type IV inositol polyphosphate 5-phosphatase Il 

[Source:UniProtKB/Swiss-Prot;Acc:Q5EAF2] 

Nuc1eolar-like prote in 

[Source:UniProtKB/TrEMBL;Acc:Q9SIK3] 

Receptor like protein 23 [Source:UniProtKB/Swiss-

Prot;Acc:048849] 

other RNA [Source:TAIR;Acc:AT2G26692] 

Probable receptor-like prote in kinase At5g61350 

[Source:UniProtKB/Swiss-Prot;Acc:Q9FLJ8] 

unknown protein; BEST Arabidopsis thaliana protein match is: 

unknown protein (TAIR:AT3G44150.1); Ha. 

[Source:TAIR;Acc:AT3G48630] 

'Zinc finger protein CONSTANS-LIKE 2 

[Source: Un iProtKB/S wiss-Prot;Acc: Q965 02] 

At3g04300 [Source:UniProtKB/TrEMBL;Acc:Q9M8Y6] 

VI 
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AT3G14770 -2.l2716439 7.93E-07 SWEET2 

AT4G01680 -2.12662314 2.32E-05 MYB55 

ATIG29640 -2.12313438 0.002146577 ATIG29640 

AT5G53970 -2.121241 lA2E-05 AT5G53970 

AT5G52640 -2.12120263 0.003370829 HSP90-1 

AT5G02780 -2.11919135 0.006068088 GSTLI 

AT3G62100 -2.11840471 0.000550619 IAA30 

ATMG01390 -2.ll796937 0.001241213 RRN18 

Bidirectional sugar transporter SWEET 

[Source:UniProtKB/TrEMBL;Acc:AOAI78VM79] 

Myb domain protein 55 

[Source:UniProtKB/TrEMBL;Acc:Q9ZS14] 

Atl g29640 [Source: UniProtKB/TrEMBL;Acc:Q9C7N7] 

Probable aminotransferase TAT2 [Source:UniProtKB/Swiss-

Prot;Acc:Q9FN30] 

Heat shock protein 90-1 [Source:UniProtKB/Swiss­

Prot;Acc:P27323] 

Glutathione S-transferase LI [Source:UniProtKB/Swiss­

Prot;Acc:Q6NLBO] 

Auxin-responsive protein (Fragment) 

[Source:UniProtKB/TrEMBL;Acc:COSVF9] 

Mitochondrial18S ribosomal RNA, which is a component of the 

30S small subunit of mitochondrial ribosome. The rRNA is 

...... 
VI 



AT5G22500 -2.11729917 

ATCG01130 -2.11567994 

AT5G49620 -2.11449768 

ATCG00280 -2.11322136 

AT2G16060 -2.10872547 

AT5G39610 -2.10838629 

AT5G57770 -2.10639206 

0.00027013 FAR1 

0.009900827 YCF1.2 

0.006638724 AtMYB78 

0.001796621 PSBC 

0.003332105 AHB 1 

0.000523837 NAC92 

degraded by a polynucleotide phosphorylase-like protein 

(AtmtPNPase). [Source:TAIR;Acc:ATMGO 1390] 

Fatty acyl-CoA reductase 1 [Source:UniProtKB/Swiss­

Prot;Acc:Q39152] 

y cfl protein [Source:TAIR;Acc:A TCGO 1130] 

myb domain prote in 78 [Source:TAIR;Acc:AT5G49620] 

Photo system II CP43 reaction center protein 

[Source:UniProtKB/TrEMBL;Acc:AOA1B1 W4T4] 

NSHB 1 [Source:UniProtKB/TrEMBL;Acc:AOA384KL50] 

NAC domain-containing protein 92 [Source:UniProtKB/Swiss­

Prot;Acc:Q9FKAO] 

0.010237302 AT5G57770 Plant protein ofunknown function (DUF828) with plant 

pleckstrin homology-like region 

[Source:TAIR;Acc:AT5G57770] 

-VI 
N 



AT2G32210 -2.10544574 0.00213669 

AT3G14570 -2.10362612 2.54E-07 

AT3G49980 -2.10309097 0.004982867 

AT5G55970 -2.10085058 2.38E-06 

AT5G48900 -2.10002583 7.22E-I0 

AT4G23215 -2.09830432 0.002954218 

AT2G46270 -2.09811855 2.22E-07 

AT5G59090 -2.09688592 0.008540727 

AT2G32210 

CALS8 

AT3G49980 

AT5G55970 

AT5G48900 

None 

GBF3 

SBT4.12 

Cysteine-richltransmembrane domain A-like prote in 

[Source: U niProtKB/TrEMBL;Acc:Q9SKX9] 

Putative cali ose synthase 8 [Source:UniProtKB/Swiss-

Prot;Acc:Q9LUD7] 

F-box and associated interaction domains-containing protein 

[Source: UniProtKB/TrEMBL;Acc:AOA 1 19LPOO] 

RINGIU-box superfamily protein 

[Source: UniProtKB/TrEMBL;Acc:Q8LES9] 

Probable pectate lyase 20 [Source:UniProtKB/Swiss-

Prot;Acc:Q93WF1] 

None 

G-box-binding factor 3 [Source:UniProtKB/Swiss-

Prot;Acc:P42776] 

Subtilisin-like protease SBT4.12 [Source:UniProtKB/Swiss-

Prot;Acc:Q8L 7D2] 

Vl 
l;.l 



AT4G11521 -2.09451109 

AT4G13040 -2.09441563 

AT2G26010 -2.09392868 

AT2G29470 -2.09212501 

AT1G72060 -2.0919088 

AT4G28280 -2.0881085 

AT3G 13610 -2.08778818 

AT2G32200 -2.086498 

0.000386223 CRK34 Putative cysteine-rich receptor-like protein kinase 34 

[Source:UniProtKB/Swiss-Prot;Acc:Q8LPIO] 

1.80E-09 AT4G 13040 Integrase-type DNA-binding superfamily protein 

[Source:UniProtKB/TrEMBL;Acc:F4JS76] 

0.008569733 PDF1.3 PDF1.3 [Source:UniProtKB/TrEMBL;Acc:AOA178VSS6] 

0.010798536 GSTU3 Glutathione S-transferase U3 [Source:UniProtKB/Swiss­

Prot;Acc:Q9ZW28] 

0.006939864 ATIG72060 Serine-type endopeptidase inhibitor 

0.00193698 LLG3 

0.009363393 F6'Hl 

[Source: UniProtKB/TrEMBL;Acc:Q9C7G9] 

LLG3 [Source: UniProtKB/TrEMBL;Acc:AOA 178V2V8] 

Feruloyl CoA ortho-hydroxylase 1 [Source:UniProtKB/Swiss­

Prot;Acc:Q9LHN8] 

0.00041571 AT2G32200 unknown protein; BE ST Arabidopsis thaliana protein match is: 

unknown protein (TAIR:AT2G32210.1); Ha. 

[Source:TAIR;Acc:AT2G32200] 

VI 
~ 



AT4G11470 -2.08419036 

AT5G57010 -2.08394894 

ATI G54700 -2.08328644 

AT4G27290 -2.08280467 

ATl G49405 -2.08107478 

AT5G 19970 -2.07992236 

6.06E-06 CRK31 

0.005080301 IQM5 

cysteine-rich RLK (RECEPTOR-like protein kinase) 31 

[Source:TAIR;Acc:AT4G 11470] 

IQ domain-containing protein IQM5 [Source:UniProtKB/Swiss­

Prot;Acc:Q058NO] 

0.009230618 ATIG54700 FUNCTIONS IN: molecular_function unknown; INVOLVED 

IN: biological~rocess unknown; LOCATED IN: 

mitochondrion; CONTAINS InterPro DOMAIN/s: Serine 

endopeptidase DegP2 (InterPro:IPR015724); BEST Arabidopsis 

thaliana protein match is: DegP protease 13 (/ .. ./T5G40560.1); 

Ha. [Source:TAIR;Acc:ATl G54700] 

0.00121741 AT 4G2 7290 Serine/threonine-protein kinase 

[Source:UniProtKB/TrEMBL;Acc:AOAI78VOJ5] 

0.002189653 AT1 G49405 CASP-like protein 5C3 [Source:UniProtKB/Swiss­

Prot;Acc:Q3ECT8] 

0.000728379 AT5G19970 unknownprotein; Ha. [Source:TAIR;Acc:AT5G19970] 

VI 
VI 



AT2G32540 -2.07985653 1.82E-08 

AT3G15518 -2.07735261 0.00091356 

AT5G03552 -2.07727206 0.00168852 

AT5G06865 -2.07541267 0.001408873 

AT5G11210 -2.0737925 0.00286626 

ATIG20310 -2.07253669 0.00747646 

AT3G48650 -2.0708346 0.004646196 

ATIG65970 -2.06626654 0.007438094 

AT3G26742 -2.0660289 0.003401149 

CSLB4 

AT3G15518 

MIR822A 

AT5G06865 

GLR2.5 

ATIG20310 

None 

PRXIIC 

AT3G26742 

Glycosyltransferase (Fragment) 

[Source: UniProtKB/TrEMBL;Acc: W8Q3D 1] 

Putative uncharacterized protein 

[Source: UniProtKB/TrEMBL;Acc:Q8G y A5] 

MIR822a; miRNA [Source:TAIR;Acc:AT5G03552] 

other RNA [Source:TAIR;Acc:AT5G06865] 

Glutamate receptor 2.5 [Source:UniProtKB/Swiss-

Prot;Acc:Q9LFN5] 

Syringolide-induced protein 

[Source:UniProtKB/TrEMBL;Acc:Q8L956] 

None 

TPX2 [Source:UniProtKB/TrEMBL;Acc:AOA178WKGO] 

unknown protein; FUNCTIONS IN: molecular_function 

unknown; INVOLVED IN: biological~rocess unknown; 

VI 
0\ 



AT4G38540 -2.06426432 

AT3G60520 -2.0640212 

AT3G51070 -2.06389753 

AT4G23810 -2.06222247 

AT3G08870 -2 .06158632 

AT2G47190 -2.06036969 

AT5G41750 -2.05970944 

AT5G07000 -2.05959461 

0.000783917 M02 

1.81E-07 AT3G60520 

0.00857764 AT3G51070 

1.21E-05 WRKY53 

0.000177241 AT3G08870 

LOCATED IN: endomembrane system; Ha. 

[Source:TAIR;Acc:A T3G267 42] 

Monooxygenase 2 [Source: UniProtKB/Swiss-Prot;Acc:081816] 

At3 g60520 [Source: UniProtKB/TrEMBL;Acc:Q9M207] 

Probable methyltransferase PMT27 [Source:UniProtKB/Swiss-

Prot;Acc:Q9SD39] 

Probable WRKY transcription factor 53 

[Source:UniProtKB/Swiss-Prot;Acc:Q9SUP6] 

Concanavalin A-like lectin protein kinase family protein 

[Source: UniProtKB/TrEMBL;Acc:AOA 1 19L TB8] 

0.001389722 ATMYB2 ATMYB2 [Source:UniProtKB/TrEMBL;Acc:Q39028] 

0.000519053 AT5G41750 Disease resistance protein (TIR-NBS-LRR c1ass) family 

[Source: U niProtKB/TrEMBL;Acc:Q9LSX5] 

6.93E-08 SOT14 Cytosolic sulfotransferase 14 [Source:UniProtKB/Swiss­

Prot;Acc:Q8GZ53] 

VI 
-.J 



A T4G3961 0 -2.05822511 

A Tl G04330 -2.05805021 

A T5G24080 -2.05772366 

AT5G07760 -2.05536211 

AT5G59590 -2.05473043 

AT1G07160 -2.0524167 

AT4G27410 -2.05153177 

AT5G06570 -2.05005617 

0.01018939 AT4G39610 At4g39610 [Source:UniProtKB/TrEMBL;Acc:Q9SV97] 

0.006518705 AT 1 G04330 Atl g04330 [Source: UniProtKB/TrEMBL;Acc:022691] 

0.006165375 AT5G24080 G-type lectin S-receptor-like serine/threonine-protein kinase 

At5g24080 [Source: UniProtKB/Swiss-Prot;Acc:Q9FL V 4] 

0.000429138 AT5G07760 forrnin homology 2 domain-containing protein / FH2 domain­

containing protein [Source:TAIR;Acc:AT5G07760] 

0.003236187 UGT76E2 Glycosyltransferase (Fragment) 

[Source: UniProtKB/TrEMBL;Acc: W8PUA4] 

0.005837386 ATIG07160 PP2C-type phosphatase AP2C2 

[Source:UniProtKB/TrEMBL;Acc:F6LPR6] 

0.00022529 RD26 NAC (No Apical Meristem) domain transcriptional regulator 

superfamily protein [Source:UniProtKB/TrEMBL;Acc:F4JIU9] 

0.000759017 AT5G06570 alpha/beta-Hydrolases superfamily protein 

[Source:TAIR;Acc:AT5G06570] 

...... 
Vl 
00 



AT5G45475 -2.0485283 0.012717858 

AT2G25090 -2.04719385 0.001317289 

AT5G24910 -2.04629285 0.007442885 

AT5G22460 -2 .04564257 0.001074348 

ATIG57560 -2.04159277 0.002732398 

AT4G19460 -2.03986098 0.000265303 

AT3G48240 -2.03875377 0.002425271 

AT5G58770 -2.03704535 0.000535642 

AT5G45475 

CIPK16 

CYP714Al 

AT5G22460 

AtMYB50 

AT4G19460 

AT3G48240 

AT5G58770 

Potential natural antisense gene, locus overlaps with 

A T5G45480 [Source:T AIR;Acc:A T5G454 75] 

Non-specifie serine/threonine protein kinase 

[Source:UniProtKB/TrEMBL;Acc:AOA178W078] 

Cytochrome P450 714Al [Source:UniProtKB/Swiss-

Prot;Acc:Q93Z79] 

Alpha/beta-Hydrolases superfamily protein 

[Source: UniProtKB/TrEMBL;Acc:Q9FMQ5] 

Atlg57560 [Source:UniProtKB/TrEMBL;Acc:Q9C695] 

UDP-Glycosyltransferase superfamily protein 

[Source:UniProtKB/TrEMBL;Acc:F4JT73] 

At3g48240 [Source:UniProtKB/TrEMBL;Acc:Q9STK4] 

Dehydrodolichyl diphosphate synthase 2 

[Source: UniProtKB/Swiss-Prot;Acc:Q56Y Il] 

........ 
VI 
\0 



AT3G21080 -2.03656817 

AT3G28540 -2.03630281 

AT2G29165 -2.03573253 

AT5G53030 -2.03436473 

AT1 G48745 -2.03307878 

AT4G17098 -2.03193477 

ATCG00270 -2.03143242 

ATI G63840 -2.02920962 

0.000122343 AT3G21080 ABC transporter-like protein 

[Source: U niProtKB/TrEMBL;Acc:Q9LJC4] 

0.008133719 AT3G28540 AAA-ATPase At3g28540 [Source:UniProtKB/Swiss­

Prot;Acc:Q9LH82] 

0.012717858 None None 

1.38E-05 AT5G53030 Uncharacterized prote in At5g53030 

[Source: UniProtKB/TrEMBL;Acc:Q9L VU9] 

0.000633939 ATIG48745 Putative uncharacterized protein 

[Source:UniProtKB/TrEMBL;Acc:QIG3El] 

0.005223892 AT4G 17098 other RNA [Source:TAIR;Acc:AT4G 17098] 

0.003667246 PSBD Photosystem II D2 protein [Source:UniProtKB/Swiss­

Prot;Acc:P56761] 

0.000126124 ATIG63840 Atlg63840/T12PI8_14 

[Source: U niProtKB/TrEMBL;Acc:Q9CAJ8] 

0\ 
o 



AT5G39820 -2 .02715589 

AT2G47140 -2.02573214 

AT1 G09080 -2.02557862 

AT2G2911O -2.02503695 

AT5G 10670 -2.02420663 

AT1G66960 -2.02375918 

A T5G57240 -2.02258485 

AT4G 13580 -2.02258462 

0.011244179 ANAC094 

0.002630032 SDR3B 

0.00780328 MED37B 

0.000280778 ATGLR2.8 

0.012483961 None 

Putative NAC domain-containing protein 94 

[Source:UniProtKB/Swiss-Prot;Acc:Q9FIW5] 

Short-chain dehydrogenase reductase 3b 

[Source: U niProtKB/S wiss-Prot;Acc: Q94 K 41 ] 

Probable mediator of RNA polymerase II transcription subunit 

37b [Source:UniProtKB/Swiss-Prot;Acc:Q8HIB3] 

Glutamate receptor 

[Source:UniProtKB/TrEMBL;Acc:AOA178VW76] 

None 

0.012821974 ATIG66960 Terpenoid cyclases family prote in 

[Source:T AIR;Acc:A Tl G66960] 

0.000211836 ORP4C 

0.011615444 DIR18 

ORP4C [Source: U niProtKB/TrEMBL;Acc:AOA3 84 LHK8] 

Dirigent protein 18 [Source: UniProtKB/Swiss­

Prot;Acc:Q9TOH8] 

0\ 



AT4G24150 -2.02254973 

AT1G08630 -2.02152364 

ATCG00830 -2.01909754 

AT1G67328 -2.01612344 

AT5G24200 -2.01545931 

AT2G32190 -2 .01291092 

AT4G16680 -2.01018685 

AT2G19660 -2.00939159 

0.000401013 GRF8 

0.008693502 THAl 

0.002020465 rp12-A 

Growth-regulating factor 8 [Source:UniProtKB/Swiss­

Prot;Acc:Q9SU44 ] 

Probable low-specificity L-threonine aldolase 1 

[Source:UniProtKB/Swiss-Prot;Acc:Q8RXU4] 

50S ribosomal protein L2, chloroplastic 

[Source: UniProtKB/TrEMBL;Acc:AOA lB 1 W 512] 

0.013172945 ATI G67328 other RNA [Source:TAIR;Acc:AT1 G67328] 

0.005500583 AT5G24200 alpha/beta-Hydrolases superfamily protein 

[Source:TAIR;Acc:AT5G24200] 

0.003049274 AT2G32190 Cysteine-rich/transmembrane domain A-like protein 

[Source: UniProtKB/TrEMBL;Acc:Q9SKY 1] 

0.000786029 AT4G 16680 P-Ioop containing nucleoside triphosphate hydrolases 

superfamily protein [Source:TAIR;Acc:AT4G 16680] 

7.35E-05 A T2G 19660 CysteinelHistidine-rich CI domain family protein 

[Source:TAIR;Acc:AT2G 19660] 

0\ 
N 



AT1G53090 -2.0090146 

A T3G42800 -2.00869498 

AT2G21320 -2.00831833 

AT2G07734 -2.00696803 

AT5G08790 -2.00687685 

AT2G27420 -2.00647567 

AT1G30370 -2.00583191 

AT1G72240 -2.00188373 

AT4G30290 -2.00097848 

4.58E-07 

2.98E-05 

SPA4 SPA4 [Source:UniProtKB/TrEMBL;Acc:AOA178WBAO] 

AT3G42800 Protein BIG GRAIN 1-like C [Source:UniProtKB/Swiss­

Prot;Acc:Q9M2B3 ] 

0.006288326 BBX18 B-box zinc finger protein 18 [Source:UniProtKB/Swiss­

Prot;Acc:Q9SJU5] 

0.003163213 A T2G07734 Alpha-L RNA-binding motif/Ribosomal protein S4 family 

protein [Source:T AIR;Acc:A T2G07734] 

0.001323631 NAC081 Prote in ATAF2 [Source:UniProtKB/Swiss-Prot;Acc:Q9C598] 

0.014552908 AT2G27420 Cysteine proteinases superfamily protein 

[Source:UniProtKB/TrEMBL;Acc:Q9ZQH7] 

0.004963239 AT1G30370 DLAH [Source:UniProtKB/TrEMBL;Acc:AOAI78W2K8] 

0.008358888 AT1 G72240 Uncharacterized protein T9N14.5 

[Source: UniProtKB/TrEMBL;Acc:Q9C7T 1] 

0.001290645 XTH19 Xyloglucan endotransglucosylase/hydrolase 

[Source: UniProtKB/TrEMBL;Acc:AOA 178UU22] 

........ 
0\ 
VJ 



AT1G66540 -2.00024519 

AT4G 16670 -2.00003247 

0.003172505 ATIG66540 Atlg66540 [Source:UniProtKB/TrEMBL;Acc:A2RVN3] 

0.000517208 AT4G 16670 At4g16670 [Source:UniProtKB/TrEMBL;Acc:Q5HZ31] 

0-, 
~ 



(4755) PciI 

(4653) DrdI 

(4455) PspFI 
(4451) BseYI 

NSpI (4759) 

BSpQI - SapI (111) 

BuHl (327) 

BbsI (437) 
HpaI (501) 

165 

(4582) BssSoI \ 

~=-=-=p==I:::; ___ 
13 

(4213) AcuI 

(3580) AsiSI - PvuI -

(3492) EcoNI 

(3237) NruI 

(2998) EcoRV 

pDONR™221 
4761 bp 

XmnI (1052) 

PsU (1167) 
BfuAI - BspMI (1170) 

BsaI (1276) 
BstXI (1305) 
BmgBI (1384) 

BsaBI* (1405) 
TspMI - XmaI (1416) 

SmaI - SrfI (1418) 

BbvCI (1561) 

BstZl7I (1754) 
BssHII (1791) 

BamHI (1832) 
ScaI (1874) 

BtgI - NcoI - StyI (1986) 

(2598) BuAI 

(2291) BspEI 

BpmI (2171) 

EcoRI (2287) 

Supplementary Figure 1. Gateway pDONR TM221 vector. 
Gateway donor vector with recmbinational sites attP 1 and aatP2, and kanamycin resistance 
marker. pDONR T - 21 has a pue origin for high plasmid yields and universal MI3 sequencing 
sites. 



(10,418) PspOMI 
(10,412) Xbal 

(10,406) BamHI 
(10,403) Smal 

(10,401) KpnI - TspMI - Xmal 
(10,397) Acc651 

(10,205) BSU36:1:.=::::~:::::::::::::::~~ty (10,184) SSpl -

Apal (0) 
Zral (4) 

AIIUI (6) 

(9920) Afel-----~\...__--.... =--____ 
(9747) AIIr·~1 ======:==v 

(9683) FspAl 
(9591) Pvull 

(9481) AflII 

(9286) MauBI 

(8451 ) BstEn 

(7777) HpaI 

(6704) BstZl7I 

(6509) PluTI 
(6507) Sfol 

(6506) Narl 
(6505) Kasl 

(6214) Agel 

Destination Vector-pB7FWG2 (NLS::347) 
10,422 bp 

(5800) Bs pOI" - Cial" 

(5604) BslWI 

Supplementary Figure 2. Gateway destination vector pB7FWG2,O. 

166 

PshAI (1753) 

Stul (2348) 

EcoS3kl (2542) 
Sad (2544) 
Hlndm (2546) 
PmeI (2593) 

Gateway destination vector with recmbinational sites attRI and aatR2, and spectinomycin 
resistance marker. pB7FWG2,O has a 35S promoter bar gene for selection, and Egfp at the 
C-terminal fusion to the prote in (N-terminal fusion to fluorescence tag). 



(65 14) Pst! - SbtI ~ 

(6353) AhdI ___ 

(6234 ) BanD 
(6153) BamHI 

(6147) Xbal 

(6137) HlndUI D~ 
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!. 

,~ 
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c::> '<s> ... 

" ~ %., .. ~ 

(4795) Eco010Sll - PpuMI 
(4753) B.pHI 

(4752) BpmI 

(4330) 

167 

Acil (1207) 

BslWI (2166) 

BspDI· - Cial· (2362) 

Fspl (2499) 

Nrel (3064) 

Sspl 

Supplementary Figure 3. pCambia-lxmCherry construct vector map. 
The pCambia-lxmCherry construct was modified from the original vector pCambia-1380. Tt has 
kanamycin resistance marker and 35S promoter bar gene for selection. 



(11,119) EcoOl091 - PspOMI 
(11,113) XbaI 

ApaI (0) 
ZraI (4) 

AatII (6) ( 11,107) BamHI 
(11,104) SmaI 

(11,102) KpnI - TspMI - XmaI 
(11,098) Acc6S1 

AhdI (572) 

(8226) HpaI 

(10,906) Bsu361 
(10,885) SspI -----==""n 

pK7WG2 (2xmCherry) 
11,123 bp 

(7153) BstZ171 

BspDI* - ClaI* 

(6053) BsiWI 

Supplementary Figure 4. Gateway destination vector pB7WG2. 

PasI (4500) 

168 

PshAI (2202) 

HindIII (2995) 
PmeI (3042) 

Gateway destination vector with recmbinational sites attRI and aatR2, and kanamycin resistance 
marker. pB7WG2 has a 35S promoter bar gene for selection. 



(6377) PmlI 

(6282) BspEI* 

(5825) XcmI 

(5614) BmgBI -

g 
o 
10 

PvuI (0) 
(7419) DraIII 

pGBKT7 (Mlp37347) 
7691 bp 

BsaBI (268) 

(4824) NslI 

(4275) PluTI ---~ --:fIII/:I;=:=_=;:====r"''' 
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(4155) PflFI - Tthlll1 
(4052) NmeAIII 

AvrIl (3433) 

BstBI (3590) 

RsrII (3755) 

169 

Supplementary Figure 5. Yeast two-hybrid "bait" vector for expressing proteins fused to 
the GAL4 DNA-binding domain. 
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SbfJ (12) 
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9479 bp 

(4986) AfiD 

_---- BsaBI (1009) 

ADHl romoter 

(1766) 
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oza se uence 

Ndel (1969) 
sm (1980) 
ECO RI (1989) 

BspDI - Cial (3501) 
PspXI (3521) 

Supplementary Figure 6. Yeast two-hybrid "prey" vector for expressing proteins fused to 
the GAL4 activation domain. 



ANNEXB 

V ACUOLAR MEMBRANE STRUCTURES AND THEIR ROLES 
IN PLANT-PATHOGEN INTERACTIONS 

Mst Hur Madina, Md Saifur Rahman, Huanquan Zheng, and Hugo Germain 

Annex B contains a published review article, containing about the role and targeting 

of vacuolar substructure in plant immunity and pathogenesis 

1 have equally participated in writing the review with the first author. 1 have written 

the part entitled Markers to study the vacuolar structures, the vacuole in plant-pathogen 

interaction, and carried out structural illustration. 
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Vacuolar membrane structures and their roles in plant- pathogen 
interactions 
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Key message Short revlew focusslng on the role and targeUng of vacuolar substructure ln plant immunlty and 
pathogenesls. 
Abstract Plants lack specialized immune cells, therefore each plant cell must defend itself against invading pathogen . A 
typical plant defense strategy is the hypersen itive response that results in host cell death at the ite of infecûon, a process 
largely regulated by the vacuole. In plant cells , the vacuole is a vital organelle that plays a central IOle in numerous funda­
mental processes, such as development, reproduclion, and cellular response to biotic and abiotic sûmuli . It shows divergent 
membranous structures that are continuously transforming. Recent technical advances in visualization and live-cell imaging 
have significantly allered our view of the vacuolar structures and their dynamics. Understanding the active nature of the 
vacuolar structures and the mechanisms of vacuole-mediated defense responses is of great importance in understanding plant­
palhogen interactions. In this review, we present an overview of the current knowledge about the vacuole and its internai 
structures, as weil as lheir IOle in planl-microbe interacûons. There is 50 far Iimited informaûon on the modulation of the 
vacuolar structures by pathogens, but recent re earch has identified the vacuole as a possible target of microbial interference. 

Keywords Tonoplast · Vacuole · Bulb · Transvacuolar strand · Plant defense 

Introduction 

The plant vacuole and its function in the cell 

Unlike cells from other organisms, plant cells have a 
uniquely large and prominent organelle called the vacuole, 
occupying 90--95% of the cell's volume (Owens and Poole 
1979). The vacuole has important physiological funclion , 
one of the main being the preservation of turgor pressure 
against the cell wall, thus supporting the structura] slability 
of the ceU and of the surrounding tissue (Marty 1999). Il also 
serves as a storage tank holding many dilTerent malerials 
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needed by the cells, including but not Iimited to: sugars, 
metabolites, carbohydrates, lipids, amino acids, enzymes, 
pro teins and anthocyanins (Marty 1999; Paris et al. 1996). 
ln addition, the vacuole stores toxic ions and many other 
compounds that play a IOle in the defense against bacterial 
pathogens and herbivores (Martinoia et al. 2012; Van der 
Hoorn and Jones 2004). 

Depending on tissue and cell types, vacuoles are diverse 
in their morpbologies and functions (Swanson et al. 1998). 
Two main types are found in plants, the protein storage 
vacuoles (pSV) and the Iytic vacuoles (LV) and they are 
functionally dislinct (Hoh et al . 1995; Paris et al . 1996; Rob­
inson et al. 1995). The typical storage comparlment PSVs 
are most abundant in seeds (Epimashko et al . 2004; Hoh 
et al . 1995; Otegui et al. 2005 ; Paris et al . 1996; Swanson 
et al. 1998) and are formed during seed development and 
maturation. They accumulate large amounts of slorage pro­
teins, which are synthesized in the endoplasmic reticulum 
(ER) and delivered into vacuoles via lhe prevacuolar com­
plex (Sansebastiano et al. 2017), where they remain stored 
until they are mobilized during germinalion and seedling 
growth (Bewley and Black 1994). PSVs also store defense 
protein for the response against microbial palhogens and 
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herbivores. AIter seed imbibition, PSVs are converted into 
Iytic vacuoles (Bewley and Black 1994; Wang et al . 2007), 
which are the predominant compartments occurring in veg­
etative cells and are also called vegetative vacuoles. The 
identity of each vacuole is determined by its pH and by the 
presence of pecific proleins known to be localized to PSVs 
or LVs, such as tonoplast intrinsic proteins (TlPs), which are 
Integral membrane proteins found in specific vacuolar mem­
branes (Jauh et al . 1999; Johnson et al . 1989). For ex ample, 
the PSVs have a neutral pH and are defined by the presence 
of Q- and .5-tonoplast intrinsic prote in (TIP), whereas the 
LVs have an acidic pH and are manced by y-TIP (Jiang et al. 
2000; Jauh et al . 1999). 

Vacuoles are increasingly recognized for their role in 
cellular signaling during growth (Zhang et al. 2014), the 
immune responses (Hatsugai and Hara-Nishimura 2010) 
and the regulation of cell death (CD) (Hara-Nishimura 
and Hatsugai 2011; Koyano et al. 2014). However, liule 
is known about vacuolar structures and their roles in the 
defense response again t pathogens. Several reviews have 
summarized the interactions between the plant vacuole and 
pathogenic microbes (Hara-Nishimura and Hatsugai 2011 ; 
Hatsugai et al. 2006). Here, the first section of this review 
focuses on the most up-to.<Jate insights about the plant vacu­
olar tructures and dynamics and vacuolar markers. The last 
section focuses on the role of the vacuole and vacuolar struc­
tures in plant-pathogen interactions. 

Vacuolar structures 

Recent advances in the visualization of the vacuole together 
with developments in image analysis has revealed the highly 
organized and complex morphology of the vacuole as weil 
a its dynamics. The plant vacuole is surrounded by a mem­
brane barrier known as the tonoplast, which separates the 
vacuolar content from the cytoplasm (Fig. 1). The semi­
permeable tonopla t maintains a balance of nutrients and 
ions inside and outside of the vacuole, thus keeping a suit­
able turgor pressure in the plant tell. 

The tonoplast not only surrounds the typical large vacu­
ole but also Olher transient and mobile structures such ru 
tran vacuolar st rands (TVS) and bulbs, represented in 
Fig. 1 (Ruthardt et al. 2005; Uemura et al. 2002). TVSs 
are dynamic thin tubular structures thattraverse the central 
vacuole, containing cytoplasm and even small organelles 
(Uemura et al. 2(02). Moreover, TVSs provide a direct con­
nection between the perinuclear cytoplasm and the cortical 
cytoplasm of the cell and as such they act as an important 
transport route for the di. tribution of the cytoplasmic con­
tent, including the smaller organelles (Grolig and Pierson 
2000; Nebenftihr et al. 1999). Indeed, it was observed that 
Golgi bodies (Nebenftihr et al . 1999), mitochondria (Van 
Gestel et al. 2002), endosomes (Ove~ka et al . 2005; Ruthardt 
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Fig. 1 Schemalic diagram JrCscnts the vacuole and vacuolar struc­
tures in plant cclls. The vacuole structures tonoplast. TVS, bulb. 
IVSP, nucleus. nuclcolus, and plasma membmne are shown with 
arrowheads and the cytosolic How wilh arrows. 1VS transvacuolar 
structures, IVSP intravacuolar spherical structure 

et al. 2005), and amyloplasts (Saito et al. 2(05) dynamically 
move through the TVSs. Additionally, they play a role in the 
positioning of the nucleus (Katsuta et al . 1990; Kumagai and 
Hasezawa 2001 ; Williamson 1993). The dynamics of the 
TVS depends on the actin cytoskeleton; consequently, the 
disruption of the actin filaments leads to the loss of the trans­
vacuolar strands and inhibition of their movement (Kovar 
et al . 2000; Kutsuna et al . 2003; Tominaga et al. 2000). 

On the other hand, the bulbs are highly dynamic spherical 
tructure between 1 and 22 Ilm of diameter located in the 

vacuolar lumen (Madina et al . 2018; Saito et al. 2(02). 3-D 
reconstruction of electronic microscopic images indicates 
that the bulbs are formed of a double membrane and cyto­
plasmic material is detected between the two lipid bilayers 
(Saito et al . 2002). This double membrane of the bulbs is 
responsible for lheir brighter nuorescence signal compared 
to that of the lonoplast membrane (Saito et al. 2002). Similar 
to the dynamics of the TVSs, the movement of the bulbs i 
dependent on actin (Beebo et al. 2009; Uemura et al. 2002). 
However, whether bulbs are naturally occurring structures 
has recently been questioned by Segami et al. (2014), as they 
proposed lhat sorne bulb are arlifacts due to the dimeriza­
tion of the GFP moiety of tagged tonoplaslic protein , while 
intravacuolar spherical structures (IVSP) form naturally. The 
IVSPs are difTerent from bulb in norescence intensity (two­
folds the nuorescence intensity of the lonoplast vs. 3 or more 
folds for the bulbs) and thickness of the double membranes 
(Segami et al . 2014). These structure are also less abundant 
in cells and are believed to temporarily store membrane com­
ponent , however, whether IVSPs are independent structures 
remains to be resolved (Segami et al. 2014). This model also 
need to be further explored as GFP dimerization alone can­
not explain the accumulation of bulbs in the YFP-2xFYVE 
A. thalialla line, as this marker binds to the membrane via 
a protein-lipid interaction and nOl a transmembrane domain 
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(Saito et al. 2011 ). Two functions have been proposed for 
bulbs; firstthey may be involved in tonoplastic proteins deg­
radation inside of the vacuole (Maîtrejean et al . 20 Il; Saito 
et al. 2002). On the other hand, they may he use fui for rapid 
cell expansion by serving as membrane reservoirs (Saito 
et al . 2002). Recently, Han et al . (2015) even proposed that 
bulbs may not have pecific functions other!han the transient 
accumulation of tonoplast and cytoskeletal proteins untilthe 
bulb membrane is reabsorbed back into the tanoplast. Thus, 
the definitive function and biogenesis mechanism of bulbs 
still need to he fully elucidated. 

Markers to study the vacuolar structures 

The large central vacuole can be easily detected as a large 
transparent region in the plant cell as seen in light micro -
copy (Marty 1999), whereas the fine structure of the tono­
piast and the intravacuolar compartments had mostly been 
studied by electron microscopy (Gaffai et al. 2007; Gao et al. 
2015; Morita et al. 2002; Saito et al . 2002). Thedevelopment 
of chemicals and fluorescent prote in markers made possible 
the use of live-cell imaging to study the vacuole in a more 
detailed manner, which allows a greater understanding of its 
structure and dynamics under different growth conditions 
and various stress types (Reisen et al. 2005). Two different 
approaches for visualizing the plant vacuolar structures are 
presented here in below: chemical and protein markers. For 
selecting a particular technique, it is importantto be aware 
of its advantages and limitations. 

Chemical markers 

To date, a number of nuorescentlchemical dyes have 
been identified for taining the tonoplast and vacu­
olar membranous structures (presented in Table 1). 
For example, the well-known amphiphilic styryl 
dyes , FM 1-43 (N-(3-triethylammoniumpropyl)-4-
(4-(dibutylamino)styryl) pyridinium dibromide) and FM4-
64 (N-(3-triethylammoniumpropyl)-4-(4-diethylamioophe­
nylhexatrienyl) pyridiniurn dibromide), are valuable and fre­
quently used chemical dyes for vital staining of the tonoplast 
(i .e. taining in live cells) (Kim et al. 2001; Kutsuna and 
Hasezawa 2002 ; Kutsuna et al. 2003; Leshem et al . 2006; 
Okubo-Kurihara et al. 2008; Parton et al. 2001; Silady 
et al . 2008; Tanaka et al. 2007). The FM4-64 has also been 
reported for staining transvacuolar strands (Kutsuna and 
Hasezawa 2002; Kutsuna et al. 2003; Silady et al . 2008; 
Tanaka et al . 2007) and bulbs (Kim et al. 2001; Silady et al. 
2008; Tanaka et al. 2007). The FM dyes initially stain the 
plasma membrane, then small cytoplasmic compartments, 
and finally reach the tonoplast in a process that is time, tem­
perature, and energy-dependenL ln genera!, to label the tono­
piast with FM dyes, the cells are pulsed labeled for severa! 
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minutes and then chased for severa! hours in fresh medium. 
The optimal duration of the chase period depends on the traf­
ficking activity of the cells . ln the initial stage of the chase 
period, the dyes simultaneously label the tonoplast and the 
other endomembrane componenlS, incIuding the endosomal 
organelles and developing cell plates (Higaki et al. 2008; 
Kutsuna and Hasezawa 2002; Ov~ka et al. 2005; Parton 
et al . 2001; Tanaka et al. 2007; Ueda et al. 2001 ; Vermeer 
et al . 2006), whereas a longer chase period is required to 
visualize only the tonoplast (Emans et al. 2002; Kutsuna 
and Hasezawa 2002; Ueda et al. 2001 ). ln addition ta the FM 
dyes, BCECF (2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxy­
fluorescein) fluorescently labels the vacuolar lumen, the ton­
oplast, the transvacuolar strands, and the bulbs (Higaki et al . 
2007; Kutsuna and Hasezawa 2002; Mitsuhashi et al. 2000; 
Swanson et al. 1998; Toyooka et al. 2006). Vital staining 
using dyes is rapid, simple to perform, and compatible with 
the concomitant visual.ization of fluorescently tagged protein 
markers. However, this method has severa! limitations, in 
either sensitivity or specificity, and vital dyes themselves 
can sometimes introduce artifacts !hat mu t be taken care 
of during sample preparation or live cells imaging (Melan 
1999; Schnell et al. 2012). 

Protein markers 

ln addition to chemical markers, many marker proteins 
tagged with fluorescent proteins are used to label the tono­
piast and the vacuolar structures in living cells (Table 1). 
Most orthose markers are integral membrane proteins. with 
the except.ion of YFP-2xFYVE which lacks a tran membrane 
domain and bind to pho. phatidylinositol 3-phosphate (Saito 
et al . 2011 ). As YFP-2xFYVE labels bulbs more intensely 
!han the tonoplasl, it suggests !hat PI3P is more concentrated 
in the bulbs (Vermeer et al. 2006; Saito et al . 2011 ). How­
ever, not aIItonoplast markers can also label bulbs, showing 
that bulb membranes are qualitatively different than tooo­
piast membranes (Saito et al. 2002). For example, y-TlP­
GFP was found to be concentrated in tonoplast and bulbs, 
whereas GFP-AtRAB7c, another toooplast marker, did nO! 
give any fluorescent signal in bulbs from transgenic plants, 
although the presence ofbulbs in these Iines was confirmed 
by transmission electron microscopy (Saito et al . 2002). 
Sorne aquaporin isoforms also pecifically label tonoplast 
or bulb, for example TlP2;I-GFP excIusively localizes in 
the tonoplast but does notlabelthe bulbs in salt-treated root 
cells. whereas TlP 1; 1 relocalized into intracellular spheri­
cal tructures hypothesized to be toooplast compartmentali­
zation domains pecialized for degradation of this isoform 
(Boursiac et al . 2005). ln addition, two candidate effectors 
of pathogens have been observed to target the tonoplast and 
ton op 1 ast-derived structures (TVSs and bulbs): HaRxLRI7 
from the oomycete Hyaloperollospora ambidopsidis (Hpo) 
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Table 1 Chernical and protein markerli for labeling tonoplasl, TVS, and bulœ 

Narne of proteins 

Prolcin markers 

Nitrale transporter (chloride channel a: CLCa) 

garnma-TIPs 

ô-TIP 

B-TIP2:1 

Small G protein (AtRab75c) 

BobTIP26-I-GFP 

Cwbohy<hte lranspaler 

Phosphale lransporter homo log GFP 

MClal transporter 

Syntaxin (Vam3 or SYP22) 

Lipocalin 

CCDI 

Ca2+ transporter 

ZnH transporter 

Malnle transporter 

Organic calioo transporter 

Phospholipase-like protein 

AtIREG2 

K+ transporter 

Cylœhrome P450 

Phosphatidylinosilol 3-phosphate p-obe (2xFYVE) 

GF!': EBD 

YFP-AtRabG3c 

Tonoplasl polassium channel 1 (TPKI)-GFP (AITPK1 -
GFP) 

DURi79 Membrane Protein 1 (DMPI)-enhanced GFP 
(DMPI-eGFP) 

Vacuolar H+-pyrophosphatase (VHPI )-GFP 

Mulalion of sorne genes 

Vacuole defcclive gene (l'cl 1) 

rbbl 

Pathogen's p-olein marker 

Mlpl24357 

HpaRxLR 

Chemical markers 

FM 143 

FM4-64 

~ Springer 

Tonoplast TVS 

./ X 

./ X 

./ X 

./ ./ 

./ ./ 

./ X 

./ ./ 

./ ./ 

./ X 

./ X 

./ X 

./ X 

./ ./ 

./ X 

./ X 

./ X 

./ X 

./ X 

./ X 

./ X 

./ X 

./ X 

./ X 

./ X 

./ X 

./ X 

./ X 

./ ./ 

./ ./ 

./ ./ 

./ ./ 

./ ./ 

./ ./ 

./ X 

./ 

Bulbs 

X 

X 

./ 

./ 

./ 

X 

X 

./ 

X 

./ 

X 

./ 

./ 

X 

X 

X 

X 

X 

X 

X 

X 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

./ 

X 

./ 
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Table 1 (cominued) 

Name of proleins TonoplaSI TVS Bulbs References 

BCECP (2',7'-bis-(2-carboxyethyl)-5-(aro-6)-carboxy- .; 
Huon:scein) 

.; label, X nollabel 

(Bozkurt et al . 2015; Caillaud et al . 2012) and Mlpl24357 
from the fungus Melampsom larici-poPlllina (Mlp ) (Madina 
et al. 2018), and they can he used to study those organelles. 
The GFP-tagged marker proteins a1low the visualization of 
the vacuole and vacuolar structures wilhoUl further experi­
menlal manipulations once the transgenic lines are con­
structed. Although thL is a powerful technique, it is labo­
rious, lime-consuming, and often nOl praclical for many 
laboratories (Melan 1999; Schnell et al . 2012). 

Proteln distribution and motliity of tonoplast 
and bulbs 

Protein distribution 

The complexity and dynamic changes in vacuolar lumen 
content raise the question of how cells regulate the move­
ment of these materials between the cytosol and the vacu­
ole. A controlled transport across the tonoplast is essential 
for appropriate plant responses to environ mental condition 
and for adequate intracellular signaling. The tonoplast con­
tains numerous prOleins that facilitate the transport of water, 
ions and metabolic products across the membrane (Marti­
noia et al . 2012; Zhang et al . 2014). ln response to variation 
in the cytoplasmic environments, the activity of tonoplas t 
enzymes, transporters, and channels is changed and thus 
they regu late the material exchange between the cytoplasm 
and the vacuolar lumen, maintaining cellular homeostasis. 
For example, H+ -ATPase (V-ATPase), H+ -pyrophos­
phatase (V-PPase), and water channel (aquaporins) have 
been characterized and their roles in the regulation of trans­
port across the membrane have been discussed (Hedrich 
2012; Martinoia et al . 20 12; Neuhaus and Trentmann 2014). 

On the other hand, the Iipid of the tonoplast provide an 
essential molecular environment for the activity of the mem­
brane prOleins and serve as a barrier hetween the cytoplasm 
and the vacuolar lumen. Interestingly, lipids and protein 
in the tonoplast are nOl a lways uniforrnly distributed and 
tend to be enriched in particular regions, termed membrane 
micro-domains, that depend on sphingolipids and sterols 
(Ku umi et al. 2005; Lillemeier et al. 2006; Minami et al. 
2009). For example, the tonoplast of Ambidopsis suspension 
cultured ceUs contains micro-domains with higher ratios of 
the saturated phospholipids phosphatidylcholine (PC) and 

(Higaki el al. 2007; Kulsuna and Hasezawa 2002; Milsu­
hashi e l al. 2000; Swanson et al . 1998; Toyooka e l al. 
20(6) 

phosphatidylethanolamine (PE) in which the vacuolar-type 
prOlon ATPase (V-ATPase) was more abundant in detergent­
resistant microdomains and appeared to be unevenly di s­
tributed in the tonoplast, whereas the vacuolar-type proton 
pyrophosphatase (V-PPase) was distributed evenly (Yoshida 
et al. 2013). Another study howed a similar non-uniforrn 
distribution of the V-ATPase in the tonoplast of isolated 
maize roOl ce lls (Kluge et al . 2004) and detergent-resistant 
micro-domain containing a high percentage of sphingolip­
ids, free sterols and saturated fally acids were described in 
the tonoplas t of sugar-beet roOlS (Ozolina et al. 2011). The 
causes of Lhis precise distribution of Iipids and proteins in 
the tonoplast membrane are nOl fully elucidated yet; how­
ever, the environ mental conditions seem to act as impor­
tant regulators . For example, under phosphate deficiency 
the Arabidopsis phospholipase D PLDÇ2 adopts an uneven 
distribution in which the higher concentrations of PLDÇ2 
were preferentially positioned close to mitochondria and 
chloroplasts and thus facilitated transfer between them and 
the tonoplast (Yamaryo et al . 2008). 

Recently, it was observed that an overexpre ion in Ambi­
dopsis of tonoplast intrinsic prOlein 1;1 fu sed with GFP 
(AtTlPl ; I-GFP) labels bOlh the tonoplast and the bulb 
of the central vacuole but that the distribution of the GFP 
fus ion prOlein was uneven along the tonoplast (Seebo et al. 
2009). We also observed an uneven di tribution of a nuo­
rescently tagged prOlein on the bulb membrane (Video SI ). 
Our recent report showed thatthe candidate efTector prOlein 
M1pI24357-eGFP loca lized in the tonoplast, the TVS, and 
the bulbs of the vacuolar lumen in Arabidopsis (Madina 
et al. 2018). With the help of high-resolution 3-D imaging, 
we observed two difTerent distribution pallerns on the bulb 
membranes for both Mlp124357-eGFP and the well-known 
tonoplast marker y-TlP-YFP. This suggests the existence of 
two distinct bulb types in these cells, sorne with a regular 
marker protein distribution and some with exclusion spots . 

Protein mobility 

Previous description of bulb and prevailing models indicate 
they are connected to the tonoplast (Saito et al. 2002). On the 
other hand, a report pointed out the qualitative difTerences 
in prote in content between the bulb membranes and the 
tonoplast (Saito et al. 20 Il). To investigate the connection 
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between the two membranes, protein mobility between 
the tonoplast and the bulb membrane have recently been 
assessed using fluorescence recovery after photobleaching 
(FRAP) of young Arobidopsis leaf epidermal cells express­
ing Mlp124357-eGFP or y-TI P-YF P. We observed the 
fluorescence of the bleached region of tonoplast recovered 
completely within 1 min, whereas the bleached area of the 
bulb membrane fluorescence did not recover (Madina et al. 
2018). This observation can be explained by two mecha­
nisms : (1) something restrict. the movement of proteins 
from the tonoplast to the bulb membrane even though they 
are still auached or (2) the connection between the bulbs and 
the tonoplast is severed. Both explanations provide a new 
perception of the biology of tonoplast-derived substructures, 
but further investigation is required to validate the molecular 
mechanisms implicated. Furthermore, as the vacuole play a 
crucial role in plant defen e, the role of protein distribution 
and motility in tonoplast and bulbs should also be the focus 
of more research. 

The vacuole in plant-pathogen interaction 

The immune system of plants lack antibodies or phagocy­
tosis. As an alternative, they have evolved numerous lay­
ers of active defense responses again t pathogens including 
the production of reactive oxygen species (ROS) (Alvarez 
et al. 1998; Zhang et al. 2003) and of many other defense 
compounds su ch as phytoalexins (Neuhaus et al. 1991 ). 
Attempted attacks by avirulent pathogens may result in cell 
death (CD) in the tissues, a reaction known as the hyper­
sensitivity response (HR), which is effective in preventing 
the spread of pathogens (Mur et al . 2007). These defense 
responses largely depend on the plant's vacuole because 
it constitutes a reservoir for many secondary metabolites , 
hydrolytic enzymes and defense proteins (Marty 1999; Hara­
Nishimura and Hatsugai 201 1). 

Secondary metabolites 

Plant vacuoles accumulate a variety of secondary metabo­
lites including cyanogenic glycosides, benzoxazinoids, and 
phenolics, ome of which are thought to function as direct 
defenses against pathogens by reducing their performance, 
survival, and reproduction (Shitan 2016; Steppuhn et al. 
2004). For example, the well-known cyanogenic glycosides 
are stored in the plant vacuole as inactive precursors and 
are able to form toxic hydrocyanic acid (HCN) in response 
to tissue damage by different phytopathogens (Vetter 2000; 
Freeman and Beattie 2(08). A recent study reported that 
mutation of the cyanogenic 4-hydroxyindole-3-carbonyl 
nitrile (4-0H-ICN) pathway increases susceptibility to the 
bacterial pathogen Pselldomonas syringae in Arabidopsis, 
suggesting a role in inducible pathogen defense (Rajniak 
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et al. 2015). Benzoxazinoids are among the most important 
plant defense compounds for grasses (poaceae) and are also 
tored as inactive glucosides in the vacuole to avoid toxic­

ity to the plant itself(Niemeyer 2009; Handrick et al. 2016; 
Zhou et al. 2018). While some benzoxazinoids are con titu­
tively present, others are only synthesised foUowing patho­
gen infection. Upon tissue damage, they undergo enzymatic 
and chemical degradation to become the active benzoxazi­
noid form (Niemeyer 2009). Benzoxazinoids have also becn 
shown to act as defense . ignaling molecules and to induce 
callose deposition in response to the pathogenic fungal el ici­
tor chitosan in maize (Ahmad et al. 2011 ). Another large 
group of secondary metabolites implicated in defense are the 
flavonoids, which are widely distributed in terrestrial plants 
and serve as defense compounds in the plant-microbe inter­
action (Harborne and Williams 2000; Taylor and Grotewold 
2005 ; Grotewold 2006). For example, silencing of aG-type 
ABC transporter of M. frlmcalll[a (MtABCG 10) results in 
a lower concentration of isoflavonoid in the roots which 
in turn re ults in increased growth of FlIsarium oxyspo­
mm, indicating that flavonoids play an important role in the 
defense against root-infecting pathogens (Banasiak et al . 
2013). Finally, the seed coat accumulates flavonoids to pro­
tect the embryo and the endosperm from external stresses 
such as UV radiation and pathogen infections (Lepiniec et al . 
2006; Shimada et al . 2006, 2018). 

Hydrolytic enzymes 

Like animal lysosome, plant vacuole con tains hydrolytic 
enzymes (e.g. aspartate proteinases, cysteine proteinases, 
and nucle.ases) that play an important role in the crucial 
events of plant cell death to prevent the spread ofbiotrophic 
pathogens (Bolier and Kende 1979; Wada 2013). As tirst 
reported by Jones almost two decades ago, the plant vacuole 
play an important role in the programmed cell death that 
occurs in response to biotrophic pathogen (Jones 2(01 ). 
Il was also reported that the vacuolar processing enzyme 
(VPE) is up-regulated during cell death associated with leaf 
senescence and laieraI root formation in Arabidopsis (Hat­
sugai et al . 2004). The same group contirmed that during the 
defense response, plants u e the vacuole content in both a 
destructive and a non-destructive way. The destructive path­
way is effective against virus infection, during which the ton­
oplast collapses and releases vacuolar hydrolytic enzymes 
called vacuolar processing enzymes (VPE) to suppress virus 
proliferation in the host cytosol (Hat ugai et al. 2004). The 
non-destructive way is effective again t extracellular bacte­
rial infections and involves the fusion of the plasma mem­
brane to the tonoplast, which allows the discharge of the 
vacllolar content, including the proleasome subunit PBA l, 
in the apopla t. This leads to a hypersensitive cell death 
which uppresses the bacterial proliferation (Hatsugai et al. 
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2(09). Interestingly, although structurally unrelated to cas­
pases, both the vacuolar processing enzyme and the protea­
sorne subunit PBA 1 exhibit a caspase-Iike activity (Hatsugai 
et al . 2(09). As it has been observed that proteasome defects 
impair the vacuole membrane fusion and VPE deficiency 
prevents virally induced hypersensilive cell death (Hatsu­
gai et al. 2004, 2009), the identification of PBAI and VPE 
substrates would help ID un rave 1 the molecular mechanisms 
oftonoplast breakdown or fusion with the PM. 

Defense proteins 

The defense proteins, including pathogenesis related pro­
teins (PR protein. ) (Neuhaus et al. 1991 ), myrosinases (Ueda 
et al . 2006), and lectins (Bowles et al. 1986), are located in 
the vacuole and act as an efTective second line of defense 
when a pathogen cau es tis ue damage. For example, over­
expre sion of the pathogen-inducible PRI gene in tobacco 
enhances resistance ID everal fung~ including Perollospom 
tabacina and Phytophthom parasitica f. .fp . nicotiallae, and 
to the bacteria Pselldomollas syringae pv. tabaci (Broekaert 
et al. 2(00). The association between PR-I proteins and 
enhanced resistance against oomycetes has al 0 been noted 
when PR 1 expression was transiently silenced by double­
stranded RNA interference in barley (Schultheiss et al. 
2(03). The myrosinases accumulate mainly in the vacuole 
of idioblastic myrosin cell. , a celltype specific to the abaxial 
side of the leaf known to accumulate myrosinases (Hoglund 
et al . 1991 , 1992; Thangstad et al. 1990, 1991 ). When plant. 
experience ti sue damage, the myro inases are released from 
the collapsed vacuoles of the myrosin cells and start the 
hydrolysis of their g1ucosinolates substrates to produce iso­
thiocyanates, which are toxic for bacteria. This chemical 
defense system is known as the myrosinase-glucosinolate 
system, which is also called the mustard oil bomb (Fuji et al . 
2016; Grubb and Abel 2006; Halkier and Gershenzon 2006; 
Hopkins et al. 2009; Kissen et al. 2009; Rask et al. 2000; 
Wittstock and Halkier 2(02). Moreover, overexpre sion of 
Ta-JAl , ajacalin-related lectin gene that resides in vacuole, 
has been found to increase resi tance to bacteria, fun gal , and 
viral pathogens in tobacco plant (Ma et al. 201 0). 

Vacuole dynamics 

The relation hip between vacuole dynamics and cell death 
during the defense response bas been discussed for over a 
decade (Jones 200 1). For example, during cell death of the 
tracheary element in Zinnia elegans, disintegration of the 
tonoplast was observed (Obara et al. 2001 ). Recent s tud­
ies have demonstrated that during cell death induced by a 
pathogenic signal such as the oomycete elicitor cryptogein 
from Phytophthora cryptogea or the bacteria Enyinia caro­
tovoro , the complex vacuole of BY-2 cells s implified and 
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then ruptured (Higaki et al. 2007; Hirakawa et al. 2015). 
This seem to be regulated by the vacuolar-Iocalized protease 
called VPE (Higaki et al. 20 Il ). The structural simplification 
of vacuoles is also observed in various proce ses involving 
program cell death, su ch a gibberellin-mediated cell death 
in central aleurone cells (Gao et al. 2015), embryogenesis 
of gymnosperms (Smertenko et al. 2(03), and leaf forma­
tion in lace plants (Gunawardena 2(07). However, it remain 
elusive whether implification of the vacuole is a typical 
process in defense-related CD. 

Tonoplast, TVS, and bulbs in plant-pathogen 
interaction 

Although the vacuole plays an important role in plant 
defense, little i known about the manipulation of plant 
vacuolar structures by pathogens. To date, only two efTec­
tor proteins, one from H. arabidopsidis and the other from 
M. larici-poplllilla, have been found to reside in the host 
tonoplast, TVS, and bulbs (Bozkurt et al. 2015 ; Caillaud 
etai. 2012; Madina et al. 2018). Such localization ofefTector 
proteins may indicate a pathogenic strategy to modulate the 
host vacuole and vacuolar structure to suppre the vacuole­
mediated defense response. For example, dynamic changes 
of the vacuolar structures are observed during cryptogein­
induced PCD in tobacco BY-2 cells (Higaki et al. 2(07). As 
iIIustrated in Fig. 2, immediately after cryptogein-treatmenl, 
no prominent structural changes of the ceUs were observed, 
rather, a complex vacuole structure featuring many trans­
vacuolar strands were seen and the nuclei localize in the 
central region of the cell (Fig. 2a). However, after sorne 
lime the TVS are gradually decreased in number and 
complexity and bulb structures appeared (Fig. 2b). Subse­
quently, bulb structures disappeared resulting the simpler 
vacuolar structure before the cell death (Fig. 2c, d). The 
simple-shaped vacuole weakened the tonoplast, leading to 
its ruptures, which sequentially would be lethal for the cell 
since it would dilute and acidify the cytosol and release cel­
lular reactive secondary metabolite and hydrolytic enzyme 
(Higaki et al. 2011 ). A similar kind of vacuolar simplifi­
cation was observed in BY-2 cell treated with culture fil­
trates of EnvillÎa carotovom, a plant pathogenic bacterium 
(Hirakawa et al . 2015), but in that situation the Iysis of the 
pla ma membrane seemed to occur while the vacuole was 
still intact. Il i. believed that the simplification of the vacu­
ole is crucial for the vacuolar breakdown, but how these 
phenomena are orchestrated remains to be elucidated. 

Conclusions and future perspectives 

Although the role of the vacuole in plant-pathogen interac­
tions bas recently attracted much attention, our knowledge 
of the pathogen manipulation of host vacuolar membrane 
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Rg.2 A schcmatic illustration of the rea-ganization of the vacuolar 
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strands and the nucleus localizes at the central region of the cell b 
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structures and trafficking remains minimal. As we have 
reviewed here, plant vacuolar tructures are highly organ­
ized and dynamic, and they are involved in many cellular 
proces es including plant-pathogen interactions. However, 
further studies are necessary to characterize the biogenesis 
mechanisms of bulbs and transvacuolar strands and to eluci­
date which physiological roles they play in the environ men­
tal responses of plants. Live-cell imaging using chemical 
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dyes or lIuorescently tagged proteins win undoubtedly serve 
as a critical technique to reveal the underlying mechanisms 
between vacuolar structural trafficking and plant-patbogen 
interactions and the use of plants defecti ve in specific trans­
port s teps in vacuolar trafficking will help to elucidate the 
intracellular itinerary of sti ll uncharacterized bulb mem­
brane prOleins. 
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A POPLAR RUST EFFECTOR PROTEIN ASSOCIA TES WITH PROTEIN 
DISULFIDE ISOMERASE AND ENHANCES PLANT SUSCEPTIBILITY 

Mst Hur Madina, Md Saifur Rahman, Xiaoqiang Huang, Yang Zhang, 

Huanquan Zheng and Hugo Germain 

Annex C contains an original article, in the article we further exploited the 

A. thaliana experimental system, discovered that this tonoplast-localized effector 

Mlp124357 from Melampsora larici-populina (Mlp) affects plant susceptibility to 

pathogens and tried to elucidate the mechanisms through which it does so. l have 

participated in writing and carried out in-silico experiments and analysis. 
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Abstract: Melampsora Inrici-popl/lilla (Mlp), the causal agent of Popl/II/s leaf rust, secretes an array of 
effectors into the host through the haustorium to gain nutrients and suppress immunity. The precise 
mechanisms by which these effectors promote virulence remain undear. To address this question, 
we developed a transgenic Arabidopsis line expressing a candidate effector, Mlp124357. Constitutive 
expression of the effector increased plant susceptibility to pathogens. A GxxxG motif present in 
Mlp124357 is required for its subcellular localization at the vacuolar membrane of the plant cell, 
as replacement of the glycine residues with alanines led to the delocalization of Mlp124357 to the 
nucleus and cytoplasm. We used immunoprecipitation and mass spectrometry (MS) to identify 
Mlp124357 interaction partners. Only one of the putative interaction partners knock-out line caused 
delocaJization of the effector, indicating that Arabidopsis protein disulfide isomerase-l1 (AtPDI-11) is 
required for the effector localization. This interaction was further confirmed by a complementation 
test, a yeast-two hybrid assay and a molecular modeling experiment. Moreover, localization results 
and infection assays suggest that AtPDI-ll act as a helper for Mlp 124357. ln summary, our findings 
established that one of Mlp effectors resides at the vacuole surface and modulates plant susceptibility. 

Keywords: fungal rust; effector; GxxxG motif; protein disulfide isomerase; helper protein; 
plant susceptibility 

1. Introduction 

During infection, plant pathogenic microbes deliver virulence proteins, known as effectors, 
into hostcells to overcome plant immunity and promote parasitic colonization through the manipulation 
of cellular processes [1). Once inside host tissues, effectors trafflc to various cellular compartments 
where they interact with host proteins or nucleic acids and exert their virulence function [2-6). To target 
these destinations, effectors possess domains or motifs in their sequence; for example, nucleus localized 
effectors can contain nuclear-Iocalized signals (NLS) and sorne chloroplast localized effectors may 
carry a transit peptide [4,7.8). Uncovering how effector proteins function inside the plant is key to 
understand pathogenicity mechanisms and to develop more resistant crops [9). Because investigating 
pathogenesis on crop species can be challenging. alternative approaches using heterologous expression 
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in Arabidopsis tlwliana and Nicotiana bentlullnina are extensively used in the functional investigation of 
effector biology [3,5,10-12). 

Host proteins that associate with effectors can be categorized as targets or helpers [13]. 
Target proteins are directly targeted and modulated by effectors to alter host œllular processes. 
For example, the bacterial effector HopZla interacts with positive regulators of immunity to inhibit 
thei.r activity [14), whereas the Psel/domonas syringae T3E AvrB effector binds to the Arabidopsis 
mitogen-activated protein kinase 4 (MPK4), a suppressorof immunity, to induce plant susceptibility [15]. 
On the other hand, helper proteins may act as co-factors to enable the function, the maturation, or the 
trafficking of an effector. Less information is available about helpers than about targets so far, perhaps 
as mutation in helpers may not directly enhance susceptibility to pathogens. For instance, the effectors 
AvrRPMl and AvrPto both require myristoylation for their activity, suggesting an interaction with a 
myristoyl transferase which would serve as a helper for their maturation [16,17]. A well-known helper 
is the importin-ex, a protein whose function is to mediate nuclear entry of NL5-<:ontaining proteins; 
several transcription activator-like (TAL) effectors and Crinlders were shown to require importin-« for 
their proper nuclear accumulation [7,18,19]. Regardless of whether host proteins act as an effector's 
target or helper, they are considered as host susceptibility factors [13]. 

Rust fungi (Basidiomycetes, Puccinia les) are obligate biotrophic parasites, infect numerous plant 
families and are the largest group of fungal pathogens [20). Several rust spedes are devastating 
plant pathogens affecting crops and thus food security [21). Melampsora larid-popl/lina (Mlp) causes 
rust disease on poplar leaves and lead to major yield losses in poplar plantations worldwide [22- 24]. 
Although poplar is not a food crop, this pathosystem can be used to better understand other rust 
pathosystems. Genome and transcriptome analyses have revealed that M. larici-popl//ina may have as 
much as 1184 small secreted proteins (SSPs) [25]. Among these SSPs, candidate secreted effector proteins 
(CSEPs) have been selected based on features such as expression in poplar leaves during infection and 
specificity to the Pucciniales order [2~28] . When expressed in N. benthamiana or A. tha/iana, several 
CSEPs of Mlp have been shown to accumulate in diverse œil compartrnents of leaf tissues such as 
the nucleus, the nucleolus, chloroplasts, mitochondria, and plasmodesmata [5,11]. To date, a number 
of Mlp effectors have been identified as promoting plant susceptibility as determined by in planta 
assays [2,11 ]. 

We reœntly reported that the candidate effector Mlp124357 accumulates in tonoplasts, 
transvacuolar strands, and bulbs [29]. ln this study, we further exploited the A. tl/QUana experimental 
system to discover that this tonoplast-Iocalized effector affects plant susceptibility to pathogens and we 
tried to eluddate the mechanisms through which it does 50. We used the combined methods of genetics, 
live-œil imaging, immunoprecipitation, and biochemical analysis to look for the interaction partners 
of Mlp124357 at the tonoplast. We show that the constitutive expression of this effector increases plant 
susœptibility to bacterial and oomycete pathogens. We demonstrate that a specific motif of Mlp124357 
is neœssary for its tonoplast localization and interaction. We also provide evidenœ through mass 
spectrometry, a genetic complementation test, a yeast-two hybrid assay (Y2H), and in silico modeling 
that Mlp124357 assodates with a protein disulfide isomerase (POl) which acts as a helper protein for 
this effector but not for other Mlp effectors having similar numbers of disulfide bridges. 

2. Materials and Methods 

2.1. Plants Material and GrawtIJ Conditions 

A. tl/Qliana and N. bentl/QlIliana plants were grown in soil (AgroMix), in a growth chamber after the 
seeds underwent a stratification period of 48 h at 4 oc. The plant growth chamber was maintained 
at 22 oC, 60% relative humidity, and with a 16 hl8 h lightjdark cycle. ln vitro culture of Arabidopsis 
was performed onto Petri dish containing V2 Murashige and Skoog medium (1/2 MS) and 0.7% agar. 
For the selection of the single-insertion homozygous transgenic plants, 15 mglmL Basta or 50 mwmL 
Kanamydn was used. 
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2.2. Cloning Procedures and Plasmid Construds 

The open reading frame (QRF) of Mlp124357 without the portion coding for its signal peptide 
was obtained from GenScript (Piscataway, NI. USA). The PDI-ll coding sequence was amplified from 
Arabidopsis. Amplicons were inserted into the pOONR221 vector (lnvitrogen, part of Thermo Fisher 
Sdenti6c, Waltham, MA, USA) by BP recombination reactions and then into the plant expression 
vectors pB7FWG2 or pK7WG2 by LR recombination reactions using Gateway technology (30). Ali the 
constructs were sequenced before transformation in Agrobacterium CSSCI . 

2.3. Protein Expression in N. bentl/amiana and A. tlraliana 

For transient protein expression, constructs were introduced into A. tUlllefocieus strain C58Cl by 
electroporation and delivered into leaf œlls of 4-week-old N. bentlramiana using the agroinfiltration 
method previously described (31 ). Briefly, recombinant bacterial strains were grown ovemight in yeast 

extract peptone (YEP) medium with spectinomycin (50 mgIL) then harvested, and resuspended into an 
infiltration buffer (10 mM MgClz and 150 J.1M acetosyringone) to obtain 0.5 unit of optical density at 
600 nm. One hour after resuspension, leaves were infiItrated on their abaxial side. The agro-infected 
leaves were collected at 2-days post infiltration for confocal microscopy. Stable A. tl/aliana transgenics 
were developed by introducing the constructs into A. tI/aliana (Col-O) using the A. tumefaciens-mediated 
floral dip transformation (same strain as used for agroinfiltration) method as previously described (32). 
Crossing between the transgenic line expressing the effector and the knockout lines was carried out by 
following the method as described by Madina et al. (29). 

2.4. Patlrogenlnfections Assay 

Bacterial infections were performed with 4-week-old Arabidopsis plants. Pseudomonas syringae pv. 
tomato (Pst) DC3000 was grown overnight at 28 oC and in6ltrated with a needle-Iess syringe on the 
abaxial side of the leaves at 0.001 optical density at 600 nm as previously descrïbed by Germain et al. 
2018 [11 ). Hyaloperonospora arabidopsidis (Hpa) Noc02 infections were performed with 2-week-old 
Arabidopsis plants using the spray inoculation method descrïbed by Dong et al. (33), edsl-2 allele was 
used as a control. Statistical significance was determined by Student' s t-test (p < 0.05) or one-way 
analysis of variance (ANQVA p < 0.05) complemented with Tukey's HSD test (34). 

2.5. Membrane Fractionation 

The membrane fractionation experiment was carried out according to the method of Widell and 

Larsson et al. (1981) with the modification applied in Germain et al. (2013) [35,36). Briefly, a two-phase 
separation method was used to separate membrane fraction of plant cells, and a U preparation steps were 
ma intained at 4 oC or on the ice. 3-5 g of fresh leaves from 3-weeks old Col-O-eGFP and MIp 124357-eGFP 
were homogenized with a knile blender in the homogenization buffer. The homogenized sam pie 
was 61tered twice through four layers of cheesecloth and centrifuged at 10,OOOx g for 10 min. Then, 
the supernatant was transferred to an ultracentrifuge tube and centrifuged at 50,OOOx g for 1 h. 
The supematant, containing soluble proteins was discarded and the membrane pellet was resuspended 
in IP Iysate buffer (10 mM MgClz, 50 mM Tris-HCI (pH 7.5), 100 mM NaCl, 0.1% Triton X-100, 1 mM 
PMSF, and IX cOmplete protease inhibitor cocktail) [37]. Affinity chromatography of the protein 
complexes were performed with GFP beads following the protocol by Serino G and Deng XW (2007). 
Proteins were eluted from the beads by heating the samples at 95 oC for 10 min and analyzed by 
standard SDS-PAGE followed by Western blotting or mass spectrometry. 

2.6. Sample Preparation for Mass Spectrometry 

Protein digestion and mass spectrometry experiments were performed by the Proteomics Platforrn 
of the Centre hospitalier universitaire of the Quebec Research Center, Quebec, Canada. Gel bands of 
interest were reduced and alkylated then digested with trypsin into peptides prior to mass spectrometry 
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analysis. Peptide samples were injected and separated by LC-MS/MS on a 5600+ triple TOF mass 
spectrometer (Sciex, Framingham, MA, USA) cou pied to an Ekspert NanoLC425 (Sciex). Peptide 
separation took place on a self-packed picofrit column (New Objective) with reprosil3u, 120A Cl8, 
15 cm x 0.075 mm internai diameter, (Dr Maisch). Peptides were eluted with a linear gradient from 
5-35% solvent B (acetonitrUe, 0.1% formic acid) in 35 min, at 300 nl/min. Mass spectra were acquired 
using a data-dependent acquisition mode using Analyst software version 1.7. Each full scan mass 
spectrum (400 to 1250 m/z) was folJowed by collision-induced dissociation of the twenty most intense 
ions. Dynamic exclusion was set for a period of 12 sec and a tolerance of 100 ppm. 

MGF peak List files were created using Protein Pilot version 45 software (Sciex). MGF sample 
files were then analyzed using Mascot (Matrix Science, London, UK; version 2.4.1). Mascot was 
set up to search against a contaminant database, an A. thaliana Uniprot database (82,874 entries) 
assuming the digestion enzyme trypsin. Mascot analysis was conducted with a parent and fragment 
ion mass tolerance of 0.10 Da. Carbamidomethyl of cysteine was specified as a fixed modification while 
deamidation of asparagine and glutamine and oxidation of methionine were specified as variable 
modifications; 2 missed c1eavages were allowed. 

Scaffold (version Scaffold3.8.4, Proteome Software Inc., Portland, OR) was used to validate 
MS/MS based peptide and protein identifications. Peptide identifications were accepted if they could 
be estabLished at greater than 5.0% probability to achieve an FOR less than 1.0% by the Scaffold 
Local FOR algorithm. Protein identifications were accepted if they could be estabLished at greater 
than 96.0% probability to achieve an FOR less than 1.0% and contained at least 2 identified peptides. 
Protein probabilities were assigned by the Protein Prophet algorithm [38]. Proteins that contained 
similar peptides and could not be differentiated based on MS/MS analysis alone were grouped to 
satisfy the principles of parsimony. AlI the mass spectrometry results were deposited in the Mass 
Spectrometry Interactive Virtual Environment (MASSIVE) database and made publicly available using 
the PXD021290 data identifier. 

2.7. Western Blot Analysis 

The presence of Mlp124357-eGFP, eGFP, and AtPDI-11-eGFP were determined by SDS-PAGE and 
western blotting. Leaf tissue was harvested from 2- 3 week-old stable transgenic plants and protein 
extracts were prepared as described [39]. The blot was probed with an oc-GFP-HRP antibody (1:500 
dilution, Molecular Probes, Santa Cruz Biotechnology, Dallas, TX, USA). The bands were revealed with 
the C1arityTM western ECLsubstrate (Bio-Rad) according to the manufacturer's recommendations. 

2.8. Con/oca/ Microscopy 

Small pieces of young leaves from A. tha/iaua or N. bentllQmiana were mounted in water between 
a slide and a coverslip and were immediately observed. Live-œll imaging was performed on Leica 
TCS SP8 confocal laser scanning microscope (Leica Microsystems) with a 40X/1.40 oil immersion 
objective. Images were taken at 1024 x 1024 pixels resolution using line-by-Iine sequential scanning 
(when appropriate). The excitation wavelength for eGFP was 488 nm and its emission was collected 
from 500 to 525 nm. Z-stacks of between 50 and 100 confocal images were acquired and used to 
generate three-dimensional (3-D) reconstructions using Leica TCS SP8 software (when required). 
The LAS AF Lite software (Version 3.3) and Adobe Photoshop CS6 were used for the post-acquisition 
images processing. 

2.9. RNA Extraction and Tran scriptome Aua/ysis 

RNA isolation was carried out as described previously [2]. Briefly, total RNA was extracted 
from 4-day-old Arabidopsis plants grown in Petri dishes and quantified before sending for sequencing. 
Ion Torrent Technology was used for Iibrary construction and sequencing (Université Laval, QuebecCity, 
Canada). Transcriptomics data were processed as reported previously [2] and all transcriptomic data 
were submitted to Genbank under project ID PRJNA608508. Gene Ontology (GO) enrichment of both 
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up- and down-regulated genes (having Q-value $ 0.05 and a fold-change ~ 3) were investigated using 
the Cytoscape software (version 3.1.1) with the plug-in ClueGO and CluePedia [40). 

2.10. Y2H Reporter Assays 

Coding sequences of Mlp124357 and AtPD/-11 without their signal peptide were c10ned 
into pGBKT7 (binding domain) and pGADT7 (activation domain), respectively, by homologous 
recombination in yeast strain Y187 or Y2H gold. Bait protein-encoding vector pGBKT7 expressing 
Mlp1243S7 and the prey protein-encoding vector pGADT7 expressing AtPDI-ll were transformed into 
the yeast strain Y2H gold accoroing to the C10ntech Y2H protocol. Transformants were plated along 
with a negative control onto yeast synthetic double dropout medium (000) lacking Leu and Trp and 
quadruple dropout selective medium (Qoo) lacking Trp, Leu, His, and Ade (Takara, Mountain View, 
CA, USA) and incubated at 30 oC for 3 to 4 days. For photographing, series of dilution (10-{), 10-1, 

10-2) were prepared for each transformant and 10 ~L were placed onto 000 and Qoo medium and 
incubated at 30 oC for 3 to 4 days. 

2.11 . Moleclliar Modelillg of the Proteil1s 

Three-dimensional structures of the Mlp124357 were produced through homology modeling 
using the online tool QUARK [41 ). AtPDI-ll and PtPDI structure homology-modeling was obtained 
from sequence alignment against the homology template of Protein Wsulfide-isomerase A3 (POB: 
6eny) using I-TASSER (42). The binding effidency of the effector to AtPDI-ll or PtPDI was determined 
using four different protein-protein docking servers C1uspro, Grammx, Patchdock, and ZDock [.u-46). 
The generated protein-protein complexes were visualized and analyzed through PyMOL [47,48]. 

3. Results 

3.1. Selectioll and Phylogel1etic Al1alysis of Mlp124357 

The analysis of M. /arici-poplllina 's genome revealed more than one thousand potential 
srnall-secreted proteins [25). To select candidate secreted effector proteins for functional investigation, 
we followed various criteria that were previously described [5,] 1): these included !hat the sequences 
must be of small size, possess a signal peptide and conserved cysteines, and must not have conserved 
sequences outside the order Pucciniales; they must a Iso be detected in infection structures. One of the 
small secreted peptides that met these criteria is M1p124357. It belongs to the family CPG4890, which 
contains 10 members and appears to be under positive selective pressure (27). Each member carries an 
N-terminal signal peptide region (amino acids 1-22 in the case of M1p124357) and encodes a short 
peptide 80-98 amino adds long (molecular weights 9-10 kOa) (Figure l A,B). 

The sequence identity ranges from 4(Hj()% between M1p124357 and the other family members 
(Figure l C). ln addition, this peptide contains eight cysteine residues, and its expressed sequence 
tag (EST) has not been detected in spores but is abundant in infected poplar leaves, supporting 
infection specific expression. With the exception of the members of ils close family, M1p1243S7 shows 
little similarity to other proteins, whether in Pucdniales or any other genus, indicating that it is a 
fairly unique protein in al1 kingdoms. Hence, the infection specific expression of Mlp124357 and its 
uniqueness triggered us to investigate ils localization and role ;11 plallta during infection. 
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Figure 1_ Selection and phylogenetic analysis of Mlp124357. (A) Schematic representation of protein 
topology of Mlp124357. N-tenninus of Mlp124357 rontains a secretory signal peptide (SP) (B) Multiple 
sequence alignment of the ten effector proteins that are the members of the M. larici-poplllina CPG4890 
SSP family. Predicted signal peptides (SP) are markecl with a line. Black boxes indicate conserved 
residues and grey boxes indicate similar residues. (C) Phylogenetic tree of the CPG4890 gene family, 
obtained with CLC workbench using the Kimura protein distance value and neighbor-joining tree 

method. Bootstrap values are indicated. 

3.2. Mlpl24357 Expression ill Planta Affects tlze Plant SlIsceptibility to 8aclerial and Oomycete Patlzogens 

To express Mlp124357 and determine its localization in planta, we cloned its coding sequence 

without the signal peptide tagged with enhanced Green Fluorescent Protein (eGFP) under the control of 
a CaMV355 promoter in a Gateway expression vector (Figure 2A). Then, we expressed the Mlp 124357 
fusion construct in wild-type Arabidopsis (Col-O) as a stable transgenic Line and also developed a control 
line expressing eGFP under the control of the sarne promo ter. Figure 51 shows that both proteins 
(eGFP and Mlp124357-eGFP) were expressed at the appropria te molecular weight. This result confirms 
that Mlp124357-eGFP is expressed in plan/n, is not furtherprocessed, and thus can be used for further 
investigations. The resulting transgenic plants are shown in Figure 2B. The plants expressing only 
eGFP are indistinguishabLe from the wild-type whereas the plants overexpressing MlpI24357-eGFP 
display narrower leaves, darker green leaves, chlorosis, and drying of the leave tips (Figure 2B)_ 
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Figure 2. Mlp124357 expression ill piailla affects the plant susceptibility to bacterial and oomyeete 
pathogens. (A) Schematic representation of the T-DNA construct used for in piailla expression of 

the Mlp124357 mature coding sequence. (8) Morphology of wild-type (Col-Q) expressing eGFP or 

M1p124357 -i!GFP. Photographs were tam from 4-week-old soil-grown plants. (C) Growth of PstDC3000 
bacteria in Arabidopsis. Leaves of each genotype were infiltrated with a PslDC3000 bacteriaJ suspension 

(00600 = 0.001) and the bacterial growth was rneasured on day 0 and day 3 aEter infection. Statistical 

significanœ was evaluated using a Student's I-Iesl (p < 0.05); asterisk indicates a statisticaJly signifieant 

difference between plants carrying effector and Col-().GFP. Pive replicates were used for each genotype; 
du, colony-forming unit. (D) Growth of H. arabidopsidis Noco2 in Arabidopsis. Each genotype was 

spray inoculated with H. arabidopsidis Noco2 spores (20,000 eonidiospores/mL) and the number of 

conidiospores was quantified 7 days aEter inoculation. Statistical significance was evaJuated using 
ANOVA (p < 0.05) with Tukey's test. Le tters denote a s ignificant differenœ between CoI-O-eGFp, 

M1p124357eGFP, and edsl . FW, fresh weight. 80th bacteriaJ and oomycete infection experiments were 

repeated at least three limes and representative data are shown. 

To evaluate if M1p124357 could interfere with the plant susceptibility te pathogens, we subjected 
control plants and plants expressing Mlp124357 to bacterial and oomycete pathogens. The plants 
expressing Mlp124357 harbored nearly 10-foid more Pseudomollas syringae pv. tomato DC3000 bacteria 
after three days than control plants, indicating that they are hypersusceptible to this bacteriaJ 
hemibiotrophic pathogen (Figure 2C). As rusts cannot infect A. tlmliana, we used H. arabidopsidis for our 
infection assay. Although H. arabidopsidis is not a rust (it is an oomyœte), it is a1soan obligate biotrophic 
pathogen that infects plants by making haustoria. Seven days after inoculation, we quantified the 
nurnber of spores and detected a significant increase in the susceptibility of Mlp124357-eGFP transgenic 
plants compared to Col-O (p < 0.05) (Figure 2D), but not as pronounced as the one observed in the 
hypersusceptible mutant line edsl, indicating that the effector does not make the plant as susceptible as 
the edsl-2 mutation. 
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3.3. Mlpl24357 Possesses a GxxxG Motif thnt ls Required for the Interaction witll TOlloplasts 

We have previously reported that Mlp124357 targets the tonoplasts in planta [29). However, 
Mlp124357 does not possess any transmembrane domain. Thus, we rationalized that Mlp124357 may 
interact with an integral tonoplast protein. We investigated the primary sequence of Mlp124357 and 
discovered a GxxxG motif (Figure 3A), which is known for mediating interactions with membrane 
proteins [49,50). The secondary structure of the Mlp124357 sequence was modeled as an alpha-helical 
wheel projection using helix prediction software (http://kael.net/helical.htm). The two glycines of 
the GxxxG motif at positions 76 and 80 were found on the same si de of the oc-helix (Figure 36, pink 
box). This amino acid orientation of the GxxxG motif can be involved in protein interactions between 
membrane proteins [51). 
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Figure 3. Mlp124357 possesses a GxxxG motif that is required for the interaction with tonoplasts. 

(A)Schematic representation of the GxxxG motif in the C-terminus region of MlpU4357. (B) A predicted 
helical wheel projection of MlpU4357. The glycine residues at positions 76 and 80 are indicated by 
square boxes. (C) Fluorescence imaging of N. bent/,amiana cells expressing eGFP fusions of MlpU4357 
and Mlp124357 CA mutant at 2 dpi using confocal mkroscopy of epidermal cells. (0) Morphology 

of each genotype. Photographs are from 4-week~ld soil-grown plants. (E) Leaves of each genotype 

were infiltrated with a PstOC3OOO bacterial suspension at 00 600 = 0.001 and bacterial growth was 
quantified in colony-forming units (du) on day 0 and day 3 after infection. One-way ANOYA (p < 0.05) 
with Tukey's test was performed. The asterisk indicates a s tati ticaUy significant difference between 

Col-<H!GFP, Mlp124357-eGFP, and Mlp124357GA-eGFP. Five replicates we.re used for each genotype. 
(F) Each genotype was spray inoculated with H. arabidopsidis Noco2 spores (20,00) conidiospores{mL) 
and the number of conidiospores was quantified 7 days after inoculation. Statistical significance was 
evaluated using one-way ANOYA with Tukey's test (significance set at p < 0.05). The asteriskdenotes 
a significant difle.renœ between CoI4eGFP, Mlp124357-eGFP, and Mlp124357GA-eGFP. FW, fresh 
weight. 80th bacterial and oomycete infection experiments were repeated at least three limes and 

representative data are shawn. 
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To investigate whether the two glycines are implicated in Mlp124357Iocalization, we carried out 
site-directed mutagenesis to substitute them into alanines (Ala). We generated a mutant construct 
Mlp12435j>G76A.cBOA fused in C-terminal to eGFP, which is hereafter referred to as Mlp12435j>GA. 
The fusion protein was transiently expressed in N. bentlmmiana leaves and its subceUular localization 
was assessed by confocallaser microscopy. The expression of wild type Mlp124357-eGFP was stiU 
detected in tonoplasts and bulbs of epithelial ceUs (Figure 3C). However, th.e replacement of the glycine 
residues with alanines led to the delocal.ization of the effector (Figure 3C). 

5ubsequently, to test whether the delocalization of Mlp124357 affects the activity of the effector, 
we developed a stable AralJidopsis transgenic line (Figure 3D) with the glycine mutant construct. 
The glycine mutant line no longer displayed the chlorotic phenotype on the leaves; rather, it was 
indistinguishable from WT plants (Figure 3D). We then confirmed that Mlp12435,cA locaJization 
in A. tlrnlinnn correlated with what was observed in N. bentlrnminnn, which is that Mlp124357-eGFP 
accurnulates in the tonoplast, transvacuolar strands, and bulbs while MlpU435~A accumula tes 
in the nucleus and cytoplasm (Figure 52). Further, these transgenic lines were used to perform 
infection assays to evaluate their susceptibility to pathogens. The plants expressing Mlp124357'=A 
showed a level of bacterial growth that was similar to control plants Col-O and Col-O-eGFP 
(Figure 3E). 5imilarly, inoculation experiment with H. aralJidopsidis spores demonstrated wiId-type Iike 
susceptibility of Mlp12435,cA-eGFP compared to Mlp124357-eGFP (p < 0.00(1) (Figure 3F). From these 
experirnents, we conclude that the GxxxG motif is required for the localization and the function of the 
MlpU4357 effector. 

3.4. Protein Disllifide lsomerase 11 as n Potentinl Plant lnteractor of Mlp124357 

5ince the Mlp124357 peptidic sequence lacks a transmembrane domain and that no 
post-translational modification (myristoylation, acetylation, or mannosylation) could be predicted, 
we rationalized that the smal1 secreted peptide rnay interact with a plant protein to achieve its 
tonoplastic localization. To identify putative interaction partners of Mlp124357 in membranes, we first 
assessed if it could be isolated from membrane enriched fractions. It appears that Mlp124357's 
association with the membranes is not very strong as it could aiso be detected in the supematant of the 
membrane fraction (Figure 53). Howeve.r, since Mlp124357 was mostly retained in membranes, we 
immunoprecipitated it from the membrane fraction using anti-GFP beads and subjected 5DS-PAGE 
gel bands to mass spectrometry to identify potential plant protein interactors. From the MS analysis, 
40 A. t!mliann proteins were identified as potential interactors of the MlpU4357 effector (Table 51). 
However, since Mlp124357 accumulates in the tonoplasts, we only selected five proteins predicted to 
be tonoplastic for further investigation (Figure 4A). 

To verify the potential interacting protein partners, we crossed knockout (KO) lines of four 
of those five tonoplasts proteins (Iine 5ALK-200520 could not be made homozygous) with the 
Mlp124357-eGFP transgenic line and then assessed Mlp124357-eGFP localization using confocal 
microscopy (Figure 4A). We hypothesized that if one of those proteins was an interactor serving 
as an anchor protein to Mlp124357 at the tonoplasts, the effector would change localization in the 
knockout line. lnterestingly, the absence of one tonoplast protein named protein disulfide isomerase Il 
(PD/-lI; gene ID: AT2G47470) led to the delocalization of MlpU4357-eGFP (Figure 4B and Figure 54). 
We confirmed that the delocalization was caused by the absence of POI-ll by complementing the 
knockout line with the wild-type Arabidopsis PDI-ll sequence, which restored Mlp124357-eGFP's 
localization. As Mlp's host is poplar, we also assessed by genetic complementation if the effector could 
interact with Populus triclrocarpa POl (AtPOI-lland PtPDI share about 87% sequence identity (Figure 55). 
We observed that both Arabidopsis PD/-Il and poplar POl could restore the tonoplastic localization of 
Mlp124357-eGFP in the pdi-ll KO background (Figure 4B panels IV and V). In addition, to verify the 
ceUular localization of AtPOI-ll or PtPOI, both were c10ned in fusion with eGFP (AtPDI-11-eGFP or 
PtPDI-eGFP), transiently overexpressed in N. bentlmllliana leaf ceUs by Agro-infiltration and observed by 
confocal rnicroscopy. The eGFP signal suggested a localization in both the tonoplasts and ER structures 
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(Figure 56). Overall. these results suggest that POl is required for the localization of Mlp124357 at 
the tonoplasts. We also assessed whether AtPDI-ll or PtPOI were in frame with the eGFP using 
immunoblot and found that both proteins are at the expected moJecular weight (Figure 51). 

A 
Genename Functions ln SAlKname 

AT2G33210 ATP binding, cappe< icn binding SAlJ(_120568 

AT5GI5650 In~amoleClJlar lransfer.se aclMty SALK _132152 

AT2G4747cr Proleln disu"lde lsomerase actiY1ly SAlK 135268 

ATlG04040 Acid phosphat .... actMty SAlIUl68225 

AT4G29810 Kinase actMty SAlK_200520 

Mlp1243s7GA • AtPDI-ll 

Figure 4. Protein DisuLfide Isomerase Il as a potential plant interactor of MLp124357. (A) The five 
tonopLast-localized proteins selected from the IP/MS List. (8) Interaction between M1pU43S7 and 
AtPDI-ll or PtPDI was detected by a genetic analysis/complementation test. Live-œll imaging ofleaf 
epidermal cells of each genotype. (C) Interaction between M1p124357 and AtPDI-ll or PtPDI was 
evaluated by Y2H. The plates were photographed 2 days after inoculation. 

Further confirmation of the interaction between Mlp124357 and AtPDI-ll or PtPDI was carried out 
using a Y2H assay. Ail construct combinations could grow on the double dropout media, indicating that 
the yeast had received both plasmids in ail cases (Figure 4C left panel). Independent co-transformation 
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experirnents showed that yeast co-expressing a bait-Mlp124357 construct with a prey-AtPDI-ll or 
a prey PtPOI construct was able to grow on quadruple dropout medium (Figure 4C), whereas 
the bait-Mlp12435~A construct did not grow (Figure 4C) when coexpressed with Arabidopsis or 
poplar POL The quadruple dropout media will enable the growth of the yeast only if there is a 
protein-protein interaction between the activation and binding domain of the GAL4 transcription 
factor. The irnmunoprecipitation, the complementation, and the Y2H results provide evidenœ that 
Mlp124357 associates with protein disulfide isomerase 11, which is required for the localization of the 
effector ;11 pla lita. 

3.5. Mo/eclliar Mode/il1g a/sa SI/pports tlle Associatio" of AtPDI-ll al1d M/pl24357 Effector 

To further assess the interaction between POl and the effector, we sought to use protein structures 
modeling. The three-dimensional (30) structure of Mlp124357 was built through the ab initio protein 
structure prediction software QUARK [41 ] (Figure 5A) because, as we mentioned earüer, Mlp124357 is 
a unique effector and no good template can be identified through template-based structure modeling, 
i.e., I-TASSER [52]. However, the 30 structure models of both AtPOI-ll and Pt POl were constructed 
using I-TASSER, with estimated template modeüng scores (TM-score) of 0.6 and 0.7, respectively 
(Figure 5B). 

Figure 5. Molecular modeling also supports the association of AtPDI-ll and Mlp124357 effector. 
(A) Ab initio structure of M1p124357. (8) Predicted structure and catalytic sites of PtPDI (teft-green) 
and AtPDI-ll (right-blue). TM-scores have values between 0 and 1, where 1 indicates a perfect 
match between two structures. (C) Functional approach of docking between Mlp124357 and PtPDI. 
(D) The orientation and interactions ofPtPDI-Mlp124357 (upper panel) and AtPDI-Mlp124357 Oower 
panel) complexes. 

Protein-protein docking was performed between Mlp124357 and AtPOI-11 or Pt-POl using 
different methods (e.g., Z-OOCK, ClusPro, PatchOock [43-45]). The top-ranked docking results 
from dHferent servers showed sirnilar binding poses of Mlp124357 bound to AtPDI-ll or PtPOI 
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(Figure 5C; a representative pose from Z-OOCK). Common catalytic residues (CY5:J){l49, GLY31/lSO, 
H[~2/1S1. and CY5JJ/152) are found in both AtPOl-ll and PtPOl (Figure 5B) and they are involved 
in weU-established hydrogen bonding networks with Mlp124357 (Figure 50). Hence the molecular 
mocleling seems to support the robust experimental data obtained so far and gives sorne insights on 
how the effector protein Mlp124357 interacts with i ts binding partner (e.g., AtPOI-ll and PtPOl). 

ln addition, to assess if the previously observed delocalization and phenotype suppression 
observed with the M1pI2435~A mutant is caused by impaired protein folding, generating a misfolded 
non-functional protein, we subjected the MlpI2435~A mutant to the same mocleling (Figure 57). 
The results indicate that the change of GXXXG to AXXXA causes a sirnilar albeit different folding 
of Mlp124357 (RM50: 7.23, TM: 0.3) whi.ch is sufficient to disrupt the binding affinity to the POl 
catalytic site. 

3.6. Tire Mlpl24357-PDI Association Takes Place ill ail Effector-Specific Mail/ter 

As prote in disuLfide isomerases catalyze the formation of a disulfjde bond between cysteine 
residues within proteins and as most effector proteins con tain several cysteine residues (nonnally 5-8), 
we considered that the interaction with POl-lI could be a general interaction between aU (or many) 
effectors and POl-Il . To detennine whether the interaction between Mlp124357 and AtPOl-Il was 
specific or general, we use the yeast two-hybrid system to assess the interaction between AtPOI-II prey 
and eight Mlp-effectors a Iso having several predicted disuLfide intramolecular bridges (Mlpll04486, 
M1pSII08708, Mlp772983, Mlp3351690, MlpI123281, M1p752166, M1p3353845 and M1pI51107359). 
The yeasts co-expressing the effectors with AtPOI-II did not grow on quadruple dropout medium, Iike 
the negative control (Figure 6). This result suggests that the interaction between POl-lI and Mlp124357 
is specific and that POl-Il does not serve as a general effector maturation interactor. 

SOI-LW (000) SO/-LWHA (QOO) 

10-0 10-1 10-2 10-0 10-1 10-2 

EV + AIPOI-11 

Mlp124357 +AtPOI-11 

Mlpl104486 + AtPDI-11 

Mlp51108708 + AIPOI-11 

Mlpn2983 +AIPDI-11 

Mlp3351690 + AIPOI-11 

Mlp1123281 + AtPOI- ll 

Mlp752166 + AtPOl-11 

Mlp3353845 + AIPOI-11 

Mlp151107359 +AtPOI-ll 

Mlp786274 + AtPDI-11 

Figure 6. The Mlp124357-POI association takes place in an effector-specific manner. Co-expression 
of a prey construct containing AtPDI-ll, with Mlp124357, Mlpll04486, MlpSl1œ708, Mlp772983, 
Mlp3351690, Mlpll23281, Mlp752166, MIp3353845, Mlp151107359, or Mlp786274 as baits in yeast 
to test interaction between PD! and effectors containing multiple cysteines. Yeast co~pre ing the 
indicated combination of bait and prey were spotted on the synthetic doubk! dropout medium Iacking 
leucine and tryptophan (SOI-LW (000)) to show the expression of both construcls and quadrupk! 
dropout medium lacking leucine, tryptophan, histidine, and adenine (SO/-LWHA (QOO)) to reveal an 
interaction. OnIy yeast co-expressing AtPDI-ll and MlpU4357 grew on SD/-LWHA plates. The plates 
were photographed 2 days after inoculation. 
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3.7. Proteill Disulfide-Isornerase 11 Acts as a Helper of Mlp124357 

To assess whether AtPOl-ll is a target or a helper of M1p124357, we conducted infection 
assays with two different pathogens (Pst0C3000 and H. arabidopsidis) on plants expressing POl-Il 
or not. It should be noted that the leaf phenotypes of Atpdi-ll and AtPDI-ll/AtfXIi-ll were sirnilar 
to control plants Col-O or Col-O-eGFP, but in the presence of the M1p124357 effector, the AtfXli-ll, 
AtPDI-ll/Atpdi-ll, and PtPOl/Atpdi-ll Iines exhibited chlorotic symptoms on their leaves (Figure 7 A). 
This result suggests that, although the effector is mislocalized in the pdi-llline, it seems to retain its 
phenotype-altering activity. 

B c 

r 
~ . 
l' 

Figwe 7. PDI-ll is not involved in plant immunity. (A) Morphology of each genotype that 

were used for the infection assays. Photographs were taken from 4-week-<lId soil-grown plants. 
(8) Growth of PstDC3000 bacteria in Arabidopsis. One-way ANOVA (p < 0.05) with Tukey's test 
was performed to compare genotypes with GFP or without GFP. There was no difference between 

genotype without GFP. Different letters indicate statistically significant difference between Col4i!GFP, 
Mlp124357~FP, Atpdi-ll x Mlp124357~FP, and AtPDI-ll/Atpdi-ll x Mlp124357-eGPP. For each 
genotype five repUcates were used; du, colony-forming unit. (C) Growth of H. arabidopsidis Noro2 

oomycete in Arabidopsis. For genotypes without eGFP (Col~, Atpdi-ll , AtPDI-l1 /Atpdi-ll, and edsl), 

significancewas evaluated using ANOVA (p <O.05)with Tukey's. For genotypes witheGFP (CoI4eGFP, 
Mlp124357~FP, Atpdi-ll x Mlp124357~P and AtPDI-ll/Atpdi-ll x Mlp124357~FP) significance 
was evaluated using ANOVA (p < 0.05, dif~ent capitalletters denote significant difkrence) with 

Tukey's test. FW, fresh weight. 60th baeteriaJ and oomycete infection experiments were repeated at 
least three times and representative data are shown. 

Compared to the control wild-type Col-O or Col-O-eGFP, the Atpdi-11 and AtPDI-ll/Atpdi-lllines 
showed sirnilar pathogen growth (Figure 7B,C). This result suggests that POl-Il does not contribute 
significantly to the plant immunity and that M1p124357 is unlikely to target it to increase the pathogen 
virulence. As shown previously, Mlp124357 promoted bacterial and oomycete growth, but interestingly 
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it was unable to do 50 in the absence of AtPDI-ll. As such, AtPDI-ll appears to be required for the 
localization and the virulence activity of M1p124357, although the effector's capacity to affect the global 
plant phenotype appears to be uncoupled from its virulence activity. Moreover, both P. syringae and 
H. arabidopsidis are pathogens that translocate effectors into Arabidopsis. The fact that their virulence in 
a pdi-l1 KO line is similar to the control (CoI-O or Col-O-eGFP) further supports that AtPDI-ll is not 
required for the maturation ofother effectors than M1p124357, as if H. arabidopsidis or P. syringae effectors 
would require AtPDl-ll for their maturation, a decrease in pathogen growth would be observed in the 
KO line, which is not the case. 

3.8. Trallscriptome Allalysis of tire Arabidopsis Trallsgellics Line Expressing Mlp124357 

To identify host molecular pathways a1tered by Mlp124357, we performed a genome-wide 
gene expression analysis using RNA-seq of 4-day-old A. tlraliana M1p124357 stable transgenic line 
and control plants expressing eGFP. In the M1p124357 transgenic line, 268 and 353 genes were up­
and down-regulated by 2-fold change or greater, respectively, in comparison with control plants 
(Table 52). Next, we performed GO term enrichment analysis of genes that were 3-fold change up­
and down-reguLated in plants expressing Mlp124357 to determine the relevant biological processes 
altered by Mlp124357. Four functional groups of significantly enriched GO terms were noted: cellular 
response to iron ion starvation, indole-containing compound biosynthetic process, organ senescence, 
and small molecule catabolic process (Figure 8). 

• • 3FC UprogIJlotod gone. 
• • 3FC downregulalod gen .. 

c.taboIc proce .. 

Number of genes groupe<! . 5-10 
e1~20 

Figure 8. Transcriptome analysis of the Arabidopsis transgenic line expres ing Mlp124357. Expression 
of Mlp124357 in Arabidopsis deregulates groups of genes associated with senescence, Fe homeostasis, 

and fungus defense. GO terro enrichment analysis was performed with both up and deregulated genes 

6ltered by Q-value S 0.05 and fold-change ~ 3 using the Cytoscape software (version 3.1.1). oueCo 
plug-in ofCytoscape was used to visuaJjze enriched functions for both up- and down-regulated genes. 
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Remarkably, multiple defense-related genes such as YLS9, CHI, CYP79B2, BGLU21 were 
down-regulated in the Mlp124357-eGFP transgenic line compared to the eGFP transgenic plants. 
Severa! genes coding for BHLH transcription factors, for exa mp le, BHLH038, BHLH039, and BHLH04O, 
which are involved in the plant Fe deficiency response, as weil as GUa, which is involved in 
plant susceptibility to fungus, were up-regulated in the Mlp124357-eGFP transgenic line (Figure 8). 

These results support our observations of leaf ch1orosis (Figure 2C) and plant susceptibility to pathogens 
(Figure 3D,E). 

4. Discussion 

Effectors play a key role in plant-microbe interactions [53) and many of them are shown to act as 
virulence factors that are capable to suppress plant defense responses and enhance pathogenesis [54). 
However, little is known about the effector functions of Melnmpsora Inrici-populinn, a devastating 
pathogen of poplars worldwide. In this study, we used A. tlzaliana and N. bentlzamiano as heterologous 
systems and a poplar leaf rust effector, MlpI24357, as a probe to understand the potential function of 
this Mlp effector in plants. We identified POl-lI as a putative helper of M1p124357, defined their specific 
physical interaction both in yeast and in planta, and showed that this interaction between M1p124357 
and POl-lI is required for the increased plant susceptibility to pathogens. SpecificaUy, we identified a 
GxxxG motifin Mlp124357 that mediates its interaction with POI-H. Normally, MlpU4357 accumula tes 
in the tonoplasts, bulbs, and transvacuolar strands; however, when the two glycines of the GxxxG 
motif were replaced by alanines, the M1pU435~A mutant lost it's in planta tonoplastic locallzation 
and was no longer able to enhance pathogen growth. To our knowledge, a connection between rust 
pathogens and the tonoplasts has not previously been established. 

When Arabidopsis was exposed to pathogens with different lifestyles (e.g., bacteria and oomycetes), 
we observed that MI pl 24357 enhanced pathogen growth. Both Hpa and Mlp are obligate biotrophic 
filamentous pathogens of dicot plants and possess a similar infection strategy in leaf tissues. However, 
Mlp124357 alsoincreased the growthofa bacterial pathogen (Pst). Therefore, weconc1ude that M1pI24357 
alters a host mechanism that is active against both bacte.ria and biotrophic filamentous pathogens. 

The morphology of plants expressing Mlp124357 is altered, e.g., the plants show narrower leaves, 
ch1orosis, and yellowing of the leaf tips (Figures 2 and 7). Expression of bacterial as weU as filamentous 
pathogen effectors can affect the host immune response and induce a variety of phenotypes in plants, 
inc1uding chlorosis [55,56). For instance, fungal effectors SnTox [57,58] and FvToxl [59) as weil as 
bacterial effectors AvrB [60] and HOPQ-l (61 ) induce chlorosis symptorns in plants. A chlorotic 
phenotype has previously been reported to correlate with plant susceptibility (62), thus induction of 
both chlorosis and plant susceptibility by Mlp 124357 can reflect a genuine effector activity. However, 
when we mutated the glycine residues of the GxxxG motif of M1p 1 24357 and expressed it in Arabidopsis, 
we could no longer observe leaf chlorosis, suggesting that adequate protein localization is required for 
the chlorosis-inducing activity of the effector. In addition, the in silico folding of the effector suggests 
that the AxxxA mutant adopts a very similar folding to the wild-type effector, suggesting that, although 
it no longer interacts with POl-lI, the protein would still be stable. On the other hand, M1p124357 was 
still capable of inducing chlorosis in pdi-ll KO plants, but was unable to induce plant susceptibility in 
these plants, suggesting that virulence and chlorosis can be uncoupled. One possible explanation is 
that the interaction with POl-lI is required for a subsequent interaction with an unidentified virulence 
target involved in conferring susceptibility to pathogens, but that the effector also has a second target 
which can be reached independently of the interaction with POl-lI. 

Recently, we reported that M1p124357Iocalizes to tonoplasts, bulbs, and transvacuolar strands (29). 
However, how the Mlp pathogen benefits from manipulating the host tonoplasts and vacuolar 
substructures is unclear (63). An effector of Hpa, HaRxL17, was also reported to localize to tonoplasts 
and to enhance plant susceptibility [3]. Therefore, pathogen effectors may target the tonoplasts 
to modulate/suppress vacuole-mediated defense responses. Further mechanistic investigations 
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of the pathogen effector/tonoplasts interplay should shed Iight on the biological significance of 
this phenomenon. 

We identified Protein Disulfide lsomerase-ll, a member of the Protein Disulfide Isomerase (POI) 
gene family, as a plant interactor of Mlp124357 in Arnbidopsis. The major function of PDIs in plants 
is to facilitate the formation of disulfide bonds by induction, oxidization, and isomerization; ail of 
which are essential for the proper folding and maturation of proteins. For example, HSP70, HSP90, 
and DNAJ-like proteins have been shown to perfonn similar functions as chaperones in plant-pathogen 
interaction (64). Like other effectors, cysteine-rich Mlp124357 is expected to translocate as an unfolded 
protein to the plant cell, thus, we speculated that a POI cou Id be recruited by Mlp to act as a cellular 
chaperone during infection. The identification of AtPOI-Il or PtPOI as mediators of Mlp virulence 
activity suggests that other members of the PDI gene family might play a similar role in other plant-rust 
interactions; however, our evidence suggests that POI-II is not a generic interactor for ail Mlp effectors 
since it did not interact with any of the other effectors tested. Additionally, the pdi-l1 line did not 
exhibit a pathogen resistance phenotype, which would have been the case if the assayed pathogens' 
effectors would not have been able to mature as a result of the absence of a universal maturati.on 
PDI protein. 

Variation has been reported in the subcellular localization of PDIs in Arabidopsis (65). A. tllalialla 
encodes 12 PDIs, whi.ch are classified in three subfamilies, PDi-ll is the only mernber of the POI-D 
subfamily and it is also the ooly Arabidopsis POI lacking an ER retention signal (65). Most PDIs were 
shown to localize to the ER lumen [6~8), while several POI isoforrns have been localized to other 
cellular organelles such as Golgi, chIoroplasts, nucleus, and tonoplasts [66-68). Moreover, functional 
human PDIs are also demonstrated to accumulate at the cell surface, the extracellular space, the cytosol, 
and the nucleus (69). Our result indicates that AtPOI-ll accumulates both at the ER and tonoplasts 
and interacts with Mlp124357. However, in the pdi-l1 knockout line which expressed M1p124357, 
we observed that M1pI24357 was delocalized to the cytosol and nucleus. This result strongly suggests 
that the interaction between the two proteins occurs on the cytosolic side of the tonoplasts rather than 
on the luminal side of the tonoplasts. 

Sorne host proteins that are targeted by pathogen effectors can be "helpers" who enable efCector 
functions, while others are "targets" (70). Previous studies demonstrated that the folding of a 
pathogen's effector facilitated by host protein might be important to modulate this effector's functions 
in host cells during pathogenesis. For instance, cyclophilin ROCI (Arabidopsis) and GmCYPl (soybean) 
are required to activate the bacteria! effector AvrRpt2 [71,72) and the fungal effector Avr3b (73), 
respectively. Our study demonstrated that POI absence by itseLf does not affect pLant susceptibility, 
suggesting that PDI is not directly involved in immunity but may be responsible for the activation of 
the Melampsora larici-popl/lina effector M1p124357. Ln other words, AtPDI-ll is likely the host helper 
recruited by M1p124357 to enhance plant susceptibility. These results suggest that recruitrnents of host 
factors as "helper" is a common pathogenesis mechanism shared by pathogens. 

The molecular interaction of poplar with the economically important pathogen Melampsora 
larici-popl/lilla remains largely unknown. This work can essentially increase our knowledge of the 
poplar-Melampsora larici-poP,tlina pathosystem as weil as highlight the importance of helper proteins as 
susceptibility factors . Future work will be directed toward understanding whether M1p124357 has 
other target proteins in plant ceUs and uncovering the specific mechanism by which M1pI24357 affects 
plant defense, which could help plan control strategies of rust pathogens. 

SupplemenuJ)' Materi;;ùs: The following are avaUable onIine at http://www.mdpi.com/.1fJ79-7737/9{9fl94jsl . 
Figure 51: lmmunodetection of eGFP protein in wild-type (Col-O) and stable transgenic seedlings expressing eGFp, 
M1p124357-eCFP, M1pU4357CA-eGFP, AtPDl-ll-eCFP or PtPDI-eCFP from 14-days-old plantlets, Figure 52: 
MlpU4357CA loses tonoplast localization in stable Arabidopsis transgenic line. üve-cell imaging of leaf epidermaI 
cells of seven-day-old stable Aral1idopsis eGFP, Mlp 124357-eCFP or MJpU435~A-eGFP transgenic lines, Figure 53: 
Distribution of M1p124357-eCFP proteins in subœllular fractions. Cellular membrane fractions were obtained from 
fresh leavesof3-week-old CoI-O-eGFP and MlpU4357-eCFP plants by differential centrifugation and Mlp124357 
was detected by Western hybridization with an antibody recognizing eGFP, Figure 54: Localization of M1pI24357 
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in tonoplast, bulbs, and TVSs does not change in the absenœof AT2G33210, AT5CI5650, and ATlG04040 genes 
in Arabidopsis. Live-œll imaging of leaf epidermal ceUs of the crossed lines between Mlp124357-eGFP with the 
indicated genes knockoQut lines; SALK-l20S68, SALK-132152, or SALK-068225, Figure 55: Multiple sequence 
alignrnent of POis. The amillO acid sequence of AtPDI-ll, PtPDI, and M1pPDI was compared. ldentical/highly 
conserved residues (.); semi-conserved residues (:) and conserved residues (.) are marked. The AtPDI-11 shows 87% 
and 30% of sequenœ identity with PtPDI and MlpPDI, respectively, Figure 56: Sub-ceUular localization of AtPDI-l1 
or PtPDI in N. ber,tllnmiana epidermal œlls. Laser-scanning confocal microscopy shows that AtPDI-ll-i!GFP (A,B) 
and PtPDI-i!GFP (C,D) accumula te both in the tonoplast and endoplasmic reticulum (ER), Figure 57: Heatmap of 
differentiaUy expressed genes in Col-O-eGPP and MlpI24357-i!GFP based on transcriptome anaJysis. Table 51: List 
of putative interactor proteins of MlpU4357 From IP/MS, Table 52: List of up- and down-regulated genes from 
transcriptome analysis. 
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