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Abstract: 

This paper proposes a simplified proton-exchange membrane fuel cell (PEMFC) 
temperature model for the purposes estimating PEMFC temperatures with high 
accuracy with air-cooling systems. Besides knowing that most of the existing 
models were designed for specific systems, the proposed model also focuses on 
generalizing the conventional temperature model for easy adoption by other 
PEMFCs. The proposed model is developed based on the first-order exponential 
equation to avoid the limitations of complex mechanistic temperature models. The 
model uses only the information available from typical commercial PEMFCs, the 
main inputs of which are the current, elapsed time, and ambient temperature. In 
addition, the PEMFC area, number of cells in the stack, and high/low operating 
currents were incorporated in the proposed model for ensuring its generalizability 
and applicability to different PEMFC technologies with air-cooling systems under 
various ambient conditions. The required model parameters were optimized using 
the Harris hawks optimization method. The proposed model was validated using 
experiments conducted on the Horizon-500 W and NEXA-1.2 kW PEMFC 
systems equipped with air-cooled mechanisms under different ambient 
temperatures and load currents. The root mean square error of all the examined 
cases was less than 0.5. The proposed model is helpful for simulations, dynamic 
real-time controllers, and emulators because of its fast response and high 
accuracy. 

Keywords: Current-based model; Dynamic temperature model; Harris hawks’ 
optimization; PEMFC, Algorithm. 

1. Introduction

Proton exchange membrane fuel cells (PEMFCs) have been utilized in many stationary and portable 
applications, such as transportation electrification and back-up power supplies (Khan et al. 2019a). 
PEMFCs are energy conversion devices that transform hydrogen into electricity and some 
byproducts (e.g., water and heat) through chemical reactions between hydrogen and oxygen. The 
heat produced in this exothermic reaction increases the temperature of a PEMFC and has a 
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substantial role in thermodynamic reactions, transport, and water distribution (Khan et al. 2019b). 
These processes determine the efficiency and long-term durability of PEMFC systems. Therefore, 
thermal management is crucial for the enhancement in the PEMFC performance. Different cooling 
mechanisms, including water and air cooling, have been employed for the thermal management of 
PEMFC systems (Muller et al. 2006; Ma et al. 2019). Forced air-cooled systems are commonly used 
in low- to medium-power PEMFC systems (Sohn et al. 2005; Khan et al. 2019c). The development 
of an accurate thermal model that influences the output voltage and power of PEMFC stacks is the 
main challenge in the design of efficient thermal management schemes (Alzeyoudi et at. 2015; Khan 
et al. 2019d).   

The challenges in PEMFC temperature modeling can be summarized as follows: 

• Requirement for detailed insight data about the PEMFC, which is not commonly available
for commercial PEMFC systems.

• Necessity of a fast and dynamic temperature model to model the PEMFC voltage
accurately. Currently, most PEMFC temperature and voltage models are interdependent
of each other, so the model performance is not high enough for quickly varying dynamic
applications.

• For application in online monitoring, a temperature model should be simple.
• The model should be applicable to different types of PEMFC systems. Conventional

PEMFC temperature models are system specific, so they cannot be applied to different
PEMFC systems.

To address these issues, different thermal modeling techniques have been developed, including 
mechanistic, semiempirical, and purely empirical models (Khan et al. 2019a), which are discussed 
in detail in the next section. To our knowledge, simple and generic PEMFC models suitable for 
effective and accurate online monitoring have not been proposed. The so-called Saad’s temperature 
model proposed by Khan et al. (2019b) is effective but lacks generality and adaptability to different 
types of PEMFC systems. 

In this study, we aim to propose a temperature model based on the Saad’s model. The proposed 
method is developed by attempting to reduce the complexity, the requirement of extensive and 
detailed information, and system-specificity of previous models. To achieve this, we introduce a 
new exponential equation that considers the PEMFC area, number of cells in a stack, and high and 
low operating currents as dependent parameters. The state variables of the model are the load 
current, elapsed time, and ambient temperature. 

The key contributions of the proposed study are as follows: 

• We improved the Saad’s PEMFC temperature model proposed by Khan et al. (2019b) by
introducing the number of cells in a stack and the area of the PEMFC, which directly affect
the heat loss of the PEMFC, into the model equations.

• We generalized the model for various PEMFC systems by introducing a separate set of
parameters for low and high current levels (based on the rated power).

• We applied the Harris hawks optimization (HHO) method for model parameter
identification for the first time.

• The proposed temperature model is tested and experimentally validated for commercial
NEXA 1200 W and Horizon 500 W PEMFCs.

The proposed temperature model is initiated by testing the performance of the Saad’s temperature 
model with different PEMFC systems and noting that the model parameters are not suitable for 
different PEMFC systems. Next, additional parameters (number of cells in a stack and area of 
PEMFC) are introduced in the model and the model parameters are reoptimized through HHO. 
Finally, two sets of equations are introduced to minimize the difference between the model 



prediction and experimental results obtained with NEXA 1200 W and Horizon 500 W PEMFCs for 
high and low current load variations. 

The remainder of this paper is organized as follows. In Section 2, we report a literature review of 
the theoretical thermal modelling and thermodynamics of PEMFCs. In Section 3, we describe the 
Saad’s temperature modelling and its limitations. In Section 4, we describe the proposed 
modifications to the Saad’s temperature model. In Section 5, we discuss the HHO algorithm and the 
objective function used to evaluate the model parameters. In Section 6, we outline the experiments 
performed on the PEMFCs. Finally, Sections 7 and 8 outline the experimental results and 
conclusions, respectively. 

2. State of the art PEMFC temperature modelling 

The existing thermal models for PEMFC systems can be categorized as mechanistic, semiempirical, 
and purely empirical. The mechanistic models are normally based on complex algebraic equations 
to analyze different phenomena, such as mass inflows and outflows, which require a large amount 
of information about different physical parameters (Khan et al. 2019a). The models proposed by 
Jung et al. (2011), Zhang and Kandilkar (2012), Real et al. (2007) consider several parameters, such 
as the coolant channel, anode gasket, and flow field plate of the anode. However, for commercial 
PEMFC systems, these parameters are difficult to obtain. Theoretically, the temperature of PEMFCs 
can be extracted by solving the energy balance equations for the entire stack (Salva et al. 2016). The 
generalized heat balance equation for the membrane is expressed as follows: 

𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀−𝑇𝑇𝐶𝐶𝐶𝐶,𝑐𝑐
𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀−𝐶𝐶𝐶𝐶

+ 𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀−𝑇𝑇𝐶𝐶𝐶𝐶,𝑎𝑎
𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀−𝐶𝐶𝐶𝐶

+ 𝐴𝐴𝑙𝑙𝑙𝑙𝑙𝑙,𝑀𝑀𝑀𝑀𝑀𝑀 × ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 × (𝑇𝑇𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎) = 0                               (1) 

where TMem is the membrane temperature, TCL,a and TCL,c are the temperature of catalyst layer at 
anode and cathode respectively. RMem-CL is the thermal resistance in m2 /kW between membrane and 
catalyst layer, hconv is convective heat transfer coefficient in m2 /kW, Alat,Mem is the lateral area of 
membrane and Tamb is the ambient temperature. 

Similar equations can be extracted for the anode, cathode, gas diffusion layers, and bipolar plates. 
However, these heat equations are very complex and requires a lot of information in order to extract 
the exact temperature of PEMFCs at the given segment of the fuel cell stack. The temperature of 
different PEMFCs and different sections of a cell vary during operation. Generally, the average 
temperature is estimated through temperature modelling. Recently, Yuan et al. (2019), Berning and 
Kaer (2020), and Zhang et al. (2020) attempted to describe the thermodynamics of PEMFC stacks 
and to estimate the average temperature of PEMFCs. 
 

Yuan et al. (2019) analyzed the temperature characteristics of a PEMFC system and employed a 3D 
numerical model to predict the temperature of PEMFCs. They also proposed a new thermal 
management system that controls the direction and speed of the air flow. This system is based on 
the following theoretical thermal equations for three nodes according to the direction of coolant 
channel: 

𝑚𝑚𝑓𝑓𝑓𝑓,1𝐶𝐶𝑓𝑓𝑓𝑓
𝑑𝑑𝑑𝑑𝑓𝑓𝑓𝑓,1
𝑑𝑑𝑑𝑑

= 𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,1 −
𝑃𝑃𝑠𝑠𝑠𝑠,1
3
− 𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟,1 − 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,1 + 𝑄𝑄𝑖𝑖+1                                       (2) 

𝑚𝑚𝑓𝑓𝑓𝑓,2𝐶𝐶𝑓𝑓𝑓𝑓
𝑑𝑑𝑑𝑑𝑓𝑓𝑓𝑓,2
𝑑𝑑𝑑𝑑

= 𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,2 −
𝑃𝑃𝑠𝑠𝑠𝑠,2
3
− 𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟,2 − 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,2 + 𝑄𝑄𝑖𝑖+1 − 𝑄𝑄𝑖𝑖−1                           (3) 

𝑚𝑚𝑓𝑓𝑓𝑓,3𝐶𝐶𝑓𝑓𝑓𝑓
𝑑𝑑𝑑𝑑𝑓𝑓𝑓𝑓,3
𝑑𝑑𝑑𝑑

= 𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟,3 −
𝑃𝑃𝑠𝑠𝑠𝑠,3
3
− 𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟,3 − 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,3 − 𝑄𝑄𝑖𝑖−1                                       (4) 

 



where mfc , Cfc , Pst  are the mass, specific heat capacity, and power of a PEMFC, respectively, which 
remain the same in all cases. Hreac is the total energy released by the chemical reaction between 
hydrogen and oxygen in order to produce water and energy. This energy depends on the mass flow 
rate of reactants and the generated byproducts, as well as on the temperature of the three nodes and 
the ambient temperature (Tamb). The energies released at the three nodes are different because mass 
flow rate and temperature are different. In Equations (2)–(4), Qrad is the energy rate released due to 
radiation; Qcool is the heat rate removed by the coolant, which depends on the area (A) of the PEMFC, 
density of air (in case of air as coolant), fan speed, and specific heat capacity of air; and Qi+1 and  
Qi-1 are heat transfer rate between the three nodes. 

Zhang et al. (2020) proposed a semiempirical model, which is relatively simple. In this model, the 
heat flow equation is used to calculate the temperature of open-cathode air-cooled PEMFC systems, 
and no nodes or components of PEMFCs are considered explicitly. Instead, a single thermodynamic 
equation is considered to explain the complete PEMFC stack assembly: 

𝑚𝑚𝑓𝑓𝑓𝑓𝐶𝐶𝑓𝑓𝑓𝑓𝑑𝑑𝑑𝑑𝑓𝑓𝑓𝑓
𝑑𝑑𝑑𝑑

=  𝐻𝐻𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑁𝑁𝑐𝑐𝐼𝐼𝑉𝑉𝑠𝑠𝑠𝑠 − 𝑄𝑄𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑄𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐                                                             (5) 

where Vst is the stack voltage, Nc is the number of cells in the stack, and Qconv is the heat loss rate 
due to convection. In Equation (5), Qrad and Qconv mainly depend on the temperature of the PEMFC 
and the ambient temperature. 

Berning and Kaer (2020) proposed a simplified model that considered the PEMFC thermodynamics 
in detail at different ambient conditions, including normal, hot and dry, and cold and dry conditions. 
In this model, the thermodynamics of the PEMFC are modeled using the first law of 
thermodynamics by considering the adiabatic condition of gases as follows: 

𝑃𝑃𝑠𝑠𝑠𝑠 =  ∑𝑛𝑛𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ℎ𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 − ∑𝑛𝑛𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 ℎ𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟                                                                              (6) 

where nprod and nreact are the molar flow of product and reactant gases, respectively, and hprod and 
hreact are the specific enthalpy (J/mol) of products and reactant, respectively. Salim et al. (2015) 
proposed an analytical model wherein the parameters are optimized using a particle swarm 
optimization algorithm. However, these parameters cannot be applied to other types of PEMFCs. 
Ariza et al. (2018) developed a simplified version of the model proposed by Salim et al. (2015) and 
tuned the parameters using a genetic algorithm. However, because this model was validated 
experimentally on cells rather than a stack, the model parameters cannot be applied to different types 
of PEMFCs. Apart from the issue of the dependency of the mechanistic models on several 
inaccessible physical parameters, the aforementioned studies considered voltage as an input for the 
thermal models. However, the voltage is directly dependent on the stack and ambient temperature, 
causing inaccuracy in the stack temperature estimation of the thermal models.  

Purely empirical approaches involve the use of artificial intelligence and various other prediction 
techniques. Belmokhtar et al. (2014), Panos et al. (2012), Tao et al. (2005), and Qun et al. (2014) 
performed temperature modeling using artificial intelligence and predictive control techniques 
without considering voltage as an input. Panos et al. (2012) used the MATLAB Identification 
Toolbox to develop a reduced-order temperature model by considering the mass flow rate, coolant 
temperature, and compressor voltage. Subsequently, this model was integrated into a model 
predictive control framework. Akbari and Dahari (2019) proposed a temperature model dependent 
only on the inlet gas flow rate using an adaptive neuro-fuzzy inference system. This model was also 
integrated into the control loop to regulate the stack temperature. However, these data-driven models 
are specific and require extensive training data.  

The empirical approach is not limited to above mentioned techniques. Soltani and Bathaee (2008), 
Restrepo et al. (2014), and Li et al. (2012) proposed generic models based on first-order 
semiempirical equations that utilize the current and ambient temperature as inputs. Li et al. (2012) 



used a polynomial function based on the PEMFC current to estimate the stack temperature and time 
constants of the first-order equation. This approach results in poor performance and abrupt 
temperature changes. Restrepo et al. (2014) used sinusoidal functions, instead of a polynomial 
function, of the current to estimate the time constants and reduce the sensitivity of the model to 
sudden fluctuations. The simplest model of the PEMFC temperature was proposed by Bharath et al. 
(2020). In this model, the temperature equation is developed based on two exponentials as follows: 

𝑇𝑇𝑓𝑓𝑓𝑓 =  𝑎𝑎 × 𝑒𝑒𝑒𝑒𝑒𝑒𝑏𝑏×𝐼𝐼 +  𝑐𝑐 × 𝑒𝑒𝑒𝑒𝑒𝑒𝑑𝑑×𝐼𝐼                                                                                     (7) 

This model is very simple but does not consider the ambient temperature change. The exponential 
equation is very useful in the simple modelling of PEMFC systems because the temperature curves 
of PEMFCs with load current variation closely follow these exponential curves, as mentioned by 
Soltani and Bathaee (2008). However, this model had many deficiencies, which were corrected by 
Khan et al. (2019b). 

Furthermore, the model also requires parameter optimization for different PEMFC systems. Khan 
et al. (2019b) considered a new mechanism based on first-order empirical equations by optimizing 
the parameters using a lightning search algorithm (LSA). In Saad’s model, the main concept is to 
detect the load changes and calculate instantaneous PEMFC temperature variations. This 
mechanism further improves the performance of the model proposed by Khan (2019c). However, 
the performance of this model in different ambient conditions and different fuel cell systems is still 
uncertain. Table 1 summaries the literature review of the thermal/temperature models of PEMFCs. 

Table 1 Summary of PEMFC thermal/temperature models  

 

3. Details of Saad’s PEMFC temperature model  

The Saad’s temperature model in (Khan et al. 2019b) uses the following first-order discrete 
equation:  

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚(𝑘𝑘) =  𝐿𝐿1𝐼𝐼𝑡𝑡(𝑘𝑘) + 𝐿𝐿2�𝐼𝐼𝑡𝑡(𝑞𝑞) − 𝐼𝐼𝑡𝑡(𝑘𝑘)�𝑒𝑒−𝐿𝐿3�𝑡𝑡𝑘𝑘−𝑡𝑡𝑞𝑞� + 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎(𝑡𝑡𝑘𝑘) − 𝐿𝐿4  k=1,2,3,…,                 (8) 

where It(q) is the current value at sample q, which is recorded before the last significant change in 
current; It(k) is the current value at the present sample k; and Tamb is the ambient temperature.  

The following expressions are used to account for the air-cooling system of PEMFC: 

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚1(𝑡𝑡𝑘𝑘) =  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡𝑘𝑘) −  𝐿𝐿5
�𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡𝑘𝑘)−𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡𝑞𝑞)�

(𝑡𝑡𝑘𝑘−𝑡𝑡𝑞𝑞)
,                      (9) 

𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚2(𝑡𝑡𝑘𝑘) =  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚1(𝑡𝑡𝑘𝑘) +  𝐿𝐿6�𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚1(𝑡𝑡𝑘𝑘) −  𝑇𝑇𝑚𝑚𝑚𝑚𝑚𝑚1(𝑡𝑡𝑞𝑞)�,                        (10) 

where Tmod2 is the final modeled temperature, and L1 to L6 are optimized using LSA. Table 2 shows 
the values of parameters L1 to L6 used in the model equations. 

Table 2  Saad’s model parameters  

 

Parameters L1 and L2 are used to convert the current and difference of current into temperature, 
respectively; L3 is a factor that controls the decay and increases the temperature time; L4 is an offset 
from the temperature model in Equation (8); and L5 and L6 are the constant parameters in the 
differential equations  (9) and (10), respectively. 

Saad’s model has the following limitations: 



• The model output has fluctuations. To overcome this issue, in this study, the complex 
online filtering technique proposed by Junyan and Shudan (2015) is used. 

• The model has only been validated experimentally for the NEXA 1200 W PEMFC system. 
However, to verify its generic performance, the model needs to be tested on other PEMFC 
systems. 

• The temperature variation with the current level is a nonlinear process (Restrepo et al. 
2014), whereas in Saad’s model, this variation is simplified into a linear equation. 
Therefore, the model is not precise when large variations in the current, which also affect 
the temperature evolution, occur. 

To address these issues, we proposed a modification to Saad’s temperature model by introducing 
the number of cells in a stack and the area of the PEMFC into the model equations. Further 
improvements are suggested to adapt the linear equations to represent the relation between the 
system temperature and load current using two different set of equations for low and high load 
currents determined from the power rating of the system.            

4.  Suggested modifications in the Saad’s temperature model  

Two substantial modifications are considered in this section to further improve the performance of 
the Saad’s model. The first modification deals with the extraction of a function to relate each Li (i = 
1 to 6) parameter to the number of cells (Nc) and membrane-active area (A). These parameters have 
an essential role in the generation and dissipation of heat in the PEMFC stack, and their values vary 
in each PEMFC system. Therefore, utilizing the function to relate each parameter (Li) to Nc and A 
can compensate for the errors introduced by the application to different systems. In this study, these 
parameters of Horizon 500 W and NEXA 1200 W PEMFC systems are optimized using the HHO 
method.  

After optimizing the parameters in both PEMFC systems, the equations of the parameters based on 
the number of cells in the stack and the active area of the membrane are extracted using first-order 
polynomial curve fitting in MATLAB®. 

 𝐿𝐿𝑖𝑖 = 𝑓𝑓(𝐴𝐴 × 𝑁𝑁𝑐𝑐)                             (11) 

The second modification in the temperature model is related to the classification based on the current 
drawn from a PEMFC into the low and high levels to improve the estimation of the temperature 
evolution under different conditions. Furthermore, the thermal dynamics of the PEMFCs may differ 
at low and high currents. According to Ariza et al. (2018), the produced electrical energy is the main 
contributor to the generated net energy. Moreover, the electrical energy is directly related to the 
produced current. In this study, the parameters optimized at high and low currents may lead to good 
results in both PEMFC systems. The threshold current (It), which separates the high and low 
currents, is calculated using the function of electrical power (P) through the first-order polynomial 
fitting in MATLAB®. The parameters in Equation (12) are modified by considering It. In this study, 
f1 and f2 are two separate functions with different constants. 

  Li = �f1
(A × Nc) for I ≥  It = f(P) for high current

f2(A × Nc) for I <  It = f(P) for low current �.                            (12) 

Table 3 presents the complete pseudocode of the proposed model, including a simple filtering 
technique. The equations used are the same as those in the Saad’s model (Equations (8)–(10)), 
whereas the parameter values are modified using HHO for high and low currents based on the 
number of cells and membrane-active area. The filtering technique uses ten samples and filters any 
spikes in the final temperature model curve to reduce the fluctuations. 

 



Table 3   Pseudocode of the proposed model and simple filtering technique 

5. Application of HHO Algorithm for model parameter extraction  

The successful application of metaheuristic optimization algorithms in PEMFC modeling has been 
verified in several studies (Khan et al. 2018; Kandidayeni 2019). The HHO algorithm was inspired 
by the natural behavior of Harris hawks (Asghar et al. 2019). This technique can be applied to all 
optimization problems and has different phases: the exploration, transition, and exploitation phases. 

5.1 Exploration Phase  

The exploration phase of Harris hawks deals with the search of prey with the help of their powerful 
eyes. They usually wait and monitor the site to detect their prey, and the waiting period can last 
several hours. In this optimization technique, Harris hawks are the candidate solutions, and the best 
candidate solution at every step is considered the prey, which is intended or referred to as the 
optimum solution. Harris hawks usually sit at random locations and look for their prey based on two 
major strategies. An equal chance (c) exists in each location based on the other locations, whereas 
the prey is modeled with the following equation under two conditions, i.e., c < 0.5 (small tree 
locations) and c ≥ 0.5 (high tree locations): 

 𝑋𝑋(𝑡𝑡 + 1) =  �
𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) −  𝑟𝑟1(𝑋𝑋𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟(𝑡𝑡) − 2𝑟𝑟2𝑋𝑋(𝑡𝑡) 𝑐𝑐 ≥ 0.5

(𝑋𝑋𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑡𝑡) −  𝑋𝑋𝑚𝑚(𝑡𝑡)) − 𝑟𝑟3(𝐿𝐿𝐿𝐿 + 𝑟𝑟4(𝑈𝑈𝑈𝑈 − 𝐿𝐿𝐿𝐿)) 𝑐𝑐 <  0.5 �,          (13) 

where X(t + 1) is the position in the next iteration; t is the iteration number; Xprey is the position of 
the prey; X(t) is the position of the hawk at the current iteration; r1, r2, r3, r4, and c are random 
numbers ranging from 0 to 1; LB and UB are the lower and upper bounds of parameters, 
respectively; Xrand is the randomly selected hawk in the current population, and Xm is the mean 
position of the current population.  

5.2 Transition phase 

Exploitation occurs after exploration, but this phase depends on the escaping energy of the prey. 
The energy of the prey decreases considerably during the escape. The energy of the prey is expressed 
as follows: 

 𝐸𝐸 = 2𝐸𝐸𝑜𝑜(1 − 𝑡𝑡
𝑍𝑍

),                  (14) 

where E is the escaping energy of the prey, Z is the maximum iteration, and Eo is the initial energy 
of the prey, which Eo changes between −1 and 1. If Eo decreases from 0 to −1, then the prey is 
flagging; if Eo increases from 0 to 1, then the prey is strengthening. The dynamic trend of the energy 
decreases after successive iterations. However, when the energy is higher than unity, the hawk 
searches the prey in another region; when the energy is lower than unity, the hawk searches in the 
neighborhood of the present solutions. 

5.3 Exploitation phase 

In this phase, the hawk performs a surprise pounce by attacking the desired prey aggressively, 
while the prey attempts to escape. On the basis of the escaping and chasing behavior, the following 
strategies are proposed in the HHO algorithm to model the attack: (i) soft besiege, (ii) hard besiege, 
(iii) soft besiege with progressive rapid dives, and (iv) hard besiege with progressive rapid dives. 

The prey always tries to save its life by running away. Suppose that r is the prey’s chance to 
escape, and r < 0.5 and r ≥ 0.5 indicate a successful or unsuccessful escape, respectively.  



In soft besiege, r ≥ 0.5 and E ≥ 0.5, so the prey has enough energy to try to escape through 
misleading jumps but fails in the end. In this process, the hawk encircles the prey to exhaust it and 
finally pounces. 

In hard besiege, r ≥ 0.5 and E < 0.5, so the prey has low escaping energy. The hawk hardly 
encircles the prey and rapidly pounces in a sudden move. 

In soft besiege with progressive rapid dives, E ≥ 0.5 and r < 0.5. Thus, the prey has high energy 
to escape successfully, but a soft besiege is still created by the hawk before it surprises the prey with 
a pounce. This process is more complex than the soft besiege process because it considers the 
intelligent moves of the hawk and the prey. 

In hard besiege with progressive rapid dives, E < 0.5 and r < 0.5. Thus, the prey has no energy 
to escape, and a hard besiege is created to catch and kill the prey. Although the situation is similar 
to that of soft besiege, in this case, the hawk tries to decrease the distance of the average location 
from the prey. The four cases are explained briefly in Figure 1. 

The four strategies, including the optimization code with the corresponding equations, was 
described in detail by Asghar et al. (2019).  

 

Figure 1   Summary of the prey-catching strategies of Harris hawks  

 

The complete details of the four strategies, including the optimization code with the corresponding 
equations, are given in (Asghar et. al., 2019).  

5.4 Objective function for model parameter extraction 

The optimization process involves the minimization or maximization of an objective function. For 
PEMFC temperature modelling, the difference between the experimental measurement and the 
model output value, i.e., the error in the model output, is minimized; however, small errors may be 
difficult to obtain. The error et of sample t is calculated as follows:   

 𝑒𝑒𝑡𝑡 = 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 − 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣             (15)                                                                       

 The bias is the average error for all samples obtained during the experiment for different input 
currents and ambient temperatures: 

𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 = 1
𝑛𝑛
∑ 𝑒𝑒𝑡𝑡               (16)                                                          

where n is the number of independent samples, which is set to 22000 in this study. The mean square 
error (MSE) can also be used as an objective function to evaluate the error. However, the MSE is 
not scaled to the original error because the error is squared (Equation (17)). The root mean square 
error (RMSE) is defined as the square root of the MSE (Equation (18)). Therefore, the RMSE avoids 
the scaling problem associated with the MSE and allows easy estimation of the error value. The 
RMSE does not treat each error in the same way.  

𝑀𝑀𝑀𝑀𝑀𝑀 = 1
𝑛𝑛
∑ 𝑒𝑒𝑡𝑡2                                                       (17) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �1
𝑛𝑛
∑ 𝑒𝑒𝑡𝑡2                                                      (18) 



The major fitness is accessed on the basis of the RMSE of the modeled and experimental temperature 
values using HHO. In implementing HHO, the maximum iteration and initial population are set to 
400 and 50, respectively.  

6. Experiments performed on PEMFC  

The experiments are performed on Horizon 500 W and NEXA 1.2 kW PEMFC systems. The 
specifications of these systems are listed in Table 4. The Horizon 500 W PEMFC is the main 
equipment under consideration. In this system, data was collected at different ambient temperatures, 
while in the NEXA 1.2 kW PEMFC system, data were collected at only one ambient temperature. 

 

Table 4 PEMFC Horizon and NEXA system specifications 

 

Figure 2 shows the experimental setups. Both the Horizon 500 W and NEXA 1.2 kW PEMFC 
systems were placed in a closed room with controllable temperature. 

 

 

(a) 

 

(b) 

(c) 

Figure 2 Experimental setup of PEMFC: (a) Horizon 500 W PEMFC system; (b) NEXA 1.2 kW 
PEMFC system (c) demonstration of complete experimental setup  

 

6.1. Experiment 1 

The first experiment was performed using the Horizon 500 W PEMFC system with abruptly 
changing load and ambient temperature of 25 °C. The voltage, current, and temperatures of the 
PEMFC obtained in Experiment 1 are shown in Figure 3. 

 

 

 

(a) 

 

(b) 



 

(c) 

Figure 3  Experimental results of the Horizon 500 W system at an ambient temperature of 25 °C: 
(a) current, (b) voltage, and (c) temperature  

6.2. Experiment 2 

Experiment 2 was performed using the Horizon 500 W PEMFC system with linearly varying current 
and ambient temperature of 28 °C. The voltage, current, and temperatures of the PEMFC obtained 
in Experiment 2 are shown in Figure 4. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 4  Experimental results of the Horizon 500 W system at the ambient temperature of 
28 °C for (a) temperature, (b) current, and (c) voltage 

 

6.3.  Experiment 3 

Experiment 3 was performed using the Horizon 500 W PEMFC system with linearly varying current 
and ambient temperature of 18 °C. The voltage, current, and temperatures of the PEMFC obtained 
in Experiment 3 are shown in Figure 5. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 5  Experimental results of the Horizon 500 W system at the ambient temperature 
of 28 °C for (a) voltage, (b) current, and(c) temperature 

 

 6.4. Experiment 4 



Experiment 4 was performed using the Horizon 500 W PEMFC system with linearly varying current 
and ambient temperature of 22 °C. The voltage, current, and temperatures of the PEMFC obtained 
in Experiment 4 are shown in Figure 6. 

 

 

(a) 

 

(b) 

 

(c) 

Figure 6  Experimental results of the NEXA 1.2 k W system at the ambient temperature 
of 22 °C for (a) current, (b) voltage, and (c) temperature 

7. Results and Discussion 

7.1.  Performance of Saad’s Model  

We compared the output of the modified Saad’s temperature model proposed in this study with the 
experimental results of the Horizon 500 PEMFC system. Figure 7 shows the comparison of 
experimental and model output temperatures for Experiment 1. From the figure, it can be seen that 
the RMSE is very high even after filtering. Thus, the parameters must be updated using HHO and 
the objective function in Equation (18). The upper and lower bounds of the parameters were 
obtained from Khan et al. (2019b). 

 

Figure 7  Comparison of model and experimental temperature in Experiment 1 

 

7.2. Parameter Tuning with HHO 

Table 5  Model parameter limits for HHO 

 

The newly optimized parameters were extracted using HHO. The RMSE is approximately 1.26 and 
reduces to 1 after filtering the signal. The updated and original parameters are presented in Table 6. 
Figure 8 shows the comparison of the model output and experimental temperatures after filtering 
with a scaling factor of 1. 

The results of Experiments 2 and 3 were verified using the same model parameters, and the results 
are shown in Figures 9 and 10, respectively. The results are unsatisfactory because the RMSE is 
significantly greater than 1. Hence, the parameters should be further optimized. 

Table 6  Saad’s model parameters optimized through HHO 

 



 

Figure 8 Comparison of proposed model and experimental temperatures in Experiment 1 
after optimization and filtering  

 

Figure 9  Comparison of model and experimental temperatures in Experiment 2 after 
optimization and filtering 

 

Figure 10  Comparison of model and experimental temperatures in Experiment 3 after 
optimization and filtering 

 

7.3. Results after introducing the threshold current  

The error analysis in Experiments 2 and 3 between the modeled and experimental temperatures 
reveal that the error from high to low currents varied largely from a negative value to positive value. 
Notably, a threshold current existed when the model temperature characteristics varied. After careful 
consideration of all the factors that affect the parameters, two separate sets of parameters were used 
at high and low currents. The threshold current was set to 25.2 A, which was almost 60% of the 
rated current. Then, the two sets of parameters were optimized using HHO. One set was optimized 
at low currents, and the other was optimized at high currents, i.e.,, above 60% of the rated current. 

The parameters optimized at low and high currents are listed in Table 7. Figures 11, 12, and 13 show 
the temperature evolution after optimization in Experiments 1, 2, and 3, respectively. Form the 
figures, it can be seen that the RMSE is lower than 0.5 in all experiments. 

 

Table 7  New parameters of HHO in the low and high currents (Horizon PEMFC) 

 

 

Figure 11  Comparison of model and experimental temperatures in Experiment 1 after 
modifications 

 

Figure 12  Comparison of model and experimental temperatures in Experiment 2 after 
modifications 

 

Figure 13  Comparison of model and experimental temperatures in Experiment 3 after 
modifications 

Similar parameters were used in the NEXA 1.2 kW system with the data of Experiment 4; 60% of 
the rated current in the NEXA 1.2 kW system corresponds to 43.2 A. Figure 14 shows the 
temperature evolution after optimization in Experiment 4. The results reported in the figure are 
satisfactory, but improvements can still be made by reoptimizing the parameters in NEXA 1.2 kW. 
The analysis reveals that the threshold current is 18 A (25% of the rated current) in this case. The 



parameters are optimized at high and low currents using HHO, and the results are shown in Table 
8. 

Figure 14  Comparison of model and experimental temperatures in Experiment 4 after 
modifications 

 

Table 8  New parameters of HHO in the low and high currents (NEXA PEMFC) 

 

The main difference in the parameters of the Horizon and NEXA systems is due to the changes in 
the number of cells (Nc) in the stack and the active area of the membrane (A). In theoretical 
temperature model described by Salim et al. (2015) and Ariza et al. (2018), the heat loss mainly 
depends on the product of Nc and A. In Salim et al. (2015) it is explained that heat loss mainly 
depends on the product of Nc and A. The equation (19) explains the heat loss (qloss) in the PEMFC 
system, here hcell is the convective heat transfer coefficient (W. m-2.K-1). 

𝑞𝑞𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 =  ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑇𝑇 − 𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎)𝑁𝑁𝑐𝑐𝐴𝐴                  (19) 

Therefore, this variation in parameters primarily relies on the product of Nc and A of the PEMFC 
stack. Figure 15 shows the final results in the NEXA PEMFC system. From the figure, it can be 
seen that in all cases, the RMSE is lower than 0.5 in both systems. 

 

Figure 15  Comparison of model and experimental temperatures in Experiment 4 using the 
NEXA parameters 

In summary, a first-degree polynomial for a single variable (product of A and Nc) was used to extract 
the parameters Li. The threshold current could be extracted from the rated current of the output 
power of the PEMFC, and the rated power P was used to extract the function in the threshold current 
It. The functions of Li and It in NEXA and Horizon PEMFCs are presented in Table 9. The threshold 
current is also calculated using the output power, which determines whether the current in the 
present sample is low or high. The output electric power is mainly responsible for energy used for 
electricity in thermal model as mention in Salim et al. (2015), hence the ouput electric power is 
selected to predict the threshold current for temperature model. 

 

Table 9  Generic functions in the parameters and threshold current  

8.  Conclusion 

We introduced a generic approach for modeling the temperature behavior in the PEMFC stack based 
on the Saad’s model. Two considerable modifications were made to this model to make it suitable 
for different conditions and different PEMFC systems. First, six Li parameters were defined on the 
basis of a function that relates the parameters to the cell number and membrane-active area. This 
modification allows the variation in thermal evolution of different PEMFC systems, such as cell 
number and active area, depending on the PEMFC model. Second, the parameters were tuned once 
at a low-level current and once at a high-level current by defining the threshold current based on the 
rated power of the stack. This classification improves the performance of the model, particularly 
during sudden changes in the current drawn from the PEMFC, which in turn affects the temperature 
evolution. Finally, the performance of the proposed model was verified in two air-cooled PEMFC 



systems, namely the NEXA 1.2 kW and Horizon 500 W PEMFCs, in different conditions. The 
performance of the model is validated by a comparison with experimental results; the model outputs 
had an RMSE of less than 0.5 in all the considered cases. This study will help researchers in the 
development of simple, generic, and effective temperature models in the accurate estimation of the 
temperature of PEMFCs with air cooling system. The model can also be extended to various types 
of PEMFCs with other cooling mechanisms, such as liquid cooling. The parameters will vary 
accordingly and will be optimized again through the modern HHO algorithm. In future studies, the 
temperature variations of PEMFCs should be examined under air pressure variations. Also this 
model can be very helpful in future for thermal control of PEMFC in case of limiting temperature 
of PEMFC through loading. 
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