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Abstract: Myeloid malignancies arise from an altered hematopoietic stem cell and mainly comprise
acute myeloid leukemia, myelodysplastic syndromes, myeloproliferative malignancies, and chronic
myelomonocytic leukemia. Myeloid neoplastic leukemic cells may influence the growth and differen-
tiation of other hematopoietic cell lineages in peripheral blood and bone marrow. Myeloid-derived
suppressor cells (MDSCs) and mesenchymal stromal cells (MSCs) display immunoregulatory proper-
ties by controlling the innate and adaptive immune systems that may induce a tolerant and supportive
microenvironment for neoplasm development. This review analyzes the main features of MDSCs and
MSCs in myeloid malignancies. The number of MDSCs is elevated in myeloid malignancies exhibit-
ing high immunosuppressive capacities, whereas MSCs, in addition to their immunosuppression
contribution, regulate myeloid leukemia cell proliferation, apoptosis, and chemotherapy resistance.
Moreover, MSCs may promote MDSC expansion, which may mutually contribute to the creation of
an immuno-tolerant neoplasm microenvironment. Understanding the implication of MDSCs and
MSCs in myeloid malignancies may favor their potential use in immunotherapeutic strategies.

Keywords: myeloid malignancies/neoplasm; myeloid-derived suppressor cells; mesenchymal
stem/stromal cells; T-cell immunosuppression; immunotherapy

1. Introduction

Hematopoietic stem cells (HSCs) are bone marrow (BM)-resident primitive multi-
potent stem cells that continuously regenerate the blood system during the life of an
organism [1]. Through cell-intrinsic HSC characteristics and extrinsic signals, the BM mi-
croenvironment finely controls blood production, and BM niche perturbations contribute
to the emergence of hematopoietic malignancies. The BM niche is a complex structure en-
compassed by different cell types, such as multipotent mesenchymal stem cells (MSCs) and
their progeny, a complex vascular network, nerve fibers, mature blood cells, immune cells,
and several adhesion factors, growth factors, and chemokines, to regulate cell self-renewal
and differentiation [2].

Myeloid neoplasms are heterogeneous malignancies that result from an uncontrolled
proliferation of immature cells. The pathogenesis of myeloid malignancies implies intrinsic
genetic and epigenetic alterations within the neoplastic population and a dysfunctional BM
stroma that may promote the neoplastic process. The molecular and cellular interaction
within the BM niche may contribute to the emergence of myeloid malignancies by modu-
lating mechanisms related to proliferation, survival, and immune evasion [3,4]. Recently,
myeloid-derived suppressor cells (MDSCs) have been involved in myeloid malignancies.
Patients with myeloid malignancies display increased numbers of MDSCs in peripheral
blood (PB) and BM and, due to their immunomodulatory function, may contribute to the
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escape of neoplastic cells from immunosurveillance, which appears to play a crucial role in
maintaining the immune suppression within the tumor niche [5–7].

MSCs have been identified as one of the main cellular components of the BM mi-
croenvironment, with an essential role in normal hematopoiesis [8,9]. MSCs contribute to
the progression of myeloid malignancies by establishing a favorable tumor microenviron-
ment and displaying immunomodulatory properties by inhibiting the proliferation and
function of immune cells, which contribute significantly to the pathogenesis of myeloid
malignancies [10].

This review emphasizes the current knowledge of MDSCs and MSCs, and their
active involvement in the pathogenesis of human myeloid malignancies, namely, acute
myeloid leukemia (AML), myelodysplastic syndromes (MDSs), and myeloproliferative
neoplasms (MPNs), including chronic myeloid leukemia (CML). Moreover, this review
provides perspectives on new strategies being used to improve current therapies, which
may ameliorate cancer management strategies to improve the life expectancy of patients
diagnosed with myeloid malignancies.

2. Myeloid-Derived Suppressor Cells

It has been established that cancer progression is commonly associated with an in-
creased number of immature myeloid cells at various stages of differentiation in the spleen
and peripheral blood, and within the tumor stroma. Currently, these cells are recognized
as MDSCs and are a hallmark of cancer and a central mechanism of immune evasion [5,11].
MDSCs create an immunosuppressive tumor microenvironment (TME) and are associated
with poor prognosis and tumor burden [12,13]. In healthy conditions, a low frequency of
MDSCs in the bone marrow is observed, and they, as non-polarized cells, maintain a basal
suppressive environment. MDSCs may migrate to the periphery and differentiate into
mature macrophages, dendritic cells (DCs), and neutrophils while losing their suppressive
phenotype and supporting normal immune functions [14,15].

MDSCs comprise a small group of myeloid progenitors and immature mononu-
clear cells, such as monocytes (M-MDSCs), and are identified as cluster of differenti-
ation (CD)11b+, CD33+, CD14+, CD15−, and human leukocyte antigen (HLA)-DRlow,
which are distinguished from HLA-DRhi monocytes, whereas polymorphonuclear (PMN)-
MDSCs (previously named granulocytic MDSCs) are defined as CD11b+, CD33+, CD15+

or CD66b+, and CD14− [16,17]. MDSC mouse counterparts are immune classified as
CD11b+Ly6G−Ly6Chigh for M-MDSCs, and PMN-MDSCs are defined as
CD11b+Ly6G+Ly6Clow [18]. In addition, an early-stage MDSC (eMDSC) subtype has
been described as the cells that lack the expression of either CD14 or CD15, and their
specific roles remain to be defined [17].

The ability of MDSCs to support tumor growth and metastases can be broadly defined
in the following functions: protection of tumor cells from immune surveillance; remodeling
the tumor microenvironment; establishment of a pre-metastatic niche; and interaction with
tumor cells to induce “stemness” and facilitate the epithelial-to-mesenchymal transition
(EMT) [16]. MDSCs are implicated in several facets of immune regulation in diseases
that involve chronic inflammation, including cancer. Several studies have reported the
immunosuppressive effects of MDSCs in hepatocellular carcinoma, melanoma, prostate
cancer, bladder cancer, head and neck squamous cell carcinoma and non-small cell lung
cancer, breast cancer, gastric cancer, colorectal cancer, and others, thus evidencing their
clinical significance [17,19–21].

3. Mesenchymal Stromal/Stem Cells

MSCs are a promising source for cell therapy and regenerative medicine. The ther-
apeutic properties of MSCs are related to their potential for trans-differentiation, im-
munomodulation, and trophic factor secretion [22,23]. MSCs are functionally defined by
their clonogenic potential (colony-forming unit-fibroblasts, CFU-Fs) and ability to assemble
a functional BM niche in vivo [24]. The minimal criteria for human MSCs were defined by
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the International Society for Cellular Therapy (ISCT), in 2006, as follows: MSCs must be
plastic-adherent when maintained under standard culture conditions; more than 95% of
cells in a given population of MSCs should express CD90, CD73, and CD105 and lack the
expression (less than 2% positivity) of CD45, CD34, CD14 or CD11b, CD79α, or CD19, and
HLA class II surface molecules; and MSCs must differentiate into osteoblasts, adipocytes,
and chondroblasts under standard conditions in vitro [25,26]. Furthermore, MSCs also
express narrow levels of costimulatory molecules, such as CD40, CD80, and CD86 [27].

BM-derived MSCs (BM-MSCs) are also proposed to be located in the lineage-negative
(lin)−CD45−CD271+CD140alow/− fraction and can be further classified according to their
CD146 expression; in this case, CD146+ MSC are reported to be located close to the vas-
culature and express hematopoietic stem cell (HSC)-supportive genes, such as insulin
like growth factor 2 (IGF2), Wnt Family Member 3A (WNT3A), jagged canonical notch
ligand 1 (JAG1), C-X-C motif chemokine ligand 12 (CXCL12), KIT ligand (KITLG), and
angiopoietin-like 1 (ANGPTL1) [24,28–30]. In comparison, nestin-positive MSCs enhance
the long-term multilineage reconstitution activity of human hematopoietic stem/progenitor
cells (HSPCs) [31].

In cancer, in addition to the regenerative potential of MSCs, when they are incorpo-
rated within tumor stroma, they contribute to tumorigenesis, including its transition to
tumor-associated fibroblasts; suppression of the immune response; promotion of angio-
genesis; stimulation of EMT through the contribution to the TME; inhibition of tumor cell
apoptosis; and, in general, promotion of tumor growth and metastasis [32].

BM is the most extensively studied source of MSCs, and although an invasive surgical
procedure is needed for the recovery of BM-MSCs, a relatively low cell yield (0.001–0.01%)
is obtained, which is inversely correlated with the age of the donor [33]. It has been
described that BM-MSCs show a strong tropism towards injured tissues because the
intravenous delivery of BM-MSCs results in their migration to specific sites of injury.
Moreover, endogenous BM-MSCs are mobilized in response to inflammation or injury,
thus increasing their numbers in the bloodstream and targeting specific tissues via active
mechanisms. BM-MSCs can home in on and engraft to different types of solid tumors,
such as breast, lung, pancreatic, colon, and prostate carcinomas, among other primary and
metastatic tumors [33,34].

Due to their tropism to inflammatory sites, the chemotactic responses of MSCs are
generally considered to resemble those of immune cells. Consistent with this, inflammatory
cytokines are strongly involved in modulating the mobilization of BM-MSCs in the BM
niche, and the further trafficking and homing of those cells to tumor sites [33].

4. MDSCs and MSCs in T-Cell Immunosuppression Function and Mechanism

MDSCs and MSCs have an immunoregulatory capacity of almost all immune system
components that may affect cancer development during several stages [35,36]. For instance,
MDSCs and MSCs intensely regulate the immune response via interactions with the
innate system, such as natural killer cells and monocytes/macrophages, and adaptive
immune systems, including DCs, B lymphocytes, and T lymphocytes. The dependent
immunoregulation of MDSCs and MSCs occurs through cellular contact and the secretion
of diverse factors (Figure 1) [18,37–39]. In inflammation, MDSCs and MSCs can prevent the
inappropriate activation of T lymphocytes and generate a tolerogenic environment during
wound repair or stop an immune response during healing, thus contributing to immune
homeostasis maintenance. However, these properties can favor cancer development and
allow transformed cells to escape from cancer immunosurveillance [37,40,41]. Next, we
analyze the primary mechanism involved in the immunoregulation of T-cell activation,
proliferation, and function by MDSCs and MSCs, which contributes significantly to the
escape of transformed cells from anticancer immune responses.



J. Clin. Med. 2021, 10, 2788 4 of 26

Figure 1. Overview of the immunosuppressive mechanisms of myeloid-derived suppressors cells (MDSCs) and mesenchy-
mal stroma/stem cells (MSCs). Both MDSCs and MSCs exert a potent immune-suppressive function on components of
the immune system, and they may express and release proteins and molecules that inhibit the activation and function of T
lymphocytes (T-cells). In addition, MDSCs and MSCs may target other immune system cellular members such as dendritic
cells (DC) and natural killer cells (NK). ARG1, arginase-1; iNOS, inducible nitric oxide synthase; NO, nitric oxide; COX2,
cyclooxygenase-2; PGE2, prostaglandin-2; NOX2, NADPH oxidase-2; ROS, reactive oxygen species; RNS, reactive nitrogen
species; IDO, indoleamine 2,3-dioxygenase; Kyn, kynurenine; PD1, programmed death-1; PD-L1, PD-L2, programmed
death-ligand 1, -ligand 2.

4.1. MDSC and T-Cell Immunosuppression

MDSCs have been postulated to be highly immune-suppressive cells involved in
endogenous and exogenous inflammatory insults [42]. Despite the capacity of MDSCs
to regulate almost all immune cells, the inhibition of T-cells is critical, appears to be a
sufficient functional criterion to define MDSCs, and is the gold standard for evaluating the
function of MDSCs [14,17,43].

L-arginine catabolism may affect T-cell expansion. For instance, arginase-1 (ARG1) con-
verts L-arginine (Arg) into ornithine and urea, whereas L-Arg is a precursor for nitric oxide
(NO) production by inducible nitric oxide synthase (iNOS). L-Arg depletion provokes T-cell
proliferation inhibition due to downregulation of CD3δ, cyclin D3, and cyclin-dependent
kinase (CDK)4 expression [44–46]. Additionally, increased MDSC-associated iNOS/NO
levels reduce T-cell proliferation by inhibiting interleukin (IL)-2 expression [47].

Interestingly, increased NADPH oxidase-2 (NOX2) expression in MDSCs is mainly
regulated by the STAT3 transcription factor and contributes to elevated reactive oxygen
species (ROS) levels, such as the superoxide anion (O2-) and hydrogen peroxide (H2O2) [48].
The O2- and free radical NO- reaction produces reactive nitrogen species (RNS), which
drive T-cell apoptosis via T-cell receptor (TCR) tyrosine nitration [49]. In turn, T-cells’
TCRζ chain expression is inhibited by MDSC-derived H2O2 [50]. PMN-MDSCs primarily
use ROS and RNS as the main mechanisms of immune suppression, which depend on
tight cell–cell contact to affect T-cells due to these molecules’ short half-life [51]. By
comparison, M-MDSCs suppress the function of T-cells by expressing increased amounts
of NO, ARG1, and immunosuppressive cytokines, which does not require close contact
between M-MDSCs and T-cells [52–54].

MDSC-induced T-cell immunosuppression within the TME also relies on IDO expres-
sion. IDO converts tryptophan (Trp) to active metabolites kynurenine (Kyn), kynurenic
acid, and 3-hydroxykynurenine. Trp depletion induces cell cycle arrest and apoptosis in T-
cells by inhibiting the mechanistic target of rapamycin complex 1 (mTORC1), whereas Kyn
is toxic for lymphocytes by itself and contributes to the exhaustion of CD4+ T-cells [55–57].
In addition, MDSCs inhibit T-cell activation and induce apoptosis by a reduction in in-
tratumoral cysteine levels. T-cells do not synthesize cysteine endogenously and depend
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on the uptake of DC-derived cysteine, whereas MDSCs sequester and reduce cysteine
bioavailability through the cystine/glutamate transporter encoded by solute carrier family
7 member 11 (SLC7A11) [58,59].

Furthermore, MDSCs may induce the suppression of T-cell activation and apoptosis
through cell–cell interaction mediated by immune checkpoint proteins, such as the pro-
grammed death-1 (PD-1) molecule with its cognate ligands PD-L1 and PD-L2 [60]. PD-L1
expressed on MDSCs binds T-cell-expressed PD-1 and inhibits T-cell functions [60,61].

In addition to impairment of T-cell activation, MDSCs also interfere with T-cell traf-
ficking and restrict T-cells’ access to inflamed sites [62]. MDSCs provoke the cleavage of
the ectodomain of the cell adhesion molecule L-selectin/CD62L by MMP17, which reduces
cell surface L-selectin in T-cells and thereby limits their homing to peripheral lymph nodes
and tumors [63]. Furthermore, MDSCs may decrease L-selectin expression in T-cells in an
HMGB1-dependent fashion within the TME [64].

4.2. MSC and T-Cell Immunosuppression

As MSCs exhibit a low expression of HLA-II and costimulatory molecules, such as
CD40, B7, CD80, and CD86, they do not stimulate alloreactive T lymphocyte responses
in vitro and are considered to be hypoimmunogenic cells [65–67]. MSCs also regulate
immune responses by influencing adaptive and innate immunity via soluble factors and
cell-to-cell contact mechanisms [68,69]. MSCs mainly migrate to the sites of inflammation
and display potent immunomodulatory and anti-inflammatory effects through cell–cell
interactions with lymphocytes or by the production of soluble factors [67–70]. It is generally
accepted that MSCs suppress T-cell proliferation, cytokine secretion, and cytotoxicity and
regulate T helper (Th)1/Th2 effector cells’ balance [71]. Interestingly, MSCs also inhibit the
lytic function of activated cytotoxic T-cells (CTLs) [72].

MSCs constitutively express and release indoleamine 2,3-dioxygenase (IDO), further
enhanced by interferon (INF)-γ stimulation [73,74]. Consequently, Trp depletion inhibits al-
logeneic T-cell responses and IFN-γ production by Th1 cells while provoking IL-4 secretion
by Th2 cells [70,75,76]. Trp depletion appears to be more critical for IDO-mediated T lym-
phocyte inhibition rather than kyn accumulation [77,78]. Remarkably, mammalian-derived
MSCs can be classified into two main groups depending on IDO expression and iNOs for
immunosuppression functions. Cytokine-licensed MSCs derived from several mammalian
species demonstrate that monkeys, pigs, and humans employ IDO to suppress immune
responses, whereas mice, rats, rabbits, and hamsters, belonging to the phylogenetic clade
Glires, mainly employ iNOS [79,80].

Prostaglandin E2 (PGE2), synthesized by cyclooxygenase-2 (COX-2), regulates inflam-
mation and the cancer evasion of immunity [81,82]. IL-6, TNF-α, and IFN-γ may increase
PGE2 production by MSCs [83–85]. COX2 inhibition by indomethacin led to a substantial
recovery of T-cell proliferation in bone marrow (BM), adipose tissue, and Wharton’s jelly-
derived MSC co-culture approaches [86,87]. In addition, MSCs’ expression of COX2 and
PGE2 production contributes to the maintenance of self-renewal and proliferation in an
autocrine manner via the prostaglandin EP2 receptor [88].

MSCs constitutively express ectonucleoside triphosphate diphosphohydrolase-1
(CD39) and adenosine formation by ecto-5′-nucleotidase (CD73) to convert ATP into
adenosine [89,90]. Adenosine functions as an immunosuppressant that binds to the adeno-
sine A2a Receptor (ADORA2A), which triggers intracellular cAMP production to suppress
T-cell proliferation and function, thus inducing T-cell anergy [91–93].

Galectins (Gal) are one of the main groups of carbohydrate recognition proteins that
comprise the β-galactoside binding galectin family, and they are directly linked with
immunity [94]. MSCs express Gal-1, Gal-3, and Gal-9, which induce apoptosis in activated
T-cells [95–97].

In addition to the production of soluble factors, MSCs, via cell–cell interaction, may
downregulate T-cell activation and responses; this occurs via induction of T-cell apoptosis
through the inhibitory receptor interaction programmed death-1 (PD-1) protein with
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its cognate ligands PD-L1 and PD-L2 [71,98]. The co-culture of MSCs with allogeneic
splenocytes stimulates, in conjunction with phytohemagglutinin, increased PD-L1 and
PD-L2, whereas the use of specific blocking antibodies against PD-1, PD-L1, and PD-L2
allows splenocytes to proliferate, even in the presence of MSCs [99,100]. Furthermore,
the combination of Interferon-γ and TNF-a increases placenta-derived MSC expression of
PD-L2 and inhibits anti-CD3 antibody-stimulated T-cell proliferation, concomitantly with
a switch of T-cell differentiation to the T regulatory (Tregs) cell phenotype. Moreover, the
addition of anti-PD-L1 Mab protects T-cell proliferation of inhibition by placenta-derived
MSCs [101,102].

5. MDSCs and MSCs in Myeloid Malignancies

Myeloid malignancies arise from immature myeloid clones due to genetic muta-
tions, which alter proliferation, maturation, and differentiation in a process called clonal
hematopoiesis [103]. Malignant transformation can appear at any stage of blood cell devel-
opment, including HSCs, progenitors, and mature blood cells [104]. According to the 2017
revision of the World Health Organization (WHO) classification of myeloid malignancies,
myeloid malignancies include BCR-ABL1/Philadelphia (Ph), positive and negative MPN,
MDS, MDS/MPN with mixed features, myeloid and lymphoid neoplasms associated with
eosinophilia, gene rearrangements, and AML [105,106]. Next, we analyze the main features
of MDSCs and MSCs in myeloid malignancies. Figure 2 indicates the main features of
MDSCs and MSCs in myeloid malignancies.

Figure 2. Main features of MDSCs and MSCs in myeloid malignancies. The number of MDSCs is
elevated in peripheral blood (PB) and bone marrow (BM) of patients with myeloid malignancies,
and they exhibit potent immunosuppressive functions. MSCs mainly support neoplastic myeloid
cells and may promote chemoresistance; depending on the myeloid malignancy subtype, they may
exert specific functions, as indicated in the figure. AML, acute myeloid leukemia; MDS, myelodys-
plastic syndrome; CML, chronic myeloid leukemia; Ph-MPN, Philadelphia chromosome-negative
myeloproliferative neoplasms.

5.1. Acute Myeloid Leukemia

AML is the most common myeloid malignancy and is highly aggressive. AML is
a heterogeneous clonal disorder characterized by the expansion of immature myeloid
progenitors (blasts) in the BM and peripheral blood [107]. AML development is the
outcome of hematopoietic progenitor transformation leading to the accumulation of rapidly
proliferating, abnormal myeloid cells incapable of terminal differentiation [108]. In this
type of leukemia, the highly controlled cell proliferation process and differentiation are
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disturbed by mutations that alter the function of growth factors, their receptors, and
intracellular signal transduction [109].

AML develops due to oncogenic activation in myeloid progenitors in the bone marrow
and is characterized by blood tissue destruction, which causes acute pancytopenia, severe
bleeding, and infection [110]. The most common mutation in AML, and a poor prognosis
marker, is a mutation in the FLT3 gene (FMS-like tyrosine kinase 3). A gain-of-function
mutation in the FLT3 gene leads to activation of signal pathways, such as MAPK, STAT, and
AKT, which are essential for dysregulated cell proliferation and apoptosis resistance. More-
over, immune evasion is also a critical characteristic of AML cells [111]. Over-expression
of PD-L1, T-cell anergy, Tregs accumulation, and MDSCs are vital factors in the AML
antitumor immune response [112]. Moreover, systematic analyses of AML progression
mechanisms are key to the development of new therapeutic approaches in AML.

5.1.1. MDSCs in Acute Myeloid Leukemia

Patients with AML have an increased level of CD14−HLA−DR−CD33+ CD11b+ MD-
SCs in both PB and BM. A significant correlation exists between PB-associated MDSCs
and conventional prognostic factors at diagnosis, whereas BM-associated MDSCs may
impact the disease prognosis and the AML patient’s clinical course [113]. In addition, in
de novo diagnosed AML patients, the frequency of MDSCs correlates with the subtype
of AML, chromosomal and gene modifications, and D-dimer plasma levels. Furthermore,
after therapy and complete remission, patients exhibit a decrease in the number of MDSCs
compared to partial or nonresponsive patients, whereas the frequency of MDSCs correlates
with minimal residual disease levels [113]. Moreover, a high number of M-MDSCs in the
PB of AML patients is associated with a poor prognosis, with potential use as a prognostic
indicator of the disease [114]. Furthermore, the high levels of PB-associated eMDSCs, such
as CD33+CD11b+ HLA-DR−/lowCD14−CD15− cells, in AML patients indicate a potential
use as a diagnostic index [115].

Furthermore, a high frequency of BM-associated CD11b+ CD33+ HLA−DR− MDSC-
like blasts is associated with a significantly shorter overall survival and poor prognosis,
whereas a low number of MDSC-like blasts may indicate leukemia-free survival of AML
patients. Moreover, MDSC-like blasts may drive AML to escape from immune control by
suppressing CD8+ T-cell proliferation by ARG1 and iNOS expression [116].

Similarly, M-MDSCs in newly diagnosed AML patients exhibit immunosuppres-
sive functions due to the expression of IDO. Interestingly, AML-derived extracellular
vesicles (EVs) induce monocytes to acquire an M-MDSC (CD14+HLA-DRlow) phenotype.
Specifically, palmitoylated proteins on the AML-EV surface activate Toll-like receptor 2 in
monocytes and trigger an Akt/mTOR-dependent induction of MDSCs [117]. AML-derived
EVs also induce MDSCs from PB mononuclear cells (PBMCs). It appears that mucin 1
(MUC1) oncoprotein promotes EV-associated c-myc expression, which, when taken up
by PBMCs, induces cyclin D2 and E1 and selectively enhances MDSC proliferation [118].
This suggests that AML-transformed cells may contribute to the expansion of MDSCs,
sustaining the immunosuppressive characteristics observed in AML patients.

5.1.2. MSCs in Acute Myeloid Leukemia

MSCs appear to have an antiproliferative function on AML cells. For instance, the
human bone marrow stromal cell line (HFCL) induces a G1 cell cycle arrest of AML cell
lines, such as U937, HL-60, and multidrug-resistant HL-60/VCR cell lines. Moreover,
HFCL co-culture protects AML cells from apoptosis induction by topoisomerase I (topo I)
inhibitor topotecan (TPT) and, as observed by Annexin-V assay, activates a Caspase-3
decrease and increases Bcl-2 expression [119]. Similarly, umbilical cord-derived MSCs
inhibit cell proliferation and cell arrest at G0/G1 by expressing and releasing IL-6 and
IL-8 [120]. As MSCs induce AML cell quiescence and protect cells from apoptosis, an
increment in chemoresistance is observed. AML-increased chemoresistance appears to be
associated with the increment of c-myc and B-cell lymphoma (Bcl)-2 expression and Notch



J. Clin. Med. 2021, 10, 2788 8 of 26

signaling [121–123]. Furthermore, MSCs exert an antiapoptotic and growth-enhancing
effect on primary human AML cells by mTOR signaling pathway activation [124].

Direct MSC contacts are mainly required to acquire AML cells’ drug resistance, as
demonstrated by Garrido et al. by co-cultivating derived leukemic cells from AML patients
with HS-5 human BM stromal cell monolayers [125]. AML cells in contact with HS-5
monolayers exhibit resistance to apoptosis induction by cytosine arabinoside or dauno-
mycin treatment, whereas noncontact conditions inhibited drug-induced apoptosis of AML
cells. Moreover, the reciprocal VCAM-1/VLA-4-dependent NF-κB activation in MSCs and
AML cells mediates the stromal cell-mediated drug resistance in leukemia cells in vitro and
in vivo [126].

AML-derived MSCs (AML-MSCs) exhibit some differences compared to MSCs from
healthy donors; although AML-MSCs express CD90, CD73, and CD44 levels that are
similar to those of a healthy counterpart, a decrease in chemoattractant protein-1 lev-
els is observed [127]. Moreover, AML-MSCs possess an enhanced capacity to support
hematopoiesis due to an abnormal expression of cell surface molecules, such as CD44,
CD49e, CD271, and CXCL12 [128,129]. In addition, about 25% of AML-MSCs display
genetic aberrations, the most frequent of which are chromosomic translocations, which are
different from those in hematopoietic cells [130]. Moreover, AML-MSCs display several
gene mutations, such as those found in plectin and chromatin remodeling genes, and
hypermethylation of pituitary homeobox (PITX)2 and Homeobox (HOX)B6 genes and
hypomethylation of HOXA3 and HOXA5 genes have also been described [131,132].

In addition to AML-MSCs’ genome modifications, cell functional changes have been
reported. Controversial information can be found in the literature indicating that AML-
MSCs exhibit reduced clonogenic potential (CFU-F) at diagnosis, reduced proliferation
capacity, and susceptibility to enter the senescence stage. In contrast, CFU-F potential
is restored in AML-MSCs from patients in complete remission [132,133]. Conversely,
AML-MSCs derived from patients from good-, intermediate-, and poor-risk groups ex-
hibit an increase in clonogenic potential [134]. Furthermore, these AML-MSCs display an
enhanced immunosuppressive capacity that is probably associated with increased anti-
inflammatory IL-10 production, which correlates directly with patients’ overall survival,
whereas AML-MSCs have reduced proinflammatory cytokine expression [134]. Interest-
ingly, MDS-derived MSCs (MDS-MSCs) may transfer functional mitochondria to AML cells
in vivo, which increase AML cells’ energy production and cell survival under chemotherapy
conditions [135,136].

5.2. Myelodysplastic Syndrome

MDS is another clonal HSC disorder characterized by dysplasia of myelopoiesis and
consequential pancytopenia. Classification of MDS is based on the quantity of dysplastic
myeloid cell linages (single-lineage and multilineage MDS), presence of ring sideroblasts
(RS) (RS-MDS), chromosomal aberrations (MDS with del5q), or blasts in the bone marrow
and peripheral blood (MDS with excess blasts) [137–139]. Due to enhanced apoptosis,
increased phagocytosis, and reduced cell differentiation, cytopenia may predispose patients
to potentially life-threatening complications, such as bleeding or infections, which are the
most common causes of death associated with MDS [140–142]. MDS is the most common
myeloid hematologic malignancy and mainly affects the elderly population. About 30–45%
of patients may progress to acute myeloid leukemia [143,144].

Patients with MDS, particularly those with excessive blast expression, carry a high risk
of AML transformation. Genetic abnormalities such as del5q, del7q, t(7;17), mutated NRAS,
and mutated RUNX1 genes can be detected at disease diagnosis but are more common at
disease progression. Recent studies demonstrated their importance for diagnosis, classifi-
cation, drug response, and prognosis of the disorder [145,146]. An essential feature in MDS
disease pathogenesis is inflammation and immune dysregulation [147]. MDS progenitors
are prone to apoptosis due to over-expression of death receptors (Fas and TRAIL-R) and
impaired caspase activity [148]. Over-expression of suppressive cytokines tumor necrosis
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factor (TNF)-α, transforming growth factor (TGF)-β, and IFN-γ, over-expression of TLR,
and hyperactivation of cytotoxic CD8+ T lymphocytes have been reported in MPN [149]. In
addition to some shared molecular features, including chronic inflammation and molecular
mutations, MDS and MPN also have some common clinical characteristics; thus, the new
modality MDS/MPN with mixed features in the WHO classification was inevitable [106].

5.2.1. MDSCs in Myelodysplastic Syndrome

MDSCs are significantly increased in the BM and PB of high-risk MDS compared to
lower-risk MDS patients [150–152], and an elevated MDSC BM frequency may promote in-
effective hematopoiesis concomitantly with increased immunosuppression in T-cells [153].
Moreover, the increased CD33 expression contributes to the dysfunctional myeloid cell
development, and CD33 binding to S100A9 promotes MDSC expansion and induces anti-
inflammatory IL-10 and TGF-β cytokine secretion. Furthermore, CD33 knockdown reduces
IL-10 and TGF-β secretion and ARG1 activity, therefore downregulating MDSC immuno-
suppressive activity; moreover, the induction of MDSCs’ maturation, by either all-trans-
retinoic acid treatment or active immunoreceptor tyrosine-based activation motif-bearing
(ITAM-bearing) adapter protein (DAP12) interruption, rescues the hematologic phenotype
of MDS [153,154]. In addition, high-risk MDS-derived MDSCs exhibit higher activated
activator of transcription (STAT)3 and C-C chemokine receptor type (CCR)2 expression,
whereas STAT3 pathway targeting decreases ARG1 expression in MDSCs and partially
revokes reduced expression levels of effector molecules in CD8+ T lymphocytes [155]. Thus,
MDSCs may contribute to the BM microenvironment switch to an immunosuppressive
environment as the MDS disease progresses [156].

5.2.2. MSCs in Myelodysplastic Syndrome

Increased MSC cell density in the BM of higher-grade MDS compared to lower-
grade MDS and benign hematologic disorders independently correlate with significantly
shorter overall survival [157]. MDS-MSCs exhibit a reduced in vitro proliferation capacity
compared to healthy counterparts, which may indicate the intrinsic growing defect of MDS-
MSCs, although these cells show similar immunophenotype patterns and differentiation
capacity to those displaying normal MSCs. MDS-MSCs support leukemic cell prolifera-
tion and viability similar to those of healthy MSCs [158]. MDS-MSCs possess increased
clonal hematopoiesis-supportive capacities due to a decreased expression of cell surface
molecules, including CD44 and CD49e (α5-integrin), and lower or absent expression levels
of costimulatory molecules (such as CD40, CD80, and CD86) [128,159–161]. In particular,
MDS-MSCs are epigenetically and functionally altered, resulting in deficient support of
normal hematopoiesis [132].

MDS-MSCs in vitro display modification of expression cytokines, such as decreased
expression of stem cell factor (SCF), granulocyte cell stimulating factor (G-CSF), and
granulocyte-macrophage colony-stimulating factor (GM-CSF), and increased expression
of IL-6 [162]; adhesion molecules, such as CD44 adhesion molecules and CD49e [163];
molecules involved in the interaction with the HSCs, such as osteopontin (OPN), Jagged1,
Kit-L, and angiopoietin (ANG)1 [164]; and the CXCL12 chemokine associated with the
survival/antiapoptosis of MDS cells and disease progression in MDS [165]. Moreover,
the clonogenic potential and proliferation of MDS-MSC CFU-Fs are reduced at
diagnosis [166–168], and they exhibit accelerated senescence earlier than in healthy
MSCs [169]. Moreover, MDS-MSCs inhibit in vitro erythroid hematopoiesis and promote
the myeloid cell lineage of HSCs in vitro [164].

MDS cells may modify MSCs’ biological behavior, as demonstrated by the capac-
ity of conditioned medium of human MDS cells to educate healthy MSCs to acquire
MDS-MSC molecular features. For instance, methylation signatures, upregulation of
cytokine/inflammation-related genes, and downregulation of cell cycle-promoting genes
reduce the supportive capacity of healthy HSCs [132,170]. Some studies have indicated that
patients’ MDS-MSCs appear to have an impaired immunoregulatory function [171,172],
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whereas others showed that the immunosuppressive function did not differ significantly
between patients and healthy MSCs [167]. Furthermore, MDS-derived MSCs exert an
immunosuppressive effect due to increased prostaglandin production, which may reduce
T-cell immunity against leukemic cells [173].

5.3. Myeloproliferative Neoplasms

MPNs are characterized by the clonal proliferation of one or more hematopoietic
cell lineages, predominantly in the bone marrow, and demonstrate terminal myeloid cell
expansion into the peripheral blood [174]. MPNs mainly include CML, polycythemia vera
(PV), essential thrombocythemia (ET), primary myelofibrosis (PMF), and unclassifiable
MPNs [175].

5.3.1. Chronic Myeloid Leukemia

CML is a malignant myeloproliferative disorder characterized by clonal hematopoietic
stem cell proliferation [176]. CML is the BCR-ABL1 oncoprotein-positive MPN charac-
terized by the Philadelphia (Ph) chromosome’s presence. The Ph chromosome, a unique
biomarker of CML, is a product of reciprocal translocation of the BCR gene on chromosome
22q11.2 and the ABL1 gene located on chromosome 9q34, and about 90–98% of CML
patients harbor this mutation [105,177,178]. Furthermore, CML incidence is about 0.7–
1.0/100,000 individuals per year; this rate has stabilized in recent years, and the diagnosis
is more frequent in the population around 60–70 years old [179].

The BCR-ABL1 oncogene leads to the constitutive activation of tyrosine kinase, an
essential factor in leukemogenesis and target molecule for CML treatment with tyrosine
kinase inhibitor (TKI). As a consequence of cytokine-independent tyrosine kinase hyper-
activity, several signal pathways, such as rat sarcoma (RAS) protein, mitogen-activated
protein kinases (MAPK), and PI3K/AKT, are activated, leading to an improved prolifer-
ation of leukemic progenitor cells and apoptosis evasion [180,181]. Although BCR-ABL
leads to unrestricted cell proliferation, dysfunctional cell differentiation, and apoptosis
resistance, the advances in the development of TKIs, as part of the armamentarium of
innovative treatments, increase the therapeutic success rates and substantially increase
patient survival and disease prevalence [177,182,183]. Nonetheless, the sustained CML
stem cell proliferation may favor generating new mutations that provoke resistance to the
current treatments and negatively impact disease prognosis [184]. Disease progression and
resistance to TKI are associated with mutations of tumor protein (TP)53, MYC, and KRAS
genes, MSC-mediated protection of leukemic cells, accumulation of MDSC, disrupted func-
tion of NK cells, and cytotoxic T lymphocytes [185–187]. Overall, these findings highlight
the importance of immunomodulation and “oncoinflammation” in the development of
new treatment strategies.

MDSCs in chronic myeloid leukemia.
An increase in the number of MDSCs has been found in the PB and BM of CML

patients [188,189]. An elevated frequency of PMN-MDSCs has been observed in CML
and may contribute to CML cells’ escape from immune surveillance [188,190]. Imatinib
treatment reduces and recovers the basal levels of PMN-MDSCs in CML patients, whereas
the frequency of M-MDSCs may be used as a prognostic factor for dasatinib therapy in CML
patients [191,192]. Furthermore, CML patients responsive to TKI therapies, such as imatinib,
nilotinib, and dasatinib, show a decrease in the number of M-MDSCs concomitant with
a reduced immunosuppressive function in T-cell and NK cells, in conjunction with ABL-
BCR1 transcript reduction [187]. In addition, an increased ARG1- and PD-L1-expressing
PMN-MDSC frequency is also observed in Sokal high-risk CML patients and T-cells with
an upregulated PD-1 expression [190]. Moreover, the number of M-MDSCs may correlate
with CML patients’ remission status. In addition, they promote the in vitro proliferation
of the K562 cell line and CD34+ cells obtained from newly diagnosed CML patients [189],
which suggests that MDSCs, in addition to their immunosurveillance protection, may
increase the number of CML cells and exacerbate the development of CML disease [193].
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MSCs in chronic myeloid leukemia.
MSCs play essential roles in CML cell growth, apoptosis, and resistance to chemother-

apy. For instance, BM-MSCs protect CML cells from imatinib-induced cell death, mediated
by MSC-secreted IL-7 and activation of the JAK1-STAT5 pathway CML cells. Moreover,
IL-7 levels are increased in the BM of CML patients in the blast crisis phase [194,195].
Although imatinib enhances CXCR4 expression in CML cells, and MSCs protect these CML
cells from imatinib-induced apoptosis, MSCs further enhance the capacity of imatinib to
induce CML cell cycle arrest in the G0/G1 phase. Thus, imatinib may enhance CML cells
to migrate to BM by increasing CXCR4 expression and block cell proliferation; BM stromal
cells may protect and promote quiescent CML survival cells with potential implications for
disease re-incidence [196,197].

Similarly, MSC contact inhibits apoptosis and promotes a G0/G1 quiescent state of
the Ph-positive human cell line (BV173) and K562 cells coupled with cyclin-D2 downregu-
lation. Conversely, MSCs promote tumor growth of CML cells in NOD-SCID mice with
the expected apoptosis inhibition. These results suggest to the authors that MSCs may
contribute to a niche creation of cancer stem cells that preserve CML stem cells’ self-renewal
and sustain malignant processes [198]. MSCs may, in vitro, inhibit CML mononuclear cell
proliferation due to the enhanced production of interferon (IFN)-α in co-cultured condi-
tions; IFN-α was the standard frontline treatment for chronic myeloid leukemia prior to
TKIs [199,200]. In addition, BM-MSCs obtained from the blastic phase (Bp) of CML patients
in vitro protect primary CML Bp cells from apoptosis induced by Adriamycin via reduction
in caspase-3 and Bax expression, an increase in Bcl-2 levels, and activation of the Wnt
pathway [201].

5.3.2. Philadelphia Chromosome-Negative Myeloproliferative Neoplasms

Ph- MPNs are a group of hemopoietic stem cell disorders characterized by clonal
proliferation of myeloid-lineage cells in the bone marrow and chronic inflammation [202].
This group of disorders is encompassed by polycythemia vera (PV), which typically display
a high number of red cells, usually in conjunction with thrombocytosis and essential throm-
bocythemia (ET), characterized by megakaryocyte expansion and increased platelet count.
The main features of primary myelofibrosis (PMF) are peripheral leuko-erythroblastosis,
massive splenomegaly, and BM fibrosis [202–204]. ET or PV may potentially evolve
into either end-stage myelofibrosis with BM failure or the development of secondary
acute leukemia [205]. PV and ET have an incidence of 0.5 to 4.0 and 1.1 to 2.0 cases per
100,000 person-years, respectively, with similar survival predictions. PMF, in turn, is less
frequent, presenting an incidence of 0.3 to 2.0 per 100,000 person-years, but is associated
with the shortest survival of the MPNs [206].

The mutational landscape of MPNs is formally integrated into the WHO diagnos-
tic criteria for PV (98% JAK2 mutational frequency), ET (50–60% JAK2, 22% calreticulin
(CALR), and 3% thrombopoietin receptor (myeloproliferative leukemia virus, MPL), and
PMF (50–60% JAK2, 25% CALR, and 7% MPL). Moreover, about 10–15% of patients
with PMF or ET lack these three driver mutations and are referred to as triple-negative
MPN [202,207]. There are more than 20 other rare mutations responsible for disease pro-
gression and transformation, comprising ASXL1 (additional sex combs-like 1), IDH1/2
(isocitrate dehydrogenase 1/2), TP53, and TET2 (TET oncogene family member 2) [208].

Clonal myeloproliferation in MPN is the consequence of the chronic inflammation
activated by infection, hypoxia, or injury. Cytokine production is initiated by activation
of signal pathways such as nuclear factor (NF)-κB, STAT1, STAT3, or hypoxia inducible
factor (HIF)-1α, or is the result of MPN-associated mutations [209]. Dysregulation of the
immune system is another critical feature of MPN. Accumulation of CD4+CD25+ forkhead
box (FOX)P3+ Tregs, monocytes, macrophages, and MDSCs, and an impaired balance
of CD4+/CD8+ have been hypothesized as relevant factors for disease progression and
therapeutic resistance [210]. Other atypical MPNs comprise chronic neutrophilic leukemia,
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chronic eosinophilic leukemia, mastocytosis, and rare clonal disorders characterized by
persistent neutrophilia, eosinophilia, or accumulation of mast cells [105].

MDSCs in Ph- myeloproliferative neoplasms.
Ph- MPNs appear to dysregulate the function of immune cells, which includes an

increased number of monocyte/macrophages, dysfunctional NK cells, and expansion of
MDSCs [210]. Peripheral blood MDSCs are significantly elevated in MPNs without differ-
ences in their frequency between the different MPN types, and no correlations with JAK2
allele burden have been found. Consistently, MPN-derived MDSCs exhibit an immuno-
suppressive function by inhibiting the proliferation of autologous CD3+ T-cells alongside
elevated ARG1 expression. Moreover, the frequency of MDSCs is likely increased in the
BM of MPN patients, although their function and activity remain to be elucidated [211].

MSCs in Ph- myeloproliferative neoplasms.
MSCs appear to support transformed myeloid proliferation and favor the creation of

a BM fibrotic environment. For example, in a primary myelofibrosis in a thrombopoietin
(Tpo)-over-expressing mouse model, MSCs expressing the leptin receptor are the primary
source of myofibroblasts in BM or PMF [212]. In addition, although MPN (JAK2V617F)-
derived MSCs do not exhibit differences in morphology, proliferation, and differentiation
capacity compared to healthy counterparts, they better support the CFU-GM clonogenicity
of MPN-hematopoietic stem/progenitor cells. Consistently, MPN-MSCs derived from PV
and ET patients exhibit a modified expression of genes associated with hematopoiesis main-
tenance, such as secreted phosphoprotein (SPP)1 and NF-κB over-expression, and angiopoi-
etin (ANGPT)1 and thrombopoietin (THPO) downregulation. Thus, MPN (JAK2V617F)-
derived MSCs may favor the expansion and maintenance of MPN cells [213]. Schneider
et al. also found that ET- and PV-derived BM-MSCs are similar to healthy MSCs in
terms of surface marker pattern, CFU-F clonogenicity, morphology, and differentiation
capacity. Intriguingly, ET-MSCs secreted significantly lower G-CSF and IL-7, which indi-
cates a potential impairment in the hematopoiesis-supporting capacity, whereas normal
myeloid CFU is reduced when cultivated with supernatants from PV cells [214]. In addi-
tion, PMF-BM-MSCs display no differences in proliferation or capacity to support normal
hematopoiesis compared to healthy BM-MSCs. Nonetheless, PMF-, PV-, and ET-BM-MSCs
appear to be preferentially reprogramed to be committed to osteogenic differentiation com-
pared to normal BM-MSCs, and consequently to upregulation of runt-related transcription
factor (RUNX)2, distal-less homeobox (DLX)5, OPN, and integrin binding sialoprotein
(IBSP) expression [215]. Furthermore, MPN-BM-MSCs promote an abnormal generation of
osteoblast-like inflammatory “myelofibrotic” cells, as a result of a dysregulated inflamma-
tory milieu due to elevated TGF-β1, Notch, IL-6, IL-1β, and TNF-α production, which may
be a consequence of direct contact between MPN-HSCs and BM-MSCs [216]. Moreover,
excessive expansion of inflammatory “myelofibrotic cells” favors the progressive BM fibro-
sis generated in the advanced stages of MPN; in addition, over-generation of osteoblasts
contributes to perpetuating clonal-MPN cell proliferation [217,218].

Interestingly, a consistent reduction in sympathetic nerve fibers, supporting Schwann
cells and nestin+ MSCs, is observed in the bone marrow of MPN patients and mice express-
ing the JAK2(V617F) mutation in HSCs. Consequently, the abrogation of bone marrow
nestin+ MSCs innervated by sympathetic nerve fibers is essential for MPN pathogenesis.
Furthermore, the restoration of sympathetic regulation of nestin+ MSCs by β3-adrenergic
agonists prevents mutant myeloid cell expansion [219]. In addition, elements of the
PV-derived BM-MSC secretome, including IL-6, G-SCF, and CXCL-10/IP-10 production,
contribute to therapy resistance to JAK2 inhibition and reduce JAK2(V617F) myeloid cell
apoptosis in co-culture conditions with MSCs in vitro [220].

6. MDSC and MSC Interplay

Recently, MSCs have been proposed to be a new actor in the generation and accumula-
tion of MDSCs, which highlights the complex tumor stroma scenario. BM-MSCs have been
shown to induce human CD14−CD11b+CD33+ MDSC expansion and function in vitro and
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via paracrine effects through hepatocyte growth factor (HGF). BM-MSC-secreted HGF inter-
acts with its cell surface receptor c-met in peripheral blood mononuclear cells, triggering the
activation of STAT3 in conjunction with increased levels of iNOS and ARG1, which mediate
the immunosuppressive activity of generated MDSCs in T-cell proliferation. Furthermore,
as MDSCs inhibit T-cell activation, they shift their fate to CD4+CD25highCD127low Tregs,
which further enhances immunosuppression [221]. Growth-regulated oncogene (GRO)
chemokines, such as GRO-γ, secreted by MSCs, may expand MDSCs. GRO-γ present
in MSC medium shows the capacity to induce a phenotype switch of monocyte-derived
dendritic toward an MDSC-like phenotype. GRO-γ-induced MDSCs express a tolerogenic
phenotype characterized by increased secretion of IL-10 and IL-4, and ARG1 and iNOS
expression, whereas production of IL-12 and IFN-γ is reduced [222].

MSCs appear to play a role in the induction of MDSCs in multiple myeloma (MM).
Although MSCs derived from healthy donors, monoclonal gammopathy of uncertain signif-
icance (MGUS), and MM generate a similar number of MDSCs in vitro, only dysfunctional
MM-derived MSCs generate PMN-MDSCs with immunosuppressive capacity. This re-
sult correlates with the increased frequency of PMN-MDSCs observed in MM patients.
MM-derived MSCs secrete TGF-β, IL-10, and IL-6 levels that can mediate PMN-MDSC ex-
pansion. Furthermore, these MM-MSC-generated PMN-MDSCs exhibit a digestive process
of bone, which may be related to enhanced bone resorption in MM patients [223,224].

As mentioned above, the frequency of PMN-MDSCs is elevated in CML patients,
which may be explained, in part, by the capacity of CML-derived MSCs to promote in vitro
the expansion of PMN-MSCs with immunosuppressive activities from peripheral blood
mononucleated cells. The increased upregulation of immunomodulatory factors, such as
TGF-β, IL6, and IL-10, in CML-derived MSCs, correlates with their capacity to promote
PMN-MDSC generation and cell reprogramming, which occurs in conjunction with their
increased expression of immunosuppressor enzymes, such as ARG1 and COX-2. Thus,
CML-MSCs may directly orchestrate immune escape by driving MDSC activation in the
tumor microenvironment in CML patients [188]. Overall, targeting dysfunctional MSCs
may indirectly reduce MDSC frequency in cancer patients and restore the T-cell-mediated
immunosurveillance, thus improving patients’ long-term outcomes. Nevertheless, the
number of investigations into the interplay of MSCs and MDSCs in hematologic malignan-
cies is scarce, and new studies are necessary to derive a general picture of the molecular and
biological interaction of these non-transformed cells in malignancies. Finally, MDS-MSCs
educate monocytes to display M-MDSC features. These MDSCs exert immunosuppression
of T-cells and inhibition of NK cells’ function capacity via membrane-bound TGF-β and
express elevated ROS levels through upregulation of ectodermal-neural cortex 1 (ENC1)
expression, an inhibitor of the transcription factor Nrf2. Thus, MDS-derived MSCs, in part,
may promote the expansion of MDSCs that is observed in the BM of MDS patients [152,225].

At present, only separate information of MDSCs’ and MSCs’ roles in Ph- MPNs can be
found in the existing literature data. Therefore, it is necessary to conduct new investigations
addressing the mutual collaboration of MSCs and MDSCs in these groups of hematopoietic
stem cell disorders, which may improve the understanding of microenvironment roles in
the etiology of Ph- MPN malignancies.

7. Concluding Remarks

There is convincing evidence regarding the contribution of inflammation in the patho-
genesis of myeloid malignancies. Inflammation promotes the initiation and progression of
myeloid malignancies and induces immunosuppression by inhibiting the adaptive and
innate immune systems [42,226]. The significant advances made in recent decades have
revealed the crucial roles of the BM microenvironment in myeloid malignancies’ patho-
genesis. However, the underlying biological and molecular mechanisms have recently
started to be unveiled and show a high level of complexity in all myeloid malignancies
and disease stages. The primary function of MDSCs may prevent excessive inflamma-
tory responses, but in a dysregulated inflammatory milieu, created by malignant cells,
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they may promote a permissive BM microenvironment that protects transformed cells,
and they can survive, proliferate, and escape from immune surveillance and antitumor
therapies [12,227]. In addition, inflammation may alter the BM niche to promote myeloid
malignancies’ progression and confer chemotherapy resistance [228]. BM-MSCs, as essen-
tial BM-niche non-hematopoietic cells involved in structure formation and organization of
the microenvironment, are also influenced by neoplasm cells and secreted inflammatory
factors, which may engage an “inflammatory loop” that affects healthy HSCs and modifies
normal hematopoiesis [229,230].

Although myeloid malignancies encompass several heterogeneous neoplasms, some
common features can be defined after the analysis of MSCs’ and MDSCs’ roles in these
groups of myeloid disorders (Figure 2): in general, in myeloid neoplasm, the frequency
of MDSCs is elevated in PB and BM, exhibits potent immunosuppressive functions, and
may indicate poor prognosis. In addition, MSCs, presumably in the BM niche, regulate
myeloid neoplastic cell proliferation and increase their survival by affecting apoptosis
induction, which results in chemotherapy resistance because MSCs provide a protective
microenvironment for transformed cells. Moreover, MSCs also exert immunosuppression,
which further contributes to an immune-tolerant BM microenvironment. The role of
MDSCs and MSCs in myeloid neoplasm’s pathogenesis makes them attractive targets
for generating new therapeutic strategies that may improve the current therapies. T-cell-
engaging bispecific antibodies (bsAbs) are a promising tool for cancer treatment. For
instance, in preclinical studies in AML patients, with the aim of achieving combinatory
eradication of MDSCs and redirection of T-cells against AML-blasts by using a CD33/CD3-
bispecific BiTE® antibody construct (AMG 330), a reduction in IDO+ CD33+ MDSCs has
been observed with boosted AML-blast lysis, thus suggesting that AMG 330 exhibits
anti-leukemic efficacy by improving T-cell-mediated cytotoxicity and simultaneous MDSC
depletion [231]. The low immunogenicity and limited recognition by HLA-incompatible
hosts make MSCs an excellent choice for cellular therapy for delivering anticancer agents.
Moreover, MSCs tend to accumulate close to malignant lesions. MSCs engineered to
express CD33-CD3 bispecific antibodies prevent the establishment of AML in a NOD/SCID
IL2Rγ−/− (NSG) mouse model and retargeting of autologous T-cells towards blasts
obtained from AML patients [232]. Although MDSCs were not included in this study, as
mentioned above, MSC-expressing CD33-CD3 bispecific antibodies may also reduce the
frequency of MDSCs in AML patients.

Interestingly, TGF-β1 induces healthy MSCs to develop a dysfunctional phenotype
and adopt a phenotype similar to that observed in myeloid neoplasm patient-derived
stromal cells. For example, in AML/MDS-MSCs, treatment with SD-208, an inhibitor
of autocrine and paracrine TGF-β signaling [233], abrogates the suppressive effects of
TGF-β1 on stromal cell functionality and restores the osteogenic differentiation capacity
of patient-derived stromal cells [234]. In addition, TGF-β1 induces MDSC expansion and
immunosuppressive function. Moreover, MDSCs secrete copious amounts of TGF-β, and
this cytokine level is elevated in myeloid neoplasm [235,236]; it is plausible that TGF-β1
inhibition may also considerably reduce the number of MDSCs and simultaneously restore
the MSC function in the BM niche. Moreover, due to its solid immunosuppressive function,
the TGF-β1 block may also promote T-cell function [237].

In addition, immune dysregulation in myeloid neoplasm is an attractive approach
for immunotherapies, and an increasing number of studies support the use of immune
checkpoint blockers, vaccines, and adoptive T-cell therapies to boost specific T-cells’ anti-
cancer functions in myeloid malignancies. Immune checkpoints are a protective immune
mechanism that dampens T-cell antigen responses of activated T-cells. Indeed, immune
checkpoint inhibitors (ICIs) can enhance killer cells’ cytotoxicity against myeloid leukemic
blasts [238]. Furthermore, the immune checkpoint PD-1 is induced in activated T-cells, and
the binding with PD-L1-expressing cells provokes T-cell anergy [239]. The use of anti-PD-1
and anti-PD-L1 blocking antibodies has shown extraordinary results in solid tumors and
hematological disorders [240,241]. PD-1-blocking antibodies have been tested in MDS
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and AML, especially in combination with the hypomethylating agents, such as 5-aza-
2′deoxycitidine, which have shown promising results in relapsed/refractory AML [242].

Moreover, the oncogene-driven JAK2V617F mutant cells in MPNs promote PD-L1
expression and immune escape [243]. Several clinical trials have addressed the safety and
efficacy of ICIs in the setting of MPNs [reviewed in 204]. Although the MDSC and MSC
interaction in MPNs has not yet been addressed, both types of cells are also a target for
ICIs, since they express PD-L1/PD-L2 that results in downregulation of T-cell activation
and induction of T-cell apoptosis [60,61,71,98]; thus, ICI immunotherapy also may restrain
the immunosuppressive activities of MDSCs and MSCs and enhance the cytotoxic T-cell
killing function in malignant myeloid cells.

Another attractive immunotherapy for myeloid malignancy treatment involves using
chimeric antigen receptor T (CART) cells [244,245]. CART cell immunotherapy requires a
genetic patient-derived T-cell modification to express a specific CAR, and a subsequent ex
vivo cell expansion and reinfusion back into the same patient to eliminate neoplastic cells.
CARs are mainly bio-synthetic receptors comprising an extracellular domain that expresses
a single-chain variable fragment (scFv) derived from an antitumor antigen–antibody, a
transmembrane domain, and an intracellular T-cell activation and co-stimulation signaling
domain primarily composed of CD3ζ, CD28, and/or 4-1BB [246]. CART strategies are
conducted in AML targeting CD123 (IL-3Rα) expressed in a subset of myeloid progenitors
and widely found in hematologic malignancies [247]. CD123-CART cells show antitumor
activity in CD123+ AML cell lines and primary patient AML cells in vitro and in vivo,
and CD123-CART cells have limited toxicity in normal BM HSPCs, indicating a safety
profile. Moreover, CD123 CART therapy showed remissions of AML and acceptable
feasibility and safety in the first-in-human clinical trial [248–250]. In addition, CART cells
target IL1 receptor-associated protein (IL1RAP) in quiescent CML stem cells. IL1RAP is
a potential biomarker expressed in the leukemic but not the normal CD34+/CD38− HSC
compartment [251,252]. IL1RAP-CART cells react in the presence of IL1RAP+ cell lines or
primary CML cells, resulting in secretion of proinflammatory cytokines and specifically
killing cancer cells in vitro and in murine cancer xenograft models. Importantly, IL1RAP-
CART cells exhibit cytotoxicity against leukemic stem cells without an apparent effect on
CD34+ stem cells [253]. Nevertheless, the treatment of myeloid malignancies with CART
is challenging because it requires surface antigens that are genuinely expressed by the
neoplastic cells [240].

CART cell approaches are presently aimed at targeting leukemic blasts. Due to
the inherent capacity of MDSCs and MSCs to inhibit T-cell activation and function, the
combined targeting of MDSCs’ or MSCs’ immunosuppressive activities with CART cell
immunotherapies appears to be a promising strategy to further improve current therapies
for myeloid malignancies. MDSC depletion by the immunotoxin gemtuzumab ozogamicin
provides a translational strategy to improve T-cell and CART cell responses against several
cancers [254,255]. Interestingly, genetic modification of MSCs to over-express IL-7 and IL-12
may shift the chronic inflammatory profile in the tumor microenvironment to favorable
Th1/Th17 for an acute CART cell response by improving and amplifying the antitumor
CART cell response [256].

Myeloid malignancies are characterized by abnormalities in both hematopoietic cells
and the microenvironment; transformed myeloid cells alter the hematopoietic cell microen-
vironment function by a direct cell–cell contact and by secretion of proinflammatory and
inflammatory cytokines, thus creating a conductive microenvironment for the growth of
neoplastic cells. As highlighted in the present review, MDSCs and MSCs are reactive cells
that may promote the expansion and protection of tumoral myeloid cells and may reduce
the efficacy of chemotherapeutic agents and immunotherapy strategies. Furthermore, MD-
SCs and MSCs may be used as potential biomarkers for predicting the patient response to
treatment or recurrence following therapy and can be useful co-targets in combined current
therapies and immunotherapies. Understanding the individual and mutual contribution
of MDSCs and MSCs in myeloid malignancies can provide new platforms for developing
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better and personalized therapies for the treatment of myeloid malignancies and thus
improve patients’ quality of life.
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