s senes

Article

Nitric Oxide Synthase Dependency in Hydroxyurea Inhibition
of Erythroid Progenitor Growth

Tijana Suboti¢ki 17, Olivera Mitrovi¢ Ajti¢ 1, Dragoslava Dikié¢ !, Juan F. Santibanez 129, Milica Tosi¢ !

and Vladan P. Coki¢ 1*

check for

updates
Citation: Suboticki, T.; Ajti¢, O.M.;
biki¢, D.; Santibanez, ].E; Togi¢, M.;
Coki¢, V.P. Nitric Oxide Synthase
Dependency in Hydroxyurea
Inhibition of Erythroid Progenitor
Growth. Genes 2021, 12, 1145.
https://doi.org/10.3390/
genes12081145

Academic Editors: Natasa Debeljak,
Mary Frances McMullin,

Celeste Bento and Sylvie Hermouet

Received: 1 July 2021
Accepted: 23 July 2021
Published: 27 July 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Molecular Oncology, Institute for Medical Research, University of Belgrade,

11129 Belgrade, Serbia; tijana@imi.bg.ac.rs (T.S.); oliveram@imi.bg.ac.rs (O.M.A.);

dragoslava@imi.bg.ac.rs (D.D.); jfsantibanez@imi.bg.ac.rs (J.E.S.); milica.tosic@imi.bg.ac.rs (M.T.)

Centro Integrativo de Biologia y Quimica Aplicada, Universidad Bernardo O’Higgins, Santiago 8370993, Chile
*  Correspondence: vi@imi.bg.ac.rs; Tel.: +381-11-2684484

Abstract: Hydroxyurea (HU) causes nitric oxide (NO) bioactivation, acting as both a NO donor
and a stimulator of NO synthase (NOS). To examine whether HU effects are NO mediated by
chemical degradation or enzymatic induction, we studied human and mouse erythroid cells during
proliferation, apoptosis, and differentiation. The HU and NO donor demonstrated persisted versus
temporary inhibition of erythroid cell growth during differentiation, as observed by y- and (3-globin
gene expression. HU decreased the percentage of erythroleukemic K562 cells in the G2/M phase
that was reversed by N-nitro I-arginine methyl ester hydrochloride (L-NAME). Besides activation
of endothelial NOS, HU significantly increased apoptosis of K562 cells, again demonstrating NOS
dependence. Administration of HU to mice significantly inhibited colony-forming unit-erythroid
(CFU-E), mediated by NOS. Moreover, burst-forming-units-erythroid (BFU-E) and CFU-E ex vivo
growth was inhibited by the administration of nitrate or nitrite to mice. Chronic in vivo NOS
inhibition with L-NAME protected the bone marrow cellularity despite HU treatment of mice. NO
metabolites and HU reduced the frequency of NOS-positive cells from CFU-E and BFU-E colonies
that was reverted by NOS inhibition. HU regulation of the G2/M phase, apoptosis, differentiation,
cellularity, and NOS immunoreactive cells was NOS dependent. Inhalation of NO therapy as well as
strategies to increase endogenous NO production could replace or enhance HU activity.
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1. Introduction

Transient nitric oxide (NO)-like radicals, from hydroxyurea, quench the tyrosyl free
radical of the R2 subunit in ribonucleotide reductase [1]. Previous studies have demon-
strated that the NO production from hydroxyurea can be mediated by peroxidase and
catalase, besides the reaction with hemoglobin to produce iron nitrosyl hemoglobin, ni-
trite, and nitrate [2-5]. The NO donors and inducible NO synthase (iNOS)-expressing
cells reversibly inhibited DNA synthesis and erythroleukemic K562 cell growth due to
the inhibitory interaction of NO with ribonucleotide reductase [6]. NO donors inhibited
the growth of colony-forming unit-erythroid (CFU-E) and burst-forming-units-erythroid
(BFU-E) growth of CD34+ cells isolated from human bone marrow [7-9]. The percentage
of S-phase and the total number of BFU-E were inversely correlated with fetal hemoglobin
(HDF) levels in the peripheral blood of patients with sickle cell anemia treated with hy-
droxyurea, which also reduced the total BFU-E colonies [10,11]. In addition, hydroxyurea
treatment increased total NO levels and y-globin gene expression in K562 and primary
erythroid cells, while NO donors augmented y-globin and HbF expression in erythroid
progenitors [12,13]. Hydroxyurea, in combination with the substrate l-arginine, increased
NOS-dependent HbF synthesis in erythroid progenitors [14]. We have demonstrated that
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hydroxyurea directly interacted with deoxy-heme of soluble guanylyl cyclase (sGC) via the
free-radical NO, and activated cGMP production [15] (Scheme 1).

-~ NO
I
HU I sGC = ¢cGMP — y-globin
L' NOS
Scheme 1. Potentially preferential nitric oxide synthase (NOS) mediated hydroxyurea (HU) induction
of y-globin gene expression via NO/cGMP signaling.

We have shown that hydroxyurea increased endothelial cell production of NO through
activation of endothelial NO synthase (eNOS) and posttranscriptional increase in eNOS
levels by proteasome inhibition [16,17]. Plasma levels of nitrite and nitrate metabolites
of NO (NOx) are significantly increased in patients with sickle cell disease and essential
thrombocythemia on hydroxyurea therapy [2,18]. Moreover, NOS activity is increased
in patients on hydroxyurea therapy supported by l-arginine [19,20]. Hydroxyurea also
enhanced the NOS mediated adenosine triphosphate release from erythrocytes as well as
NO production and eNOS levels in endothelial cells [21,22].

The NO-mediated hydroxyurea effects on cell differentiation, proliferation, and apop-
tosis may interpolate to the mechanism of y-globin gene induction in erythroid cells.
Parallel with chemical degradation to NO, we hypothesize that hydroxyurea preferentially
stimulates the NOS enzyme to produce NO, which through negative feedback mechanism
controls NOS activity. Besides human erythroid cells, we used mice for parallel studies
with hydroxyurea and nitrite/nitrate to elucidate NOS enzyme dependency. Separation of
enzymatic and chemical generation of NO by hydroxyurea may elucidate its mechanism of
action as well as the origin of myelosuppression and HbF synthesis. Harvested mouse bone
marrow cells are used for ex vivo expansion of myeloid cultures to examine the effects of
NO-producing compounds and the expression of NOS isoforms. Using this approach, we
want to distinguish the influence of hydroxyurea induced NO production at the systemic
level in the hematopoietic bone marrow microenvironment and in erythroid progenitors.

2. Materials and Methods
2.1. The Two-Phase Liquid Erythroid Cell Cultures

Peripheral blood mononuclear cells were isolated from buffy coats of normal donors
using lymphocyte separation medium (BioWhittaker, Walkersville, MD, USA). We per-
formed a two-phase liquid culture protocol for erythroid differentiation, as previously
described [13]. Briefly, after incubation in phase I culture, CD34+ cells were purified by
negative selection using the StemSep cell separation method (Stem Cell Technologies,
Vancouver, CA, USA). The CD34+ cells were resuspended in the phase II medium, which
contained a mixture of cytokines including human recombinant erythropoietin (Amgen,
Thousand Oaks, CA, USA). Erythroid cells were treated at different time points in the
phase II medium, with S-nitrosocysteine (CysNO) and hydroxyurea (Sigma-Aldrich, St.
Louis, MI, USA), incubated at 37 °C in a humidified atmosphere with 5% CO, [13]. The
viable cell counts were performed by a trypan-blue exclusion technique (BioWhittaker).
For isolation of total RNA from erythroid cells we used the RNeasy Kit (Qiagen, Valencia,
CA, USA) according to the manufacturer’s instructions. Quantitative real-time PCR assay
of y- and (3-globin mRNA transcripts was carried out with the use of gene-specific double-
fluorescently labeled probes in a 7700 Sequence Detector (Applied Biosystems, Foster City,
CA, USA) as previously described [13].

2.2. Human Erythroleukemic K562 Cell Cultures

Human erythroleukemic K562 cells were cultured in RPMI-1640 medium (Capricorn
Scientific, GmbH, Ebsdorfergrund, Germany) with HEPES, 10% fetal bovine serum (FBS,
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Capricorn Scientific), 100 U/mL penicillin, 100 pg/mL streptomycin, and 2 mmol/L glu-
tamine (Capricorn Scientific) at 37 °C in 5% CO, of relative humidity atmosphere (95%).
For eNOS activation, K562 cells were treated up to 30 min. For stimulation of NO produc-
tion, K562 cells were preincubated 30 min with 0.1 mM L-NG-nitroarginine methyl ester
(L-NAME, Sigma Aldrich, St. Louis, MO, USA) and treated with hydroxyurea. For cell
cycle, proliferation, and apoptosis analyses, the cells were transferred in 2 mL of RPMI 1640
with HEPES and 2 mmol/L glutamine, 2% FBS, 100 U/nL penicillin/streptomycin (Capri-
corn Scientific) in 6-well plates. Seeded K562 cells were incubated either 24 (1 x 10° cells)
or 48 h (0.8 x 10° cells) with NO donors 2-(N,N-diethylamino)-diazenolate-2-oxide, di-
ethylammonium salt (DEANGO, t; /» = 2 min), (Z)-1-[2-(2-aminoethyl)-N-(2-ammonioethyl)
amino] diazen-1-ium-1, 2-diolate (DETANO, t; /5 = 20 h, Alexis Biochemicals, San Diego,
CA, USA), and hydroxyurea (Sigma Aldrich) with or without 30 min preincubation of
0.1 mM L-NAME (Sigma-Aldrich). DEANO spontaneously dissociates to liberate 1.5 moles
of NO, while DETANO releases 2 moles of NO at 37 °C. The viable cell counts were
performed with the use of a trypan-blue exclusion technique (Thermo Fisher Scientific,
Waltham, MA, USA).

2.3. DNA Cell Cycle Analysis

K562 cell suspensions (0.5 x 10° cells /0.4 mL phosphate buffered saline (PBS) with 2%
FBS) were fixed by drop wise addition of ice-cold 96% ethanol and then left on ice for at least
30 min. After centrifugation at 300x g for 5 min, the supernatant was carefully aspirated
and the cell pellet resuspended. Afterward, the single-cell suspensions were incubated
in the water bath with 0.5 mL of RNAase solution (1 mg/mL, RNase A, Thermo Fisher
Scientific) for 20 min at 37 °C, and then with 0.5 mL of propidium iodide (PI) (40 ng/mL
in PBS w/o FCS, PI, Sigma) for 10 min at room temperature (20 °C =+ 2) in the dark. The
cellular DNA content was measured using a CyFlow cytometer (Partec GmbH, Miinster,
Germany). Usually, 3 x 10* cells per sample were analyzed using Flow Max Software
(Partec GmbH). Dead cells and debris were gated out based on forward and side scatter.

2.4. Immunoblotting

K562 cells were lysed in chilled RIPA lysis buffer (50 mM Tris-HCl pH 7.6, 150 mM
sodium chloride, 1% Triton x-100, 1% sodium deoxycholate, 0.1% sodium dodecyl sulphate,
2 mM EDTA, and 50 mM sodium fluoride) at a ratio of 1 mL of buffer on 1 x 108 cells. A
protease inhibitor cocktail (Pierce, Thermo Fisher Scientific) and sodium orthovanadate
were added to the lysis buffer just prior to use. Lysates were incubated at 4 °C for 25 min
and then centrifuged at 10,000 g, 4 °C for 15 min. Protein concentration was determined
by the BCA Protein Assay Kit (Pierce, Thermo Fisher Scientific) and the samples were stored
at —70 °C until analysis. For western blotting, equal amounts of protein samples were run
on polyacrylamide gels and transferred to the polyvinylidene difluoride membrane. The
membrane was blocked with 3% milk (Serva Electrophoresis GmbH, Heidelberg, Germany)
for 1 h at room temperature (20 °C =+ 2) and probed with primary antibodies to 3-actin
(Abcam, Cambridge, UK), eNOS (Santa Cruz Biotechnologies) and peNOS (Ser1177, R&D
Systems, Minneapolis, MN, USA). Peroxidase-conjugated goat antirabbit immunoglobulin
(Santa Cruz Biotechnologies) and goat anti-mouse immunoglobulin (Pierce, Thermo Fisher
Scientific) were used as secondary antibodies. Hyperfilm was developed to visualize the
secondary antibody by the enhanced chemiluminescence reagent system (GE Healthcare,
Amersham, UK) according to the manufacturer’s instructions. The content of the examined
proteins in cell extracts was estimated by densitometry of the scanned immunoblot band
using Image Master Total Lab (GE Healthcare) software.

2.5. Immunocytochemistry

Mononuclear cells were separated from the bone marrow cells with lymphocyte
separation medium (LSM, Capricorn scientific, Ebsdorfergrund, Germany) according to
the manufacturer’s instructions. For cytoplasmatic staining, K562 cells, mice bone marrow
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cells as well as CFU-E and BFU-E/CFU-GM colonies from methylcellulose cultures were
collected onto microscope glass slides by cytospins (2 x 10* cells each) and fixed using
acetone at room temperature (20 °C + 2). Samples were treated with 3% H,O, solution
in PBS to block endogenous peroxidase activity. The next step was incubation with the
anti Ki67 antibody (Novocastra Laboratories Ltd., Newcastle, UK), ssDNA (Abcam), iNOS,
neuronal NOS (nNOS) and eNOS (Santa Cruz Biotechnologies) antibodies in a humidity
chamber overnight in a refrigerator (4 °C). Immunostaining was performed using the
streptavidin-biotin technique (LSAB+/HRP Kit, DAKO). Immunoreactivity was visualized
with a DAKO Liquid DAB+ Substrate/Chromogen System counterstained with Mayer’s
hematoxylin (Merck, Whitehouse Station, NJ, USA) and evaluated under a light microscope.
For the negative control samples, normal serum and TBS buffer (1:500) were pipetted
without primary antibodies. Proliferative and apoptotic index as well as immunoreactive
cells were counted in five and ten high powered fields, respectively, for each sample
using a computer-supported imaging system (analysis Pro 3.1) connected to the light
microscope (Olympus AX70, Hamburg, Germany) with an objective magnification of
x40. The proliferative and apoptotic rates were expressed as the percentage of KI67- and
ssDNA-positive nuclei per total nuclei.

2.6. Measurement of Nitric Oxide Synthase Activity

To determine eNOS activity, we used the colorimetric Nitric Oxide Synthase Activity
Assay Kit (Abcam, Cambridge, MA, USA) according to the manufacturer’s instructions. For
determination of eNOS activity in K562 cells (1.5 x 10°), we treated them with hydroxyurea
(50, 100, 200 uM) during 1, 6, and 24 h. After treatment, cells were resuspended in NOS
Assay buffer at 37 °C. A protease inhibitor cocktail (Pierce, Thermo Fisher Scientific,
Waltham, MA, USA), 0.5 M EDTA (Pierce), and sodium orthovanadate (Sigma-Aldrich)
were added to the lysis buffer just prior to use. The protein content was assessed with the
BCA Kit from Pierce (Thermo Fisher Scientific). In this assay, NO generated by NOS reacts
with Griess reagents to produce a colored product with a strong absorbance at OD 540 nm.
Applied variation of absorbance in the samples to the standard curve revealed pmoles of
nitrite or nitrite activity (pmol/min/pg) generated during the reaction.

2.7. Measurement of NO Levels

The Griess method was used to measure the concentrations of nitrite (NO,) as an
index of the amount of NO in culture medium. The K562 cells (starting 1 x 106 cells)
were seeded in RPMI 1640 w /0 Phenol Red medium (Capricorn Scientific) and incubated
with hydroxyurea and L-NAME for 6, 24, and 48 h. Plasma was isolated from the mouse
blood by centrifugation (2700 rpm, 10 min, 4 °C) to measure nitrite and nitrate levels. It
involves the conversion of nitrate into nitrite by vanadium chloride (VaCls). The samples
were deproteinized with 0.3 M NaOH and 10% ZnSOy before analysis. The standards
were prepared using sodium nitrite or sodium nitrate and deionized water. Each sample
was tested in duplicate using 96-well flat-bottomed microplates. For this, 100 uM of
each sample and each standard were pipetted into separated wells. Fifty microliters of
2% sulfanilamide (in 5% HCI) was added, followed by 50 pL of 0.1% N-(1 naphthyl)
ethylendiamine dihydrochloride (NEDD) in de-ionized water. The plates were incubated at
37 °C for 30 min. After incubation, the absorbance of the reaction mix was read at 540 nm.
The mean of duplicate wells for each sample and the standard was taken as the ODs. The
nitrite and NOx concentration were determined from linear-regression plots drawn by the
ODs of the standards and expressed as pmol/L. These values were subtracted to give the
nitrate concentration.

2.8. Colony Forming Assays

The experimental protocol was approved by the Ethics Committee of the Institute for
Medical Research, University of Belgrade, Serbia, according to the National Law on Animal
Welfare consistent with guidelines for animal research and principles of the European



Genes 2021, 12, 1145

50f16

Convention for the Protection of Vertebrate Animals Used for Experimental and Other
Purposes (Official Daily No. L 358/1-358/6), and the Directive on the protection of animals
used for scientific purposes (EU directive 2010/63/EU for animal experiments). Since
estrous cycle may modulate the expression of eNOS and iNOS [23], adult male CBA mice
(6-8 weeks old, weighing 20-26 g, obtained from the Breeding Facilities of the Military
Medical Academy, Belgrade) were used in this study. They were housed six per cage under
conventional conditions (lights on at 06:00 h, lights off at 18:00 h, 21 °C) with standard
laboratory diet and water provided ad libitum. The animals were treated daily, via the
caudal vein, with hydroxyurea (200 mg/kg, Sigma-Aldrich) with or without preincuba-
tion of 30 min with NOS nonselective inhibitor L-NAME (50 mg/kg, Sigma-Aldrich) for
seven consecutive days according to previous studies [24,25]. In addition, animals were
treated with sodium nitrite (1 mmol/kg, Sigma-Aldrich) or sodium nitrate (1 mmol/kg,
Sigma-Aldrich). Control mice were treated with PBS. The bone marrow cells from mouse
femurs were harvested by aspiration under sterile conditions and monodispersed in Dul-
becco’s modified Eagle’s medium (DMEM, Biowest, Nuaillé, France) supplemented with
5% fetal calf serum (FCS, Biowest). Then, 6 X 10% /mL bone marrow cells were plated
in methylcellulose media (StemCell Technologies, Vancouver, BC, Canada) containing
3 U/mL erythropoietin (EPO, MethoCult M3334) and 3 x 10*/mL cells were plated in
methylcellulose media containing 3 U/mL EPO supplemented with 50 ng/mL stem cell
factor, 10 ng/mL interleukin (IL)-3, and 10 ng/mL IL-6 (MethoCult GF M3434). The cells
were plated in duplicate in 24-well tissue culture plates (Sarstedt, Numbrecht, Germany)
and incubated at 37 °C in a relative humidity (95%) atmosphere containing 5% CO,. Fol-
lowing an incubation period of seven days in MethoCult GF M3434 medium, BFU-E and
colony-forming unit-granulocyte /macrophage (CFU-GM) colonies were enumerated us-
ing an inverted microscope. CFU-E colonies were scored after three days of culture in
MethoCult M3334.

2.9. Hematologic Parameters

Whole blood was collected from the control and treated mice, and blood cell counts
were made using a hemocytometer. Hemoglobin was analyzed with the cyanmethe-
moglobin method using Drabkin’s solution (0.1% sodium bicarbonate, 0.005% potassium
cyanide, and 0.02% potassium ferricyanide). Values were determined spectrophotomet-
rically at 540 nm and calculated relative to a standard curve. Hematocrit was calculated
after brief centrifugation of blood samples in heparinized microcapillary tubes.

2.10. Statistical Analysis

One way ANOVA and Dunnett’s post-test were applied using Prism 4 software (Graph-
Pad Software Inc., San Diego, CA, USA). The results were expressed as the mean + SEM,
and differences at p < 0.05 were accepted as the level of significance.

3. Results
3.1. Effects of NO Donors and Hydroxyurea on Erythroid Cell Growth and Proliferation

We selected three NO donors, with various half-life, to expand their comparison
with hydroxyurea as an NO releasing or producing compound. We performed a re-
peated and dose dependent treatment with CysNO during in vitro erythroid differentiation
(Figure 1A). The dose-dependent reduction in cell growth was evident during the first six
days of erythroid differentiation. In addition, CysNO increased v/ 3 globin gene expression
ratio in human erythroid progenitors (mostly up to day 6) as markers of erythroid differen-
tiation (Figure 1B), similarly to hydroxyurea [13]. Moreover, a single treatment by CysNO
at day 2 of erythroid differentiation had temporary inhibition of erythroid cell growth
up to day 6 (Figure 1C). In contrast to NO donors, the NO-releasing drug hydroxyurea
demonstrated a continuous inhibition of erythroid cells growth, reaching 20-40% after day
6 (Figure 1C). K562 cell growth was reduced with hydroxyurea after 24 h of incubation up
to 40%, while prolonged treatment of 48 h showed more prominent inhibition up to 65%
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(Figure 1D). We demonstrated that NO-releasing agents such as short half-life DEANO and
CysNO and long half-life DETANO significantly reduced erythroleukemic K562 cell growth
at concentrations of 100 uM and 200 uM after 24 h of incubation of up to 40% (Figure 1E).
Immunocytochemical staining for Ki67 demonstrated a high proliferative index for K562
erythroleukemic cells after 24 h (80-85%) of incubation (Figure 1F). Short term NO donor
DEANO reduced cell proliferation up to 70%, reaching statistical significance, while DE-
TANO reduced cell proliferation between 42% and 66% (Figure 1F). Hydroxyurea also
reduced cell proliferation after 24 h (Figure 1F). Both NO donors and hydroxyurea failed to
change K562 cell proliferation rate after prolonged treatment for 48 h. Hydroxyurea and
NO overlap in inhibiting the growth and proliferation of erythroid cells, but the sustained
effect is attributed only to hydroxyurea.
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Figure 1. NO donors and hydroxyurea (HU) dose-dependent inhibition of human erythroid and
erythroleukemic K562 cell growth and proliferation. Repetitive daily CysNO treatment of human
erythroid progenitors and their (A) quantification and (B) ratio of y/f globin gene expression at
standing days during differentiation in the phase I medium; (C) single CysNO and HU treatment (at
day 2) of erythroid progenitors; (D) 24 and 48 h treatment of K562 cells with HU; (E) 24 h treatment
of K562 cells with NO donors: DEANO, DETANO, and CysNO; (F) Inmunocytochemical analyses
of the proliferative marker Ki67 positive cells after 24 h of DEANO, DETANO and HU treatment.
Immunocytochemistry images correspond to the control and 200 uM of DEANO, DETANO, and
HU treatment. We started with 1 x 10° K562 cells. Values are mean 4 SEM (1 = 4-6). * p < 0.05 and
** p < 0.01 compared to untreated cells.
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3.2. Hydroxyurea Induction of NOS Activity in Erythroleukemic K562 Cells

Hydroxyurea increased nitrite levels in K562 cells after 24 and 48 h of incubation
(Figure 2A). We parallelly analyzed the nitrate and NOx levels during hydroxyurea treat-
ment, but changes did not reach a statistical significance. L-NAME, as a competitive
inhibitor of NOS, could not prevent the prolonged stimulation of NO production by
hydroxyurea, as measured after 6, 24, and 48 h. We analyzed the presence of NOS iso-
forms in K562 cells and revealed about 20% nNOS-, 35% eNOS-, and 70% iNOS-positive
cells. After prolonged treatment with hydroxyurea, we detected more than double the
increase of nNOS- and eNOS-expressing K562 cells (Figure 2B,C). Hydroxyurea could not
change already abundant iNOS-positive K562 cells both after 24 and 48 h. Hydroxyurea
dose dependently increased eNOS activity in K562 cells after 6 and 24 h of incubation
(Figure 2D). Furthermore, hydroxyurea temporary activated the eNOS protein, up to 5 min
(Figure 2E). Hydroxyurea stimulated NO production, constitutive NOS levels, and activity
in erythroid cells.
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Figure 2. Hydroxyurea (HU) induction of NO in erythroleukemic K562 cells. Level of (A) nitrite
(NO;7) and quantity of (B) nNOS-positive cells after 24 and 48 h of treatment; (C) eNOS-positive
cells after 24 h of incubation with HU determined by immunocytochemistry; (D) eNOS activity in
K562 cells during treatment by HU; (E) peNOS/eNOS ratio after 1, 5 and 30 min of stimulation by
100 uM HU; (F) Apoptotic cells in the sub G; phase of cell cycle determined by flow cytometry after
24 and 48 h of treatment by HU. Columns correspond to immunocytochemistry (B-after 48 h, (C) and
immunoblot (E) images. Values are mean & SEM (1 = 4-5). * p < 0.05, ** p < 0.01, and *** p < 0.001

compared to untreated cells.
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3.3. Effects of NO Donors and Hydroxyurea on Cell Cycle and Apoptosis

To examine the mechanism by which NO induces cytostasis and cell cycle, we exposed
K562 cells to DEANO, DETANO, and hydroxyurea, and presented their profiles of cell
cycle distribution (Supplementary Figure S1). Cell cycle analysis revealed that treatment
with DEANO for 48 h resulted in a higher proportion of K562 cells in Go/G; (60%) phase
of the cell cycle relative to that seen in untreated cells (50%, Figure 3A). After 48 h, the
percentage of Go/G; phase cells was markedly increased (up to 65%) with hydroxyurea
treatment (Figure 3A). After 24 h, 55% and 62% of the cells were significantly arrested in
the Gyo/Gj phase by 200 uM of DETANO and hydroxyurea, respectively. Furthermore,
DETANO and hydroxyurea dose-dependently decreased the percentage of K562 cells in
G2 /M phase after 24 h of incubation (Figure 3B), but not the short-lived DEANO. The
percentage of K562 cells in the G, /M phase was doubled with the NOS inhibitor L-NAME
during hydroxyurea treatment (Figure 3C). This suggests that hydroxyurea inhibition of
K562 cell proliferation was NOS dependent. The hydroxyurea stimulation of apoptosis
has been shown by apoptotic K562 cells in the sub G1 phase of cell cycle both after 24
and 48 h (Figure 2F). Apoptosis was also detected by DNA fragmentation of increased
ssDNA-protein binding interaction using immunocytochemical studies of K562 cells. Short
term NO donor DEANO induced apoptosis of K562 cells up to 77% both after 24 and 48 h
(Figure 3D). Long term NO donor DETANO also increased apoptosis rate up to 83% in K562
cells after 24 and 48 h (Figure 3E). In addition, hydroxyurea increased apoptosis of K562
cells up to 80% after 48 h, as shown by the apoptotic index (Figure 3F). The hydroxyurea
provoked apoptosis of K562 cells has been significantly inhibited by L-NAME both after 24
and 48 h (Figure 3F). Consequently, hydroxyurea stimulation of K562 cell apoptosis was
NOS dependent.

3.4. Effects of Hydroxyurea and NO Metabolites on Myeloid Progenitor Growth

The cytotoxic and NO-dependent effects of hydroxyurea have been examined during
mouse myeloid progenitor growth and differentiation. Bone marrow cells harvested from
mice, treated in vivo with hydroxyurea for seven days, showed a five-fold reduction in the
number of CFU-E colonies (Figure 4A). The obtained myelosuppressive effects of HU were
used to observe NOS dependence. This reduction was completely reversed by common
NOS inhibitor L-NAME (p < 0.01, Figure 4A). The applied concentration of NO derivatives
nitrite and nitrate also reduced the quantity of CFU-E and BFU-E colonies (Figure 4A,B).
Moreover, hydroxyurea reduced the quantity of immature BFU-E colonies, but L-NAME
failed to protect them (Figure 4B). Hydroxyurea (p < 0.01) and NO metabolites (p < 0.001)
inhibited ex vivo CFU-GM colony growth. Hydroxyurea and NO metabolites nitrite and
nitrate generally inhibited erythroid colony growth that demonstrated NOS dependence
for hydroxyurea in mature colonies. NO metabolites (NO, and NOs3) reduced in vitro
CFU-E colony growth, but nitrite increased the growth of BFU-E and CFU-GM colonies
(Figure 4C). Hydroxyurea non dose dependently reduced in vitro CFU-E colony growth,
blocked by L-NAME for the lowest concentration of hydroxyurea (Figure 4D). Both ex
vivo and in vitro studies confirmed NOS dependence in hydroxyurea reduction of CFU-E
colony growth.

3.5. Hydroxyurea and NO Effects on Bone Marrow and Peripheral Blood of Mice

To explore the cytostatic and NO-dependent properties of hydroxyurea in a hematopoi-
etic microenvironment, mouse bone marrow was treated with hydroxyurea for seven days.
Hydroxyurea demonstrated a significant decrease in the bone marrow cellularity, which
was reversed by L-NAME (p < 0.05, Figure 5A). Similarly, both sodium nitrite and sodium
nitrate decreased the bone marrow cellularity (Figure 5A). Hydroxyurea significantly
reduced the quantity of reticulocytes, leukocytes, and thrombocytes in mice (Table 1).
L-NAME prevented the hydroxyurea reduction in reticulocytes (p < 0.01, Table 1). Both
sodium nitrite and sodium nitrate increased reticulocytes (Table 1). Daily treatment by
hydroxyurea did not change NOs-level, except in the presence of L-NAME (Figure 5B). In
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addition, hydroxyurea did not influence NOx level after seven days. Cytostatic effects of
hydroxyurea have been confirmed both in bone marrow and peripheral blood, regulated

by NOS.
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Figure 3. The influence of NO donors and hydroxyurea (HU) on cell cycle and apoptosis in ery-
throleukemic K562 cells. Using flow cytometry, we measured the percentage of PI positive cells in
K562 cells treated with (A) HU and DEANO after 48 h at Gy /G, phase; (B) HU and DETANO after
24 h at G /M phase; and (C) HU and L-NAME after 48 h at G, /M. Apoptotic index (Al) after 24 and
48 h of (D) DEANO; (E) DETANO; and (F) HU treatment with or without L-NAME (100 uM). The
apoptotic rate was expressed as the percentage of ssDNA-positive nuclei per total nuclei (apoptotic
plus non-apoptotic nuclei). Immunocytochemistry images correspond to results after 48 h. Values
are mean £ SEM (n = 4-6). * p < 0.05, ** p < 0.05 and *** p < 0.001 compared to the untreated cells (0).
#p <0.05, ## p <0.01, and ### p < 0.001 compared to only HU treated cells (100).
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Figure 4. Hydroxyurea and NO derivatives” induction of erythroid progenitors” growth of mouse
bone marrow origin. Number of ex vivo (A) CFU-E and (B) BFU-E colonies of mice treated with hy-
droxyurea (HU, 200 mg/kg), sodium nitrite (NO,, 1 mmol/kg), and sodium nitrate (NO3, 1 mmol/kg)
with or without L-NG-nitroarginine methyl ester (L-NAME, 50 mg/kg) (1 = 10); (C) NO, and NO;
induction of mouse CFU-E, BFU-E, and CFU-GM in vitro growth; (D) Dose dependent in vitro study
of hydroxyurea inhibition of CFU-E growth in the presence of various concentrations of L-NAME
(n = 3). Values are mean + SEM. * p < 0.05, ** p < 0.01, and *** p < 0.001 vs. non-treated mice (A,B) or
untreated cells (C,D); ## p < 0.01 vs. HU treated only.

A Bone marrow
= 10d 4 L-NAME
E
‘e 8 &
%
5 61 i
£
& 44
o
3 2
(3]

ol T T T

HU HU NO, NO;

B NO; levels

50+

L-NAME

40
E 304
£ #
Z 20 b

104

: HU  HU NO, NO;

Figure 5. Hydroxyurea and NO derivatives” induction of mouse bone marrow cells and NO plasma
levels. (A) Quantity of mouse bone marrow nucleated cells per femur and (B) Nitrate (NO3-) levels
in peripheral blood plasma of mice after seven days of treatment by hydroxyurea (HU, 200 mg/kg),
sodium nitrite (NO;, 1 mmol/kg), or sodium nitrate (NO3, 1 mmol/kg) with or without L-NG-
Nitroarginine methyl ester (L-NAME, 50 mg/kg). Values are mean + SEM (n = 10). ** p < 0.01 and
***p < 0.001 vs. non-treated mice; # p < 0.05 vs. HU treated only.
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Table 1. Hematologic parameters in peripheral blood of treated mice.
Leukocytes Erythrocytes .o . . Thrombocytes
Treatment (x10°7L) (x1012/1) Hemoglobin % Hematocrit Reticulocytes (x105)
Control 7.6 £ 1.9 6.3 +0.7 175 +22 463 + 2.7 675+ 8 10.8 £1
HU 6+18* 53415 16.5+2.2 448 +£2.1 21.5 £ 1 *** 2.3 4+ 0.6 ***
L-NAME 5+06* 494+02* 16.4 £ 3.2 482 + 1.1 30.6 £ 7 *** 5.9 £+ 2.8 ***
HU + L-NAME 4.8 + 0.9 *** 55+03 175+1 432 + 3.8 39.5 &+ 8** 34+ 0.6 ***
NO, 77+t 15 5.6 0.6 191+14 451 +1.7 905+ 10* 91+0.6
NO; 6.5+1.1 55+0.6 188 1.4 42,7 + 3.4 167 4 23 *** 8§+0.3

*p < 0.05, ** p < 0.01, ** p < 0.001 vs. Control (1 = 10); HU-hydroxyurea; L-NAME-L-NC-Nitroarginine methyl ester; NO,—Sodium nitrite;

NO3;—Sodium nitrate.

3.6. NOS Isoforms Level in Bone Marrow Cells and Erythroid Progenitors after Hydroxyurea and
NO Metabolites Treatment

We analyzed NOS isoforms in bone marrow mononuclear cells (MNC) during pro-
longed treatment of mice with hydroxyurea and sodium nitrite/nitrate. Frequency of
nNOS expressing MNC was significantly reduced by hydroxyurea (p < 0.05) and nitrite
(p < 0.01, Figure 6A). Frequency of eNOS immunoreactive MNC has been reduced by hy-
droxyurea and nitrite/nitrate as NO delivering agents (Figure 6B). Sodium nitrite /nitrate
decreased the quantity of iNOS expressing MNC, although not hydroxyurea (Figure 6C).
L-NAME failed to interfere with hydroxyurea induction of NOS isoform levels in MNC
(Figure 6A—C). Taken together, hydroxyurea reduced the frequency of constitutive NOS
similarly to NO metabolites, except iNOS. NOS levels were further analyzed in ex vivo
erythroid colonies of bone marrow origin, derived from mice treated for seven days with
hydroxyurea or sodium nitrite/nitrate. The frequency of nNOS positive cells was sig-
nificantly reduced by hydroxyurea, blocked by L-NAME in BFU-E/CFU-GM colonies
(Figure 6D). L-NAME also significantly reversed hydroxyurea’s reduction of eNOS ex-
pressing cells in CFU-E colonies (p < 0.001, Figure 6E). Furthermore, sodium nitrite/nitrate
reduced the frequency of eNOS immunoreactive cells (Figure 6E). Hydroxyurea decreased
the quantity of iNOS positive cells in CFU-E, which was prevented by L-NAME (p < 0.001,
Figure 6F). Similar results were obtained with nitrite/nitrate reduction of iNOS positive
cells (p < 0.001, Figure 6F). Hydroxyurea demonstrated NOS dependent reduction of
NOS immunoreactivity in differentiated erythroid colonies because increased NO levels
consequently decreased NOS expressing cells.
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Figure 6. NOS levels in mouse bone marrow derived mononuclear cells (MNC) and erythroid
progenitors. Frequency of (A) nNOS, (B) eNOS, and (C) iNOS positive MNC (n = 10), (D) nNOS
positive cells of BFU-E/CFU-GM colonies, (E) eNOS, and (F) iNOS positive cells of CFU-E colonies
(n = 5) of mice in vivo treated with hydroxyurea (HU, 200 mg/kg), sodium nitrite (NO,, 1 mmol/kg),
and sodium nitrate (NO3, 1 mmol/kg) with or without L-NG-Nitroarginine methyl ester (L-NAME,
50 mg/kg). Columns correspond to immunocytochemistry images, except for the L-NAME only
treatment. Values are mean + SEM. * p < 0.05, ** p < 0.01 and ** p < 0.001 vs. non-treated mice;
## p <0.01 and ### p < 0.001 vs. HU only treated mice.

4. Discussion

In the presented results, NO donors temporarily inhibited erythroid cell growth, in
contrast to persistent inhibition by hydroxyurea, while both inhibited proliferation and
NOS-dependently reduced the percentage of K562 cells in the G, /M phase. Moreover,
hydroxyurea increased NO production, constitutive NOS levels, and activity in K562
cells. In accordance, hydroxyurea NOS-dependently increased apoptosis. Hydroxyurea
inhibition of mouse CFU-E colony growth, bone marrow MNC, and NOS immunoreactivity
of CFU-E/BFU-E cells was also NOS-dependent. Therefore, we have shown a novel NOS
dependence in hydroxyurea activities.

Presented hydroxyurea augmentation of eNOS and nNOS expressing K562 cells can
be related to the proteasome inhibition, as we already described in endothelial cells [17].
This is consistent with the report that the N-hydroxyurea-based compound reversibly
and specifically inhibited a chymotrypsin-like active site of the 20S proteasome [23]. In
accordance with our results, it has been shown that the NO donor increased Gy/G; phase
arrest, but decreased the percentage of cells in the early G,/M and S phases [26]. In
addition, NO donors decreased by half the fraction of cells in the S and G, /M phases with
a corresponding increase in the G; fraction, suggesting that NO inhibited entry into the S
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phase, causing cell accumulation in the G; phase [27]. This NO dependent cell cycle arrest
was even strongly achieved by hydroxyurea in the presented study.

In the presented experiments, hydroxyurea and nitrite /nitrate compounds inhibited
the ex vivo growth of myeloid colonies derived from mouse bone marrow. Previous human
studies have shown that the NO donor inhibits the growth of CFU-E by 30-75%, while the
quantity of BFU-E colonies decreased in the presence of hydroxyurea [10,13]. We showed
NOS inhibition prevented hydroxyurea reduction of mature CFU-E growth, which supports
activation of the NOS enzyme. Hydroxyurea and other known ribonucleotide reductase in-
hibitors decreased the number of BFU-E colonies and significantly increased HbF, whereas
cytotoxic agents (but not ribonucleotide reductase inhibitors) reduced the BFU-E colony
number and did not augment HbF levels [28]. Administration of much stronger ribonu-
cleotide reductase inhibitors than hydroxyurea was less effective in reducing the number of
mouse bone marrow derived CFU-GM and BFU-E colonies than hydroxyurea [29]. More-
over, two additional ribonucleotide reductase inhibitors with functional moieties similar
to hydroxyurea also reduced K562 cell growth and stimulated HbF [30]. Hemoglobin
represents the major sink for NO [31], and this variance in HbF levels can be responsible
for the observed NOS-dependence only in CFU-E colonies by hydroxyurea.

The NO-mediated effect of hydroxyurea is of relevance to explain the physiologic
role of the NOS/NO/cGMP pathway in globin gene expression. It has been shown that
genomic variants rs10901080 and rs10793902 can serve as pharmacogenomic biomarkers
for predicting the efficacy of hydroxyurea either by inducing NO biosynthesis or by alter-
ing splicing and /or miRNA binding to increase y-globin levels [32]. The NOS inhibitor
L-NAME attenuated the effects of hydroxyurea and L-arginine on HbF synthesis in human
erythroid progenitors [27]. Hydroxyurea treatment increased NOx levels and y-globin tran-
scription in K562 and primary erythroid cells [12]. Furthermore, sGC activators or cGMP
analogs increased y-globin gene expression in K562 cells and primary erythroblasts [33]. In
our study, NO metabolites increased hemoglobin levels and significantly reticulocytes in
the examined mice. All these reports are in accordance with our previous studies that the
NO/sGC/cGMP signaling pathway is responsible for hydroxyurea activation of y-globin
gene expression [13,15].

NO and its metabolites nitrite and nitrate are not deposited in tissues up to 48 h after
injection, the latter being the main metabolite in urine [34]. This is in accordance with
our prolonged daily treatment of mice with hydroxyurea and NO metabolites that did
not significantly change their levels in plasma. However, NOS inhibition reduced nitrate
levels in plasma. Hydroxyurea and the NO metabolites decreased bone marrow cellularity
prevented by NOS inhibition. These observations highlighted the participation of NOS
enzyme activation in the hydroxyurea cytotoxic effect.

The reticulocyte count was significantly decreased in sickle cell disease patients on
hydroxyurea therapy [35]. Hydroxyurea also decreased the number of reticulocytes in
the presented results, partially prevented by NOS inhibition. In contrast, nitrite/nitrate
increased the number of reticulocytes. Hydroxyurea demonstrated a cystostatic effect on
leukocytes and thrombocytes. Therefore, the effects of hydroxyurea and NO metabolites
were not consistent in hematopoietic mature cells, which are attributable to hemoglobin in
peripheral blood [31].

We demonstrated NO metabolites in vivo inhibited the frequency of NOS expressing
bone marrow cells, while hydroxyurea preferentially inhibited constitutive isoforms of
NOS. During the maturation of erythroid progenitors, eNOS gene expression has been
steadily declining as has the production of NO derivatives [15]. The level of eNOS positive
granulocytes was reduced by hydroxyurea therapy in patients with myeloproliferative
neoplasm [36]. Furthermore, we showed that NO metabolites inhibited the frequency of
eNOS and iNOS immunoreactive cells in CFU-E colonies. Patients with sickle cell anemia
on hydroxyurea therapy demonstrated decreased iNOS gene expression in neutrophils [37].
This study revealed that hydroxyurea also inhibited the frequency of iNOS expressing cells
in CFU-E colonies mediated by NOS. This NOS dependence is analogous to the hydrox-



Genes 2021, 12, 1145 14 of 16

yurea inhibition of CFU-E colony growth. The presented results showed that hydroxyurea
inhibited the expression of constitutive NOS isoforms in bone marrow cells, but generally
reduced NOS expressing cells in erythroid progenitors. This negative feedback regulation
of NO producing enzymes by hydroxyurea supports its enzymatic activity.

5. Conclusions

This study revealed NOS activation as a mechanism of action by hydroxyurea. NO
produced by hydroxyurea and NO metabolites downregulated NOS expression in bone
marrow cells and myeloid progenitors. Regarding the mature circulatory cells rich in
hemoglobin, hydroxyurea reduced the quantity of reticulocytes with NO dependence. We
revealed the NOS mediated hydroxyurea regulation of proliferation and apoptosis, impli-
cating hydroxyurea as a NO prodrug. NO formation and bioactivation are the molecular
basis of hydroxyurea pharmacological and anticancer features. Future combination ther-
apies of NO-mediated compounds and ribonucleotide reductase inhibitors may support
HbF induction, reduce myelosuppression, and prevent vaso-occlusive crisis in hematologic
malignancies and hemoglobinopathies.

Supplementary Materials: The following are available online at https:/ /www.mdpi.com/article/
10.3390/ genes12081145/s1, Figure S1: Profiles of cell cycle distribution performed on K562 ery-
throleukemic cells upon propidium iodide staining. Histograms of flow-cytometric analysis show
the cell cycle (A) 24 h and (B) 48 h after DEANO treatment; (C) 24 h, and (D) 48 h after DETANO
treatment; (E) 24 h and (F) 48 h after hydroxyurea treatment.
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