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Abstract: Background: Chronic inflammation has been recognized in neoplastic disorders, including
myeloproliferative neoplasm (MPN), as an important regulator of angiogenesis. Aims: We investi-
gated the influence of vascular endothelial growth factor (VEGF) and pro-inflammatory interleukin-6
(IL-6) on the expression of angiogenic factors, as well as inflammation-related signaling in mononu-
clear cells (MNC) of patients with MPN and JAK2V617F positive human erythroleukemic (HEL)
cells. Results: We found that IL-6 did not change the expression of angiogenic factors in the MNC of
patients with MPN and HEL cells. However, IL-6 and the JAK1/2 inhibitor Ruxolitinib significantly
increased angiogenic factors—endothelial nitric oxide synthase (eNOS), VEGF, and hypoxia-inducible
factor-1 alpha (HIF-1x)—in patients with polycythemia vera (PV). Furthermore, VEGF significantly
increased the expression of HIF-1oc and eNOS genes, the latter inversely regulated by PI3K and mTOR
signaling in the MNC of primary myelofibrosis (PMF). VEGF and inhibitors of inflammatory JAK1/2,
PI3K, and mTOR signaling reduced the eNOS protein expression in HEL cells. VEGF also decreased
the expression of eNOS and HIF-1« proteins in the MNC of PMF. In contrast, VEGF increased eNOS
and HIF-1« protein expression in the MNC of patients with PV, which was mediated by the inflam-
matory signaling. VEGF increased the level of IL-6 immunopositive MNC of MPN. In summary,
VEGEF conversely regulated gene and protein expression of angiogenic factors in the MNC of PMEF,
while VEGF increased angiogenic factor expression in PV mediated by the inflammation-related
signaling. Conclusion: The angiogenic VEGF induction of IL-6 supports chronic inflammation that,
through positive feedback, further promotes angiogenesis with concomitant JAK1/2 inhibition.

Keywords: VEGF; IL-6; myeloproliferative neoplasm; Ruxolitinib; angiogenesis

1. Introduction

Myeloproliferative neoplasms (MPNs) are characterized by clonal proliferation of
mature blood elements from several myeloid lineages associated with increased angiogene-
sis [1]. Angiogenesis, that is increased in MPNSs, is measured by the expression of vascular
endothelial growth factor (VEGF) and hypoxia-inducible factor-1 alpha (HIF-1x) [2,3]. We
demonstrated that microvessel density was increased and in positive correlation with an-
giogenic factors VEGEF, basic fibroblast growth factor, and bone marrow fibrosis in MPNs [4].
Moreover, we revealed that the expression of HIF-1c, VEGE, and endothelial nitric oxide
synthase (eNOS) proteins were generally increased in granulocytes and immunopositive
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CD34+ cells of MPN, with no steady changed levels in bone marrow [5]. Participation of
inflammatory cells is supported by increased inteleukin-6 (IL-6) cytokine in plasma and
bone marrow stroma of MPNs, which is dependent on JAK2V617F [6]. These observa-
tions support further studies of inflammation-dependent angiogenesis with emphasis on
proliferation-related signaling pathways as a hallmark of MPN.

Excessive myeloproliferation in MPN is characterized by constitutive activation of
JAK2/STATS3 signaling in MPN, while combined inhibition of PI3K/mammalian target
of rapamycin (mTOR) and JAK2 signaling pathways reduces the extent of disease and
prolonged survival [7]. Furthermore, angiogenesis is also regulated by modulation of the
mTOR signaling pathway linked to HIF-1x and VEGF [6]. When we analyzed mTOR
signaling pathway-related genes, PI3K/AKT regulators were preferentially upregulated in
circulatory CD34+ cells of MPN [8]. The observation of linked PI3K/AKT/mTOR pathway
requests the cells with constitutive activation of JAK2/STAT3 signaling to determine the
angiogenic factors response.

One of the factors that induce angiogenic VEGF expression via JAK2/STAT3 signal-
ing is pro-inflammatory IL-6 [9]. IL-6 also induces the dose-dependent release of VEGF
from platelets, further linking the inflammatory process to angiogenesis [10]. We already
reported elevated plasma levels of IL-6 in patients with MPN and that IL-6 stimulated
JAK2/STAT3 and AKT signaling in polycythemia vera (PV) and primary myelofibrosis
(PMF) [6]. IL-6 is produced predominantly by monocytes, macrophages, and T cells [11].
These reports support chronic inflammation as a promoter of angiogenesis.

In this study, we expanded our previous research by examining the mechanism of IL-6
induction of angiogenic factors via proliferation-related JAK1/2, PI3K, and mTOR signaling
in JAK2V617F positive HEL cells and mononuclear cells (MNC contains lymphocytes (T
cells) and monocytes) of patients with MPN. Moreover, we studied the JAK1/2, PI3K, and
mTOR mediated induction of HIF-1x and eNOS by VEGF on gene and protein levels in
MNC parallel with the observation of AKT and mTOR phosphorylation. We also examined
feedback of IL-6 induction by VEGF in MNC and HEL cells. By this approach, we wanted
to reveal the interaction between inflammation and angiogenesis through proliferation
related signaling pathways in MPN.

2. Results
2.1. IL-6 Effect on Angiogenic Factors in Mononuclear Cells of MPN

Pro-inflammatory IL-6 does not cause a significant increase in the expression of
angiogenic factors in MNC of patients with MPN (Figure 1). Moreover, IL-6 and JAK1/2
inhibitor Ruxolitinib significantly increased angiogenic factors—eNOS (Figure 1A), VEGF
(Figure 1B), and HIF-1« (Figure 1C—in PV patients. In addition, there is an increased
expression of VEGF after treatment with IL-6 and Ruxolitinib in PMF patients (Figure 1D).
The mutual effects of Ruxolitinib and IL-6 have not been observed in MNC of essential
thrombocythemia (ET) (not shown). However, IL-6 does not change the level of angiogenic
factors in the MNC of MPN.
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Figure 1. Interleukin-6 (IL-6) induction of angiogenic factors in mononuclear cells (MNC) of myeloproliferative neoplasms
(MPN). Densitometry revealed protein expression determined by Western blotting and presented as a ratio of treated to
non-treated MNC (Control). The MNC were treated for 1 h by 20 ng/mL IL-6 with or without 1 uM JAK1/2 inhibitor
Ruxolitinib and 5 uM PI3K inhibitor LY294002 in (A-C) polycythemia vera (PV) and (D) primary myelofibrosis (PMF).
Values are mean + SEM (n = 3). * p < 0.05 vs. IL-6.

2.2. IL-6 Effect on Angiogenic Factors and Inflammation-Related Signaling Pathways in
JAK2V617F Positive HEL Cells

mTOR inhibition led to a significant reduction in VEGF expression in HEL cells with
JAK2V617F (Figure 2A). JAK1/2, PI3K, and mTOR inhibition reduced the IL-6 stimulated
VEGEF expression (Figure 2A). The IL-6 failed to influence eNOS and HIF-1x protein
expression in HEL cells (not shown). The AKT signaling pathway was activated by IL-6
as well as by inhibition of JAK1/2, PI3K, and mTOR signaling, though the latter had the
most prominent effect (Figure 2B). Moreover, the PI3K inhibitor Ly294002 enhanced IL-6
stimulation of AKT signaling (Figure 2B) as well as STAT5 phosphorylation (p < 0.001,
not shown). JAK1/2, PI3K, and mTOR inhibitors significantly dephosphorylated mTOR
signaling either individually or in combination with IL-6 (Figure 2C). IL-6 did not change
the angiogenic factors level and phosphorylation of STAT5 and mTOR in HEL cells, while
slightly stimulating AKT signaling (not shown). The JAK1/2, PI3K, and mTOR inhibition
generally did not affect the level of the angiogenic factor, while diversely regulating AKT
and mTOR signaling in HEL cells.
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Figure 2. Interleukin-6 (IL-6) induction of angiogenic factors and related signalling pathways in
JAK2V617F positive human erythroleukemic (HEL) cells. Densitometry revealed protein expression
determined by Western blotting and presented as a ratio to Actin of total protein levels. The HEL cells
were treated for 1 h by 20 ng/mL IL-6 with or without 1 uM JAK1/2 inhibitor Ruxolitinib, 5 uM PI3K
inhibitor LY294002 and 100 ng/mL mTOR inhibitor Rapamycin and levels of (A) VEGEF, (B) phospho
AKT, and (C) phospho mTOR were determined. Values are mean & SEM (n = 3). * p < 0.05, ** p < 0.01,
***p <0.001 vs. IL-6. * p < 0.05, ** p < 0.01, *** p < 0.001 vs. VEGF vs. Control.

2.3. VEGF Induction of Angiogenic Factors Gene Expression in MNC of MPN

After mutual treatment with VEGF and inhibitors of inflammation-related signaling
pathways, the gene expression of the angiogenic factors HIF-1« and eNOS was monitored
in HEL cells and MNC of MPN patients. VEGF significantly increased the gene expression
of angiogenic factors HIF-1x (p < 0.05) and eNOS (p < 0.001) in the MNC of patients
with PMF (Figure 3). In addition, PI3K and mTOR inhibitors also increased eNOS
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gene expression, while JAK1/2, PI3K, and mTOR inhibitors increased HIF-1o gene
expression (Figure 3A,B). In addition, the PI3K inhibitor prevented VEGF simulation of
eNOS gene expression while the mTOR inhibitor augmented VEGF stimulation of eNOS
gene expression (Figure 3A). VEGF transcriptional activation of the angiogenic factors was
inversely controlled by PI3K and mTOR signaling for the eNOS gene only.
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Figure 3. Vascular endothelial growth factor (VEGF) induction of angiogenic factors gene expression
in primary myelofibrosis (PMF). Real time qPCR determination of endothelial nitric oxide synthase
(eNOS) and hypoxia inducible factor 1-o (HIF-1«) presented as a ratio to Actin. The mononuclear
cells (MNC) were treated for 1 h with 10 pg/mL VEGF with or without 1 uM JAK1/2 inhibitor
Ruxolitinib, 5 uM PI3K inhibitor LY294002 and 100 ng/mL mTOR inhibitor Rapamycin and levels of
(A) eNOS, and (B) HIF-1x were determined. Values are mean & SEM (n = 3). * p < 0.05, *** p < 0.001
vs. VEGF treated cells. # p < 0.01, ## p < 0.001 vs. Control.
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2.4. VEGF Induction of Angiogenic Factors and Inflammation-Related Signaling Pathways in
HEL Cells

We wanted to examine the influence of VEGF on the expression of the other two
angiogenic factors as well as the inflammation-related signaling pathways in HEL cells
with JAK2V617F. VEGF decreased eNOS protein expression as well as JAK1/2, PI3K,
and mTOR inhibitors either individually or mutually with VEGF (Figure 4A). In the case
of HIF-1« protein expression, neither VEGF nor inhibitors led to a significant change
in its expression (not shown). In the case of inflammation-related signaling pathways,
significant activation of the AKT signaling pathway occurred during the combined action of
VEGF and JAK1/2, PI3K, and mTOR inhibitors (Figure 4B). In addition, STATS signaling is
uniform and independent of the presence of VEGF or the inhibitors of inflammation-related
signaling pathways (not shown). VEGF largely increased the activation of mTOR signaling,
while JAK1/2 and mTOR inhibitors reduced it (Figure 4C). Further, PI3K and mTOR
inhibitors supported VEGF activation of mTOR signaling, but Ruxolitinib prevented it in
HEL cells (Figure 4C). JAK1/2, PI3K, and mTOR inhibitors generally decreased angiogenic
factors in HEL cells, while VEGF decreased the eNOS and stimulated mTOR signaling.

2.5. VEGF Induction of Angiogenic Factors and Inflammation-Related Signaling Pathways
in MPN

The influence of VEGF on angiogenic factors and inflammation-related signaling path-
ways was also monitored in the MNC of MPN patients. VEGF increased the expression
of angiogenic eNOS and HIF-1« proteins in the MNC of PV patients similarly to JAK1/2,
PI3K, and mTOR inhibitors (Figure 5A,B). Conversely, VEGF in combination with the
inhibitors led to a significant decrease in eNOS and HIF-1o expression in PV (Figure 5A,B).
VEGEF largely dephosphorylated AKT signaling in MNC of PV patients similar to PI3K
and mTOR inhibitors (Figure 5C). The JAK1/2, PI3K, and mTOR inhibitors individually
diminished the VEGF-mediated deactivation of AKT signaling (Figure 5C). In contrast,
VEGF decreased the expression of eNOS and HIF-1« proteins in the MNC of PMF patients
similarly to JAK1/2, PI3K, and mTOR inhibitors (Figure 5D,E). This VEGF-induced reduc-
tion of the angiogenic factors was further aggravated by the JAK1/2, PI3K, and mTOR
inhibitors (Figure 5D,E). Activation of AKT signaling was inversely regulated by PI3K and
mTOR inhibitors, but all inhibitors reduced the VEGF effect on AKT signaling (Figure 5F).
No significant difference in the expression of both angiogenesis factors and the observed
signaling pathways was observed in the MNC of ET patients during VEGF treatment (not
shown). Additionally, there was no significant change in STAT5 and mTOR signaling dur-
ing VEGEF treatment in MPN patients (not shown). VEGF increased the angiogenic factors
in the MNC of PV but reduced them in PMF, followed and supported by the inhibition of
JAK1/2, PI3K, and mTOR signaling.
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Figure 4. Vascular endothelial growth factor (VEGF) induction of angiogenic factors and related
signalling pathways in JAK2V617F positive human erythroleukemic cells (HEL). Densitometry
revealed protein expression determined by Western blotting and presented as a ratio to Actin of total
protein levels. The HEL cells were treated for 1 h with 10 pg/mL VEGF with or without 1 uM JAK1/2
inhibitor Ruxolitinib, 5 uM PI3K inhibitor LY294002 and 100 ng/mL mTOR inhibitor Rapamycin and
levels of (A) endothelial nitric oxide synthase (eNOS), (B) phospho AKT, and (C) phospho mTOR
were determined. Values are mean + SEM (n = 3). ** p < 0.01, *** p < 0.001 vs. VEGF; *## p < 0.001

vs. Control.
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Figure 5. Vascular endothelial growth factor (VEGF) induction of angiogenic factors and related sig-
nalling pathways in myeloproliferative neoplasms (MPN). Densitometry revealed protein expression
determined by Western blotting and presented as a ratio to Actin of total protein levels. The MNC
were treated for 1 h with 10 pg/mL VEGF with or without 1 uM JAK1/2 inhibitor Ruxolitinib, 5 uM
PI3K inhibitor LY294002 and 100 ng/mL mTOR inhibitor Rapamycin. The levels of (A) endothelial
nitric oxide synthase (eNOS), (B) phospho AKT, and (C) hypoxia inducible factor 1-« (HIF-1ct) in
polycythemia vera (PV) were determined, while (D) eNOS, (E) phospho AKT, and (F) HIF-1x were
determined in primary myelofibrosis (PMF). Values are mean + SEM (n = 3). * p < 0.05, ** p < 0.01,
%1 <0.001 vs. VEGF; # p < 0.05, # p < 0.01, ¥ p < 0.001 vs. Control.

2.6. VEGF Induction of IL-6 in MPN

Since we have previously shown that the levels of pro-inflammatory cytokine IL-6
are elevated in the plasma and bone marrow of MPN patients [12], in accordance with
the JAK2V617F mutant allele burden, we also wanted to examine the total degree of
its expression in the bone marrow of MPN patients. Immunohistochemical analysis
of IL-6 positive cells confirmed that a percentage of this pro-inflammatory cytokine
was significantly elevated in the bone marrow of MPN patients compared to controls
(Figure 6A). We also monitored the IL-6 positive MNC of MPN patients after treatment
with VEGEF for 12 and 24 h. Regardless of the duration of VEGF treatment, all MPN patients
had increased IL-6 positive cells relative to untreated MNC and expression was higher
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compared to healthy controls (Figure 6B). The same applies to HEL cells (Figure 6B). VEGF
increased the level of IL-6 positive MNC in peripheral blood of MPN.
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Figure 6. Percentage of IL-6 positive cells in (A) bone marrow of polycythemia vera (PV), essential
thrombocythemia (ET), and primary myelofibrosis (PMF) determined by immunohistochemistry
(IHC, *** p < 0.001 vs. control) and (B) human erythroleukemic (HEL with JAK2V617F) cells, periph-
eral blood derived MNC of healthy controls, PV, ET, and PMF treated for 12 and 24 h with 10 pg/mL
VEGF determined by immunocytochemistry (ICC). ICC slides correspond to columns in graph, after
24 h of treatment by VEGF. *** p < 0.001 vs. non-treated cells. Values are mean + SEM (n = 3).

3. Discussion

According to the presented results, IL-6 does not change the level of angiogenic factors
in the MNC of MPN and HEL cells, as well as the phosphorylation of STAT5 and mTOR in
HEL cells, while it slightly stimulated AKT signaling. Inhibition of inflammatory JAK1/2,
PI3K, and mTOR signaling decreased eNOS protein levels, while VEGF decreased eNOS
protein levels and stimulated mTOR signaling. The transcriptional activation of the eNOS
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gene by VEGF was prevented by PI3K and enhanced by mTOR signaling. Furthermore,
VEGEF increased the expression of eNOS and HIF-1o proteins in the MNC of PV but reduced
it in PMEF. JAK1/2, PI3K, and mTOR inhibitors prevented the VEGF-stimulated expression
of eNOS and HIF-1«x proteins in PV, while exaggerating VEGF inhibition of eNOS and
HIF-1o protein expression in PMFE. VEGF increased the level of IL-6 positive HEL cells and
MNC in the peripheral blood of MPN.

Evaluations of aberrant cytokine expression revealed that patients with PMEF, PV,
and ET had significantly elevated levels of IL-6, IL-8, and VEGF [12-14]. Moreover, IL-6
induces JAK/STAT pathway activation, IL-8 affects the tumor microenvironment, and
VEGEF promotes angiogenesis [15]. We already demonstrated that bone marrow fibrosis in
patients with MPN was significantly associated with IL-8 [4]. We expanded the study to the
interaction between inflammatory IL-6 and angiogenic VEGF in the MNC of MPN. The role
of VEGF in hematopoiesis and angiogenesis has been already confirmed in hematologic
malignancies [16]. Elevated levels of VEGF were already demonstrated in the serum and
bone marrow of patients with MPN [17-19]. A secreted VEGF is thought to contribute
to the MPN progression by autocrine or paracrine mechanisms [1]. The expression of
VEGEF and its receptors increases in the bone marrow of patients with MPN, especially
PMF, which could be inversely correlated with survival [20]. These reports confirmed the
stimulation of inflammatory and angiogenic factors in MPN.

IL-6 is a proinflammatory cytokine involved in the stimulation of angiogenesis of the
tumor microenvironment, as well as in the enhancement of endothelial cell proliferation
and migration [21,22]. We previously showed elevated plasma IL-6 levels in MPN patients
depending on the presence of the JAK2V617F mutation in patients with ET and PMF [6].
We also found that inhibition of JAK1/2 prevented IL-6 activation of STAT3 and AKT
pathways in PV granulocytes and HEL cells. Furthermore, we have shown that JAK1/2
inhibitors also block the IL-6 activation of the AKT pathway in PMF granulocytes [23]. We
have now presented that Ruxolitinib significantly increased angiogenic factors—HIF-1«,
eNOS, and VEGEF in the presence of IL-6—while it only significantly increased the VEGF
in the MNC of PMF patients. Therefore, the JAK1/2 inhibitor Ruxolitinib can stimulate
angiogenic factors during chronic inflammation that supports the progression of fibrosis
in MPN.

Previously, it was shown that IL-6 stimulates MAPK, PI3K-AKT, and STAT3 phos-
phorylation, while the latter was not prevented by the inhibition of MAPK and PI3K
signaling [24]. Additionally, IL-6 induced MAPK phosphorylation was partially blocked
by inhibition of PI3K signaling, whereas PI3K-AKT phosphorylation was not prevented by
the inhibition of MAPK signaling [25]. We observed that IL-6 slightly activated the AKT
signaling pathway as well as JAK1/2, PI3K, and mTOR inhibitors in HEL cells. The PI3K
inhibitor Ly294002 enhanced IL-6 stimulation of AKT signaling. Furthermore, inhibitors of
all three signaling pathways dephosphorylated the mTOR signaling pathway regardless of
the presence of IL-6. On the other hand, Kleppe et al. identified the inflammatory cytokine
IL-6 produced by granulocytes of patients with PMF with constitutive STAT3 activation [26].
Inflammatory and proliferation-related signaling pathways, with linked activities, were
stimulated and can be an additional therapeutical target besides constitutively activated
JAK2-STAT3 signaling.

IL-6 levels are increased in PMF, with a positive correlation between IL-6 and an-
giogenesis in the bone marrow of patients with MPN [12]. We confirmed an increased
expression of IL-6 in the bone marrow of examined patients with MPN [6], while VEGF
increased the level of IL-6 positive MNC. It has previously been shown that there is a
correlation of VEGF expression with IL-6 and its receptors in tumor cells, which is associ-
ated with poor survival of individuals with HER2-invasive ductal carcinoma [27]. This is
related to the fact that IL-6 and its receptors are associated with an increased metastatic
capacity [28] and the promotion of angiogenesis [29]. In addition, the potential of IL-6
in initiating VEGF expression has been shown in several cancer cells [30,31]. Thus, the
anti-IL-6 antibody siltuximab has been shown to reduce STAT3 activation and angiogenesis
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in IL-6-producing xenografts of intraperitoneal ovarian cancer and reduces VEGF levels
in patients with ovarian cancer [32]. The evaluation of IL-6 levels in patients with MPN
before and during conventional and new therapies may support future clinical trials that
will be able to manage the control of angiogenic factors during disease progression.

4. Materials and Methods
4.1. HEL 92.1.7 Cell Line

The HEL 92.1.7 cells with a homozygous expression of JAK2V617F were cultivated in
an RPMI- 1640 medium (Biowest, Nuaillé, France) containing 10% fetal bovine serum (FBS,
Biowest) and 1% penicillin-streptomycin (Biowest) at 37 °C in a 5% CO, humidified atmo-
sphere. Next, the HEL 92.1.7 cells were preincubated for 1 h with 1 uM ruxolitinib (RUXO,
JAK1/2 inhibitor, Cayman Chemical Company, Ann Arbor, MI, USA), 5 uM Ly294002
(PI3K inhibitor, Cell Signalling Technology, Inc., Danvers, Massachusetts), or 100 ng/mL
Rapamycin (RAPA, mammalian target of rapamycin (mTOR) inhibitor, Calbiochem, EMD
Millipore Corp., Billerica, MA, USA) and treated for 1 h with IL6 (20 ng/mL, Miltenyi
Biotec, Bergisch Gladbach, Germany) or VEGF (10 ng/mL, Elabscience, Wuhan, China).
After treatment, the HEL cells were washed once in PBS, incubated in RIPA lysis buffer at
4 °C for 45 min, and centrifuged on 10,000x g at 4 °C for 15 min.

4.2. Patients

Peripheral blood was obtained from 3 healthy controls and 24 patients diagnosed with
MPN according to the World Health Organization (WHO) classification. All of the donors
signed the consent form approved by a local ethical committee in accordance with the
Declaration of Helsinki. The samples were collected in disodium EDTA and granulocytes
were separated using a lymphocyte separation medium (LSM, Capricorn Scientific GmbH,
Ebsdorfergrund, Germany) and lysing solution (0.15 M NH4Cl, 0.1 mM Nay;EDTA, 12 mM
NaHCO3). For immunoblotting and PCR analyses, we had 3 healthy controls and 24 MPN
patients: 9 for ET, 7 for PV, and 8 for PMF. The isolated MNC were washed twice in
phosphate-buffered saline (PBS) and resuspended in the RPMI-1640 medium (Biowest,
Nuaillé, France), preincubated for 1 h with 1 pM ruxolitinib (RUXO), 5 uM Ly294002,
or 100 ng/mL Rapamycin (RAPA) and treated for 1 h with IL-6 (20 ng/mL) or VEGF
(10 ug/mL). After treatment, the MINC were washed once in PBS, incubated in RIPA lysis
buffer at 4 °C for 45 min, and centrifuged on 10,000 x g at 4 °C for 15 min, or genomic DNA
extraction was performed as previously reported [9].

4.3. Western Blotting

Proteins from MPN-derived MNC were isolated and processed as previously re-
ported [9]. Equal amounts of protein (30 pug) were run on polyacrylamide gels and trans-
ferred to polyvinylidene difluoride membranes. The membranes were blocked with 4%
milk (Serva Electrophoresis GmbH, Heidelberg, Germany) for 1 h at room temperature
and probed with primary antibodies directed against HIF-1cx (Elabscience, Wuhan, China),
VEGEF (Elabscience), eNOS (Elabscience), 3-actin (R&D Systems, Inc, Minneapolis, Min-
nesota), phospho-STAT5 (R&D Systems), STAT5 (R&D Systems), phospho-AKT (R&D
Systems), AKT (R&D Systems), pmTOR (Cell Signaling Technology Inc., Beverly, USA) and
mTOR (Cell Signalling Technology). Peroxidase-conjugated goat anti-rabbit immunoglobu-
lin (R&D Systems) was used as a secondary antibody, except goat anti-mouse immunoglob-
ulin (R&D Systems) was used for (3-actin. The protein levels were imaged with a ChemiDoc
Imaging System (Bio-Rad Laboratories, Hercules, CA, USA) and estimated by densitomet-
ric scanning of the blots using the Image Lab (Bio-Rad Laboratories, Inc. Version 6.0.0.25)
software tool and normalized to (3-actin.

4.4. Real-Time Quantitative PCR

Quantitative real-time PCR analyses of human HIF-1x gene was performed using
forward 5" GGC AGG AAG ATT GTC ATG GAC 3’ and reverse 5’ TCT GTC TGT CAC
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ATG GGT GAT GAA 3’ primers (Invitrogen, Carlsbad, CA, USA). For the eNOS gene we
used forward 5 CGG CAT CAC CAG GAA GAA GA 3’ and reverse 5 GCC ATC ACC
GTG CCC AT 3’ primers (Invitrogen). Real-time quantitative PCR was performed on a
MIC gPCR Cycler (Bio Molecular Systems; Upper Coomera, Australia) using the Maxima
SYBR Green/ROX qPCR master mix (Thermo Scientific, Cambridge, UK). B-actin was used
as an internal control for the normalization of the examined angiogenic factors.

4.5. Immunocytochemistry/Immunohistochemistry

For cytoplasmatic staining, MNC were collected onto microscope glass slides by
cytospins (2 x 10* cells/each) and fixed by acetone at room temperature (RT). Bone
marrow biopsy specimens were fixed in 10% neutral formalin solution for 24-36 h, then
decalcified in EDTA buffer for 3 h and embedded in paraffin. The tissue sections were
cut at 5 mm, heated at 56 °C for 60 min, then deparaffinized and rehydrated through a
series of xylenes and alcohols followed by an epitope retrieval step. Samples were treated
with 3% H,O, solution in PBS to block endogenous peroxidase activity. The next step was
incubation with an anti-IL6 antibody (Novocastra, Buffalo Grove, IL, USA) in a humidity
chamber overnight at RT. Immunostaining was performed using the streptavidin-biotin
technique (LSAB/HRP Kit, DAKO). Immunoreactivity was visualized with DAKO Liquid
DAB™ Substrate/Chromogen System counterstained with Mayer’s hematoxylin (Merck,
Whitehouse Station, NJ). For the negative control samples, normal serum and tris buffered
saline (TBS) buffer (1:500) were pipetted without primary antibodies. Immunoreactive
cells were analyzed and scored at five powered fields in each sample using a computer-
supported imaging system (Analysis Pro 3.1) connected to a light microscope (Olympus
AX70, Hamburg, Germany) with an objective magnification of 40.

4.6. Statistical Analysis

The one-way ANOVA and Dunnett post-test were applied using Prism 6 software
(GraphPad Software Inc., San Diego, CA, USA). The results are expressed as the mean £ SEM,
and differences at p < 0.05 were accepted as the level of significance.

5. Conclusions

The VEGF/VEGER pathways are the most relevant regulators of angiogenesis and
vasculogenesis and can also stimulate the proliferation, migration, and survival of tumor
cells. Increased levels of pro-inflammatory cytokines are associated with poorer prognosis
and shorter survival in patients with MPN, and therapy focused on the inflammatory
cytokine profile may improve the quality of life and life expectancy of patients with MPN.
We demonstrated the interaction between IL-6 and VEGF mediated by inflammation-
related signaling pathways in MPN. VEGF promoted IL-6 productivity and enhanced
the expression of related angiogenic factors that were conversely regulated by PI3K and
mTOR signaling in MPN. VEGF can be a marker of MPN progression, while inflammation
stimulated angiogenesis can be predisposed to fibrosis. The opposite regulation of the
linked angiogenic factors by VEGF in PV and PMF can influence neovascularization and
promote fibrosis in PMF.

Author Contributions: Conceptualization, v.C., TS., and J.ES.; Methodology, T.S., O.M.A., M.D,,
B.B.-C., and M.T.; Formal Analysis T.S., OM.A,, E.Z. and M.D.; Investigation, T.S., OM.A., M.T,, T.D.,
and D.D.; Data Curation, T.S., and M.G., Writing—Original Draft Preparation, T.S., O.M.A., D.D. and
v.C,; Writing—Review and Editing, T.S., ].ES., M.G.; Visualization, O.M.A., and EZ.; Supervision,
V.C. and J.ES.; Project Administration, V.C. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: This study was approved by the Ethics Committee of the
Clinical Center of Serbia, Belgrade (decision number 187/4) and the Ethics Committee of the Institute
for Medical Research, Belgrade (decision number EO 117/2016).



Int. J. Mol. Sci. 2021, 22, 6671 13 of 14

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.
Data Availability Statement: Not applicable.

Acknowledgments: This study was supported by the Ministry of Education, Science and Technolog-
ical Development of the Republic of Serbia (Record no. 451-03-9/2021-14/200015).

Conflicts of Interest: The authors declare no conflict of interest.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.
20.

21.

Medinger, M.; Skoda, R.; Gratwohl, A.; Theocharides, A.; Buser, A.; Heim, D.; Dirnhofer, S.; Tichelli, A.; Tzankov, A. Angiogen-
esis, and vascular endothelial growth factor-/receptor expression in myeloproliferative neoplasms: Correlation with clinical
parameters and JAK2-V617F mutational status. Br. ]. Haematol. 2009, 146, 150-157. [CrossRef]

Gadomska, G.; Stankowska, K.; Boinska, J.; Slusarz, R.; Tylicka, M.; Michalska, M.; Jachalska, A.; Ro$¢, D. VEGF-A, sVEGFR-1,
and sVEGFR-2 in BCR-ABL negative myeloproliferative neoplasms. Medicina (Kaunas) 2017, 53, 34-39. [CrossRef] [PubMed]
Cheng, Z.; Fu, J.; Liu, G.; Zhang, L.; Xu, Q.; Wang, S.Y. Angiogenesis in JAK2 V617F positive myeloproliferative neoplasms and
ruxolitinib decrease VEGF, HIF-1 enesis in JAK2 V617F positive cells. Leuk. Lymphoma 2018, 59, 196-203. [CrossRef] [PubMed]
Lekovic, D.; Gotic, M.; Skoda, R.; Beleslin-Cokic, B.; Milic, N.; Mitrovic-Ajtic, O.; Nienhold, R.; Sefer, D.; Suboticki, T.; Buac, M.;
et al. Bone marrow microvessel density and plasma angiogenic factors in myeloproliferative neoplasms: Clinicopathological and
molecular correlations. Ann. Hematol. 2017, 96, 393-404. [CrossRef] [PubMed]

Suboticki, T.; Mitrovi¢ Ajti¢, O.; Beleslin-Coki¢, B.B.; Nienhold, R.; Dikli¢, M.; Djiki¢, D.; Lekovic, D.; Bulat, T.; Markovi¢, D.; Goti¢,
M.; et al. Angiogenic factors are increased in circulating granulocytes and CD34+ cells of myeloproliferative neoplasms. Mol.
Carcinog. 2017, 56, 567-579. [CrossRef]

Coki¢, V.P; Mitrovié-Ajti¢, O.; Beleslin-Cokié¢, B.B.; Markovi¢, D.; Bua&, M.; Dikli¢, M.; Kraguljac-Kurtovi¢, N.; Damjanovi¢,
S.; Milenkovi¢, P; Goti¢, M.; et al. Proinflammatory Cytokine IL-6 and JAK-STAT Signaling Pathway in Myeloproliferative
Neoplasms. Mediat. Inflamm. 2015, 2015, 453020. [CrossRef]

Bartalucci, N.; Tozzi, L.; Bogani, C.; Martinelli, S.; Rotunno, G.; Villeval, J.L.; Vannucchi, A.M. Co-targeting the PI3K/mTOR
and JAK?2 signalling pathways produces synergistic activity against myeloproliferative neoplasms. J. Cell. Mol. Med. 2013,17,
1385-1396. [CrossRef]

Coki¢, V.P; Mossuz, P; Han, J.; Socoro, N.; Beleslin-Coki¢, B.B.; Mitrovi¢, O.; Subotitki, T.; Dikli¢, M.; Lekovi¢, D.; Goti¢, M.; et al.
Microarray and proteomic analyses of myeloproliferative neoplasms with a highlight on the mTOR signaling pathway. PLoS
ONE 2015, 10, e0135463. [CrossRef]

Hoermann, G.; Greiner, G.; Valent, P. Cytokine Regulation of Microenvironmental Cells in Myeloproliferative Neoplasms. Mediat.
Inflamm. 2015, 2015, 869242. [CrossRef]

Caine, G.J,; Lip, G.Y,; Stonelake, P.S.; Ryan, P; Blann, A.D. Platelet activation, coagulation and angiogenesis in breast and prostate
carcinoma. Thromb. Haemost. 2004, 92, 185-190. [CrossRef]

Sprague, A.H.; Khalil, R.A. Inflammatory Cytokines in Vascular Dysfunction and Vascular Disease. Biochem. Pharmacol. 2009, 78,
539-552. [CrossRef] [PubMed]

Tefferi, A.; Vaidya, R.; Caramazza, D.; Finke, C.; Lasho, T.; Pardanani, A. Circulating interleukin (IL)-8, IL-2R, IL-12, and IL-15
levels are independently prognostic in primary myelofibrosis: A comprehensive cytokine profiling study. J. Clin. Oncol. 2011, 29,
1356-1363. [CrossRef] [PubMed]

Vaidya, R.; Gangat, N.; Jimma, T.; Finke, C.M.; Lasho, T.L.; Pardanani, A.; Tefferi, A. Plasma cytokines in polycythemia vera:
Phenotypic correlates, prognostic relevance, and comparison with myelofibrosis. Am. ]. Hematol. 2012, 87, 1003-1005. [CrossRef]
Pourcelot, E.; Trocme, C.; Mondet, J.; Bailly, S.; Toussaint, B.; Mossuz, P. Cytokine profiles in polycythemia vera and essential
thrombocythemia patients: Clinical implications. Exp. Hematol. 2014, 42, 360-368. [CrossRef] [PubMed]

Longhitano, L.; Li Volti, G.; Giallongo, C.; Spampinato, M.; Barbagallo, I.; Di Rosa, M.; Romano, A.; Avola, R.; Tibullo, D.;
Palumbo, G.A. The Role of Inflammation and Inflammasome in Myeloproliferative Disease. . Clin. Med. 2020, 9, 2334. [CrossRef]
Gerber, H.P; Ferrara, N. The role of VEGF in normal and neoplastic hematopoiesis. . Mol. Med. 2003, 81, 20-31. [CrossRef]
[PubMed]

Murphy, P.; Ahmed, N.; Hassan, H.T. Increased serum levels of vascular endothelial growth factor correlate with splenomegaly in
polycythemia vera. Leuk. Res. 2002, 26, 1007-1010. [CrossRef]

Panteli, K.; Bai, M.; Hatzimichael, E.; Zagorianakou, N.; Agnantis, N.J.; Bourantas, K. Serum levels, and bone marrow immuno-
histochemical expression of, vascular endothelial growth factor in patients with chronic myeloproliferative diseases. Hematology
2007, 12, 481-486. [CrossRef]

Wang, Y.; Zuo, X. Cytokines frequently implicated in myeloproliferative neoplasms. Cytokine X 2019, 1, 100005. [CrossRef]
Gianelli, U.; Vener, C.; Raviele, P.R.; Savi, E.; Somalvico, E.; Calori, R.; Iurlo, A.; Radaelli, F.; Fermo, E.; Bucciarelli, P,; et al. VEGF
expression correlates with microvessel density in Philadelphia chromosome-negative chronic myeloproliferative disorders. Am. J.
Clin. Pathol. 2007, 128, 966-973. [CrossRef] [PubMed]

Yao, J.S.; Zhai, W.; Young, W.L.; Yang, G.Y. Interleukin-6 triggers human cerebral endothelial cells proliferation and migration:
The role for KDR and MMP-9. Biochem. Biophys. Res. Commun. 2006, 342, 1396-1404. [CrossRef] [PubMed]


http://doi.org/10.1111/j.1365-2141.2009.07726.x
http://doi.org/10.1016/j.medici.2017.01.004
http://www.ncbi.nlm.nih.gov/pubmed/28237691
http://doi.org/10.1080/10428194.2017.1324155
http://www.ncbi.nlm.nih.gov/pubmed/28554272
http://doi.org/10.1007/s00277-016-2890-9
http://www.ncbi.nlm.nih.gov/pubmed/27924369
http://doi.org/10.1002/mc.22517
http://doi.org/10.1155/2015/453020
http://doi.org/10.1111/jcmm.12162
http://doi.org/10.1371/journal.pone.0135463
http://doi.org/10.1155/2015/869242
http://doi.org/10.1160/TH03-11-0679
http://doi.org/10.1016/j.bcp.2009.04.029
http://www.ncbi.nlm.nih.gov/pubmed/19413999
http://doi.org/10.1200/JCO.2010.32.9490
http://www.ncbi.nlm.nih.gov/pubmed/21300928
http://doi.org/10.1002/ajh.23295
http://doi.org/10.1016/j.exphem.2014.01.006
http://www.ncbi.nlm.nih.gov/pubmed/24463275
http://doi.org/10.3390/jcm9082334
http://doi.org/10.1007/s00109-002-0397-4
http://www.ncbi.nlm.nih.gov/pubmed/12545246
http://doi.org/10.1016/S0145-2126(02)00053-X
http://doi.org/10.1080/10245330701554664
http://doi.org/10.1016/j.cytox.2019.100005
http://doi.org/10.1309/FP0N3LC8MBJUFFA6
http://www.ncbi.nlm.nih.gov/pubmed/18024322
http://doi.org/10.1016/j.bbrc.2006.02.100
http://www.ncbi.nlm.nih.gov/pubmed/16516857

Int. ]. Mol. Sci. 2021, 22, 6671 14 of 14

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Fan, Y.; Ye, J.; Shen, F; Zhu, Y.; Yeghiazarians, Y.; Zhu, W.; Chen, Y.; Lawton, M.T.; Young, W.L.; Yang, G.-Y. Interleukin-6
stimulates circulating blood-derived endothelial progenitor cell angiogenesis in vitro. J. Cereb. Blood Flow Metab. 2008, 28, 90-98.
[CrossRef] [PubMed]

Suboti¢ki, T.; Mitrovi¢ Ajti¢, O.; Beleslin-Coki¢, B.B.; Bjelica, S.; Djiki¢, D.; Dikli¢, M.; Lekovi¢, D.; Goti¢, M.; Santibanez, J.E;
Noguchi, C.T.; et al. IL-6 stimulation of DNA replication is JAK1/2 mediated in cross-talk with hyperactivated ERK1/2 signaling.
Cell Biol. Int. 2019, 43, 192-206. [CrossRef] [PubMed]

Fahmi, A.; Smart, N.; Punn, A.; Jabr, R.; Marber, M.; Heads, R. p42/p44-MAPK and PI3K are sufficient for IL-6 family
cytokines/gp130 to signal to hypertrophy and survival in cardiomyocytes in the absence of JAK/STAT activation. Cell. Signal.
2013, 25, 898-909. [CrossRef]

Hideshima, T.; Nakamura, N.; Chauhan, D.; Anderson, K.C. Biologic sequelae of interleukin-6 induced PI3-K/ Akt signaling in
multiple myeloma. Oncogene 2001, 20, 5991-6000. [CrossRef] [PubMed]

Kleppe, M.; Kwak, M.; Koppikar, P.; Riester, M.; Keller, M.; Bastian, L.; Hricik, T.; Bhagwat, N.; McKenney, A.S.; Papalexi, E.; et al.
JAK-STAT pathway activation in malignant and nonmalignant cells contributes to MPN pathogenesis and therapeutic response.
Cancer Discov. 2015, 5, 316-331. [CrossRef] [PubMed]

Tawara, K.; Scott, H.; Emathinger, J.; Ide, A.; Fox, R.; Greiner, D.; LaJoie, D.; Hedeen, D.; Nandakumar, M.; Oler, A J; et al.
Co-Expression of VEGF and IL-6 Family Cytokines is Associated with Decreased Survival in HER2 Negative Breast Cancer
Patients: Subtype-Specific IL-6 Family Cytokine-Mediated VEGF Secretion. Transl. Oncol. 2019, 12, 245-255. [CrossRef]
Bockhorn, J.; Dalton, R.; Nwachukwu, C.; Huang, S.; Prat, A.; Yee, K.; Chang, Y.-F.; Huo, D.; Wen, Y.; Swanson, K.E.; et al.
MicroRNA-30c inhibits human breast tumour chemotherapy resistance by regulating TWF1 and IL-11. Nat. Commun. 2013,
4,1393. [CrossRef]

Ryan, R.E.; Martin, B.; Mellor, L.; Jacob, R.B.; Tawara, K.; McDougal, O.M.; Oxford, J.T.; Jorcyk, C.L. Oncostatin M binds
to extracellular matrix in a bioactive conformation: Implications for inflammation and metastasis. Cytokine 2015, 72, 71-85.
[CrossRef]

Loeffler, S.; Fayard, B.; Weis, J.; Weissenberger, J. Interleukin-6 induces transcriptional activation of vascular endothelial growth
factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between
STAT3 and Sp1. Int. ]. Cancer 2005, 115, 202-213. [CrossRef]

Adachi, Y.; Aoki, C.; Yoshio-Hoshino, N.; Takayama, K.; Curiel, D.T.; Nishimoto, N. Interleukin-6 induces both cell growth and
VEGEF production in malignant mesotheliomas. Int. ]. Cancer 2006, 119, 1303-1311. [CrossRef] [PubMed]

Coward, J.; Kulbe, H.; Chakravarty, P; Leader, D.; Vassileva, V.; Leinster, D.A.; Thompson, R.; Schioppa, T.; Nemeth, ].; Vermeulen,
J.; et al. Interleukin-6 as a therapeutic target in human ovarian cancer. Clin. Cancer Res. 2011, 17, 6083-6096. [CrossRef] [PubMed]


http://doi.org/10.1038/sj.jcbfm.9600509
http://www.ncbi.nlm.nih.gov/pubmed/17519976
http://doi.org/10.1002/cbin.11084
http://www.ncbi.nlm.nih.gov/pubmed/30571852
http://doi.org/10.1016/j.cellsig.2012.12.008
http://doi.org/10.1038/sj.onc.1204833
http://www.ncbi.nlm.nih.gov/pubmed/11593406
http://doi.org/10.1158/2159-8290.CD-14-0736
http://www.ncbi.nlm.nih.gov/pubmed/25572172
http://doi.org/10.1016/j.tranon.2018.10.004
http://doi.org/10.1038/ncomms2393
http://doi.org/10.1016/j.cyto.2014.11.007
http://doi.org/10.1002/ijc.20871
http://doi.org/10.1002/ijc.22006
http://www.ncbi.nlm.nih.gov/pubmed/16642474
http://doi.org/10.1158/1078-0432.CCR-11-0945
http://www.ncbi.nlm.nih.gov/pubmed/21795409

	Introduction 
	Results 
	IL-6 Effect on Angiogenic Factors in Mononuclear Cells of MPN 
	IL-6 Effect on Angiogenic Factors and Inflammation-Related Signaling Pathways in JAK2V617F Positive HEL Cells 
	VEGF Induction of Angiogenic Factors Gene Expression in MNC of MPN 
	VEGF Induction of Angiogenic Factors and Inflammation-Related Signaling Pathways in HEL Cells 
	VEGF Induction of Angiogenic Factors and Inflammation-Related Signaling Pathways in MPN 
	VEGF Induction of IL-6 in MPN 

	Discussion 
	Materials and Methods 
	HEL 92.1.7 Cell Line 
	Patients 
	Western Blotting 
	Real-Time Quantitative PCR 
	Immunocytochemistry/Immunohistochemistry 
	Statistical Analysis 

	Conclusions 
	References

