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Abstract. Digital contact tracing has been suggested as an effective strategy for controlling an epidemic
without severely limiting personal mobility. Here, we use smartphone proximity data to explore how social
structure affects contact tracing of COVID-19. We model the spread of COVID-19 and find that the effec-
tiveness of contact tracing depends strongly on social network structure and heterogeneous social activity.
Contact tracing is shown to be remarkably effective in a workplace environment and the effectiveness
depends strongly on the minimum duration of contact required to initiate quarantine. In a realistic social
network, we find that forward contact tracing with immediate isolation can reduce an epidemic by more
than 70%. In perspective, our findings highlight the necessity of incorporating social heterogeneity into
models of mitigation strategies.

1 Introduction

For diseases which are primarily transmitted in spatial
proximity, contact patterns invariably play a central
role in the course of an epidemic [1,2]. For the pur-
poses of modeling infectious diseases, contact patterns
can be represented by a network where each individ-
ual is a node and spatial proximity between individ-
uals is represented by time-dependent edges. Nonethe-
less, well-mixed compartmental models remain the typ-
ical approach to modeling epidemics [3–6]. Even such
models, which do not incorporate a network structure,
make assumptions about the underlying social con-
tact patterns. In well-mixed models, the assumption
is that mixing patterns are homogeneous inside sub-
populations [7–13]. Although interaction rates between
sub-populations can be adjusted, well-mixed models
may fail to predict the evolution of an epidemic when
social interactions are spatiotemporally restricted [14–
16], as in real contact networks.

An oft-taken approach to modelling of contact trac-
ing schemes is branching process simulation [17–19].
In these models, the outbreak is modeled generation
by generation and the susceptible population is usually
taken to be constant in size, rendering the models most
useful for studying early outbreaks. Such models have
clear advantages in terms of mathematical tractability,
but lack the (disease and social) dynamics which is the
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main focus of this study. Social interactions tend to
follow a characteristic pattern of spatiotemporal cor-
relation, where you meet the same people at specific
times during a week, at work or at home. At the same
time, social activity varies significantly from person to
person. This correlation increases transmission hetero-
geneity, i.e. the tendency of cases to occur in clusters.

During the COVID-19 pandemic, contact tracing has
been the center of much attention due to its promises
of epidemic control without severely restricting mobil-
ity [20–25]. As a mitigation strategy, contact tracing
relies directly on the contact network structure and may
benefit from clustering of cases [26]. In order to assess
contact tracing strategies, detailed information on con-
tact networks is indispensable, and the usual well-mixed
approach is inadequate – more so than when mod-
elling unmitigated spreading [27,28]. A recent review
of models and data of collective dynamics in public
safety concluded that central assumptions of classical,
homogeneous models of epidemic spread are not even
approximately valid in real-world scenarios [29]. Their
conclusions further emphasize the importance of uti-
lizing empirical population data in modeling collective
dynamics, and of taking existing heterogeneities into
account.

In this paper, we utilize Bluetooth proximity data
obtained from a cohort of university students at a large
European university (see “Methods” for details). In
most studies of this nature, mobility data collected from
mobile phones rely on spatial locations derived from
estimated distances to cell towers, GPS coordinates
[30] or the proximity to known Wi-Fi access points.
Whereas this kind of data is useful for studies of aggre-
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gate mobility [31], the accuracy is typically not suf-
ficient to infer epidemiologically relevant social prox-
imity between individuals. In contrast, the Bluetooth
data that we consider here can identify social proximity
with a high spatial resolution (< 1 m). In addition, our
data has a high temporal resolution (< 5 min), mean-
ing that brief encounters (individuals passing by each
other) can be distinguished from longer meetings. A
high spatiotemporal resolution is necessary to faithfully
simulate disease transmission through a social network,
since diseases (such as COVID-19) may be less likely
to transmit during short encounters or between indi-
viduals separated by more than a few meters [32,33].
The upper limit for the range of our Bluetooth data is
approximately 15 m [34]. We also note that our data are
similar in nature to those collected by contact tracing
smartphone applications [35].

Like all real-life proximity data, the data set used in
this study comprises just a section of the complete con-
tact network of each participant. However, our data still
display a well-defined and robust heterogeneity which
is the object of our study. We further note that contact
heterogeneity is pronounced despite the fact that our
participant group is homogeneous in age and occupa-
tion, and would be treated as undifferentiated in typical
epidemiological models.

To study the effects of contact heterogeneity on an
epidemic, we simulate the propagation of COVID-19
on the empirical contact network, and compare with
artificially homogenized versions of this network. This
allows us to maintain certain features of the network
(size, average contact rate) while altering others (net-
work structure and degree distribution). We can then
separately study how these features affect the outcomes
of the epidemic, with and without mitigation. For that
purpose, we introduce three degrees of heterogeneity:
(i) the true (observed) network. (ii) an edge swapped
version of the network [36], which retains heterogeneity
in activity levels but homogenizes the network structure
and edge correlations, and (iii) a randomized network,
which retains only the overall (mean) contact frequency,
but eliminates heterogeneity.

Our main question is if contact tracing of of COVID-
19 is affected by the variation in individual social
activity levels and by the structure of the social net-
work itself. Our contact tracing algorithm has two key
parameters, the probability for a symptomatic indi-
vidual to undergo testing and the maximum duration
of social proximity to an exposed individual allowed,
before a self-quarantine is triggered. The latter is espe-
cially useful, since it is a directly controllable parameter
when e.g. designing contact tracing smartphone appli-
cations [35].

2 Methods

We use temporally resolved social proximity data col-
lected using smartphones distributed to 1000 partici-
pants (undergraduate students at the Technical Uni-

versity of Denmark [37,38]). The smartphones were
equipped with an application that collected communi-
cation in the form of call and text messaging logs, geo-
location (GPS coordinates) and social proximity data
using the Bluetooth port. Every 5 min, all smartphones
in the study scanned for nearby devices included in the
study, and recorded Bluetooth signal strength as well as
the GPS coordinates of the phone. The data we consider
were collected over a period of two years, 2013–2015.

The approximate distance between participants can
be inferred from the strength (RSSI) of the Blue-
tooth signal transmitted between devices. The signal
strength can resolve distances in the range of ≤ 1
meter to approximately 10–15 m [34]. To prepare our
data for modeling of disease transmission, the collected
RSSI values are related to an epidemiologically rel-
evant notion of contact. The definition of a contact
depends on the disease in question and its dominant
mode(s) of transmission. If environmental transmission
is significant, a simple short-distance cutoff would be
incorrect, and simple proximity data would be insuffi-
cient. However, for SARS-CoV-2, there is evidence that
transmission by fomite is minor [39]. Our transmission
model assumes that the transmission risk of COVID-19
increases sharply as interpersonal distance is decreased
below 1–2 m [33,40–43]. Thus, we define two individuals
to be in social contact whenever the Bluetooth signal
strength between their respective devices exceeds − 85
dBm. This definition of contact captures essentially all
≤ 1m interactions while excluding a large portion of
the 3m interactions and above [34].

From the social contacts, we can create a well-
defined time-dependent contact network where individ-
uals are represented by nodes and social contact by
time-dependent links, similar in nature to the network
used in [44]. The link activity, i.e. the contact between
individuals, is resolved in temporal windows of 5 min.
This time-dependent contact network is the basis for
our modeling of the transmission of COVID-19.

We model the spread of COVID-19 by an agent-
based model (where the study participants serve as
the agents) with five states: susceptible to the disease,
exposed, pre-symptomatic (but infectious), infected
(possibly with symptoms) and recovered/removed. In
the absence of contact tracing (described below), the
P and I states are identical, in that an individual in
one of these states can infect others. Aside from these
mutually exclusive states, persons can also be flagged as
quarantined. In Fig. 1 an example trajectory is shown,
together with a closeup of the university campus. The
disease progression model is illustrated in Fig. 2.

The transmission routine works by assuming a con-
stant pairwise infection rate between individuals, when
they are in contact. When a susceptible person comes
into contact with a person in the I or P state, there is a
probability pinf of transmission of the disease in each 5-
min window. The basic model (without contact tracing)
thus has four parameters: the transmission probability
upon contact pinf, and three time-scales characterizing
the exposed, presymptomatic and infected states, τE,
τP and τI.
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Fig. 1 Simulating the spread of COVID-19 on the contact network. Here, a zoom view on the geographical positions of a
few individuals (based on GPS coordinates) during a typical work day and for a representative run of the epidemic model.
Regions of contact (defined by signal strength exceeding the − 85 dBm cutoff) are shown as diffuse clouds of pink. Snapshots
shown are at day 2, 23 and 44 of the outbreak

As shown in Fig. 2, we assume the incubation time
to be gamma-distributed with a mean of 3.6 days, of
which the last 1.2 days comprise the presymptomatic
infectious state. The infectious state, where symptoms
may be displayed, is set at 4 days. The last remaining
parameter of the disease model, the transmission prob-
ability in each window of time, is fitted to reproduce a
daily growth rate of 23% in the early epidemic, based
on estimates from [45,46]. This gives a basic reproduc-
tive number of R0 = 2.8 when simulated on the empir-
ical social network. Note that this is the pre-mitigation
value, which fits well with the reproductive number
obtained in a recent review [47].

By employing two different ways of shuffling the net-
work connections (edges), we study both the effects of
heterogeneity in activity levels (social contact time) and
in the network structure. The first method, edge swap-
ping, preserves the degree of connectivity of each person
(node), while destroying any network structure arising
from e.g. group formation and spatial preferences [36].
The second method, randomization, preserves only the
overall connectivity level in each window of time, but
homogenizes the number of contacts for each person.

The edge swapping procedure works as follows. Given
a contact network at an instant of time (representing, in
our case, a 5 min time window), we iterate the following
steps:

• Select two edges at random. Denote the pairs of con-
nected nodes A↔B and C↔D, respectively.

• Swap the chosen edges such that the connected pairs
are now A↔C and B↔D.

This is repeated until each edge in the system has been
swapped several times, on average. Since no node loses

or gains an edge by this procedure, the degree distri-
bution is unchanged. Thus, the heterogeneity in social
activity levels is preserved as well. However, since edge
swapping is performed independently during each time
step, the durations of contacts are not preserved. A 10
min contact is thus treated as two 5-min contacts and
each undergoes swapping independently. In the supple-
mental material, we describe a duration-preserving vari-
ation on the edge swapping algorithm.

The randomization procedure is simpler, and each
iteration proceeds as follows:

• Select an edge at random. Rewire the edge by
replacing its endpoints with two nodes, chosen at
random from the entire system.

As with the edge swapping procedure, this is repeated
until each edge of the network has been swapped several
times, on average. Since edges are only rewired, and
not created or destroyed, the overall connectivity of the
network is preserved.

Contact tracing

The contact tracing scheme consists of two parts: reg-
ular testing of symptomatic individuals (with a con-
stant rate of testing rtest) and the contact tracing algo-
rithm itself, which is activated once an individual tests
positive. Once a positive individual is found by regular
testing, their recent contacts are put in quarantine for
a specified time and tested once the quarantine period
has elapsed (before potential release). In other words,
the contact tracing scheme proceeds as follows:
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(a)

(c)

(b)

Fig. 2 a A small subset of a contact network for 1 week. Link thickness indicates the cumulative contact time, with links
with less than 2 h cumulative activity being omitted. Black lines represent the links recurring from the previous week,
whereas the red lines are new links. b Top: histogram of contact events over a single day (semi-logarithmic plot). The
coefficient of variation is cV = 1.03 and the mean is µ = 131. Bottom: histogram of contact events over a 7 week period,
divided by the number of days to obtain an average daily rate (semi-logarithmic plot). Here, cV = 0.95 and µ = 86. Both
plots show a marked heterogeneity, demonstrating that contact heterogeneity is approximately a quenched disorder on
the timescale of a few weeks. c Our agent-based model of COVID-19 spreading on a contact network. Individuals in the
susceptible state may be exposed by those in the presymptomatic as well as infected states. The exposed-presymptomatic
triplet of states together comprise the gamma-distributed incubation period

• For each individual, a list of contact events is kept.
When a person (the ‘index case’) is tested positive,
all contacts older than 5 days (the retention time)
are discarded, the index case is quarantined for 5
days.

• If a traced individual has been in contact with the
index case for longer than a certain cumulative con-
tact threshold, the traced individual is also quaran-
tined for 5 days.

• After the quarantine period has elapsed, the individ-
ual is tested. If negative, the individual is released.
Otherwise a new 5-day quarantine is issued.

The quarantine is assumed to be instantaneous and
a quarantined person is assumed to have no contact
with others. We assume that regular testing happens
at a constant rate when an individual is in the symp-
tomatic infected state. This rate of testing rtest is mea-
sured in units of 1/τI , the rate at which an individual
leaves the infected state. Thus a rate of testing of e.g.

1 corresponds to a 50% chance of being tested while
infected. Note that the simple algorithm used here is
non-recursive. This choice was made to simplify the
analysis, i.e. to facilitate the comparison of contact trac-
ing in networks with different types of heterogeneity.
For an exploration of the impact of recursive vs. stan-
dard contact tracing, we refer to Refs. [48,49].

The minimum quarantine time is set at 5 days in
our simulations, as suggested by [25], but we have per-
formed a sensitivity analysis (see Supplemental Mate-
rial) which shows that, while there is still some benefit,
the marginal effect of increasing the quarantine time
decreases above 5 days. We also performed a sensitiv-
ity analysis for the retention time, i.e. the maximum
age of contact events deemed relevant when perform-
ing contact tracing. It is clear that including contacts
which occurred long ago will lead to many unneces-
sary quarantines, but also that it may increase epidemic
control. Our sensitivity analysis shows that the total
time spent in quarantine depends only weakly on the
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Fig. 3 The effects of social heterogeneity on an unmiti-
gated epidemic. The red curves show the incidence, mea-
sured as the sum of exposed and infectious individuals
(whether symptomatic or not). The blue curves indicate
the attack rate, i.e. the cumulative fraction of the popu-
lation who have been exposed to the disease. In both cases,
the curves correspond to the true, edge swapped and ran-
domized networks, in order of increasing brightness. Each
trajectory represents an average of 50 simulations

retention time, but indicates that 5 days is a reasonable
trade-off. See the Supplemental Material for details.

3 Results

The distribution of the number of daily contact events
for each person in the study is found to closely follow
an exponential distribution (Fig. 2b), with a coefficient
of variation of 1.03 and a mean of 131. This reflects a
marked heterogeneity in activity levels. When we con-
sider the distribution over a 7-week window, a signifi-
cant degree of contact heterogeneity is retained, albeit
with some attenuation. Here the coefficient of variation
is 0.95, still close to the value for an exponential dis-
tribution, and the mean is 86. It is clear that extreme
social behaviour becomes less frequent over the longer
time-window, reflecting that individuals do not partic-
ipate in larger social events every single day. The mean
value of 86 corresponds to individuals being socially
inactive on 34% of workdays.

Social structure reduces the epidemic severity To assess
the impact of social heterogeneity on an unmiti-
gated epidemic, we compare the simulated evolution
of COVID-19 on three different contact networks (Fig.
3): The true (unshuffled) network, the edge swapped
and the fully randomized network where each person is
assigned an average contact frequency. Each trajectory

is averaged over 50 runs, each similar in nature to the
one shown in the inserts of Fig. 1.

We find that the final size of the epidemic (the total
number of exposed individuals) is very sensitive to het-
erogeneity in social activity, but not to the network
structure. Heterogeneity in social activity prevents the
disease from spreading to all parts of the network, with
the total fraction exposed reaching 76% in the true net-
work and 98% in the randomized network. The edge
swapped network, on the other hand, results in an
epidemic size similar to the true network, despite the
homogenization of social network structure caused by
this procedure.

The epidemic peak, on the other hand, is quite sensi-
tive to the social structure. The peak height increases
by 10 percentage points when social network struc-
ture is destroyed, whereas eliminating the differences
in social activity levels as well causes a further increase
of just 4 percentage points. Furthermore, the heteroge-
neous activity leads to a faster initial growth of the
epidemic, reaching the peak earlier. The mechanism
behind this is that highly socially active individuals are
more likely to contract as well as transmit the disease,
meaning that they dominate the early epidemic.[50]

Tracing depends on heterogeneity in a contact threshold-
sensitive fashion Contact tracing is most effective on
the true social network, and performs poorly on the
randomized network (Fig. 4), regardless of the contact
threshold. The relative efficiency on the edge swapped
network, however, depends quite strongly on the con-
tact threshold, i.e. on how much cumulative contact
time with a known infected person is allowed before
triggering a quarantine. With a fairly short contact
threshold of 15 min (Fig. 4a), contact tracing on the
edge swapped and true network are both highly effec-
tive, resulting in a final epidemic sizes of 22–23%. With
a higher contact threshold of 125 min (Fig. 4c, d), con-
tact tracing is much less effective in general, but now
both of the homogenized networks perform much worse
than the true network. This finding owes to the fact
that repeated contacts are less frequent in the homoge-
nized networks. It also explains the fact that the aver-
age quarantine time is much lower in the homogenized
networks at high thresholds (Fig. 4d), since very few
infected contacts are traced. A higher contact thresh-
old thus has the advantage of reducing the overall time
spent in quarantine (Fig. 4b, d) but results in a reduced
epidemic control.

For contact tracing to be effective at higher contact
thresholds, a substantial degree of temporal correlation
in contact dynamics is necessary. Both edge swapping
and randomization reduce the temporal correlation. To
quantify this, we find that the median fraction of long
contacts (of at least 60 min cumulative duration) which
are repeated from 1 week to the next is 30% in the real
network, while edge swapping and randomizing reduces
this number to zero. Evidently, repeated contacts are
necessary for tracing to be effective at higher thresh-
olds.
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Fig. 4 The effects of social heterogeneity on contact tracing at different thresholds. Comparison of exposed + presymp-
tomatic + infected (red) and recovered (blue) individuals in the three networks types. The testing rate is set at 0.5 times
the rate for leaving the symptomatic infectious stage, giving a 25% probability of being tested while infected

The edge swapping procedure reduces temporal cor-
relation in two ways, which may be studied sepa-
rately. Firstly, it destroys correlations in social struc-
ture (“who meets who”), i.e. the identities of contact
partners are randomized, reducing the occurrence of
repeated contacts as described above. Secondly, the
procedure destroys the duration distribution of con-
tact durations, breaking e.g. a 10 min contact into two
uncorrelated 5 min contacts. In the Supplemental Mate-
rial, we describe an alternative edge swapping algorithm
which preserves the durations of contacts, while still
swapping the individuals. This allows us to study the
importance of the contact duration distribution and the
existence of repeated contacts separately. At high con-
tact tracing thresholds (125 min) We find that even
duration-preserving edge swapping reduces the mitiga-
tive effect of contact tracing relative to the true net-
work. The reduction is not as strong as with the simple
edge swapping algorithm, leading us to conclude that
there are two effects at play: destroying the duration
distribution leads to poorer performance, but simply
randomizing the identities of contacts while preserv-

ing degree and duration distributions has a detrimental
effect in and of itself. Conversely, one may conclude
that repeated contacts (temporal correlations in the
identities of contact partners) as well as an inhomoge-
neous contact duration distribution are important fea-
tures which improve the effectiveness of contact tracing.
Our finding that contact tracing on the randomized net-
work performs poorer than the edge swapped version is
in good agreement with the findings of [51], which shows
theoretically that the presence of highly connected hubs
in a social network improves contact tracing.

Due to the limited temporal resolution of the Blue-
tooth proximity data, obtained only at 5 min intervals,
the fidelity at very short contact tracing thresholds of
e.g. 5 min will be lower. In the Supplemental Material
we explore the results obtainable at these lower con-
tact thresholds, and present a theoretical argument for
the observed patterns. We find that mitigation by test-
trace-isolate (TTI) is always more efficient on the true
network, in the sense of preventing more cases per day
of quarantine, but that the randomized network may
in fact lead to a lower final attack rate when contact
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Fig. 5 Contact tracing effectiveness. Disease parameters
are identical to those of Fig. 3. a Rate of testing vs final size
of epidemic and average number of days spent in quaran-
tine per person. The contact threshold is set at 15 min. The
rate of testing is measured in units of the rate for leaving
the infected state, meaning that a rate of testing of 1 cor-
responds to a 50% chance of being tested during the infec-
tious period. b Contact threshold vs final size of epidemic
and average number of days spent in quarantine per person.
The rate of testing is set at 0.5 times the rate for leaving
the symptomatic infectious stage, giving a 25% probability
of being tested while infected. For each value of the param-
eter, 50 simulations were run

thresholds tend to zero. The effect is due to the number
of quarantines triggered in the random network diverg-
ing in this limit.

The rate of testing and contact threshold The regu-
lar testing considered in our contact tracing algorithm
is determined by a rate of testing which reflects sev-
eral real-world factors not individually modeled here,
such as general test capacity, symptom development
and willingness to participate in testing. In Fig. 5a,
we explore the influence of the rate of testing on the
final size of the epidemic and the average time spent in
quarantine. As one would expect, the quarantine time
vanishes at very low rates of testing, where the epi-
demic size is maximal. Whereas the epidemic size is
a decreasing function of testing, the quarantine time
does not display a simple monotonic response to an
increase in testing. Rather, it attains a maximum at

10% probability of being tested, followed by a gradual
decline. This highlights the importance that changes in
the testing strategy should go hand-in-hand with con-
siderations of the nontrivial influence on the quaran-
tine time. As such, it is possible to achieve a lower total
quarantine time by increasing testing levels, simply due
to the improved epidemic control.

If the aim is to keep the final size of the epidemic
below for example 25%, our results show that a con-
tact threshold of less than 30min is necessary (Fig. 5b).
Note that the concurrent implementation of other mit-
igation strategies such as social distancing or limits on
gathering will increase this critical threshold.

4 Discussion

In order to assess and credibly model the effectiveness
of mitigation strategies, it is necessary to know which
idealizations can be safely made, and which complex-
ities must be retained in models. The present work
shows that realistic social structure is an indispensable
complexity when attempting to model contact tracing
strategies and predict their effectiveness.

Although the social proximity data used in this study
do not represent the social activity in a complex soci-
ety, it exhibits a relevant level of social heterogeneity,
which is stable over timescales long enough that it can
influence epidemic dynamics. In this sense, the data
can serve as a valuable model system in which to eval-
uate the impact of heterogeneity on disease propaga-
tion and mitigation of epidemics. We have found that
social activity levels are exponentially distributed in
this cohort, something which is consistent with obser-
vations of [7], who find a coefficient of variation of 0.8
for social contacts, for persons aged 20–30. The person-
specific social activity exhibited in our data remains
consistent over time, with both the 1-day and the 7-
week activity patterns having coefficients of variations
close to 1, representing a quenched disorder on the rel-
evant timescale.

Even in the absence of mitigation, the social het-
erogeneity exhibited by our cohort significantly affects
the epidemic trajectory. However, not all outcomes are
affected similarly. The epidemic peak height is found to
be sensitive to the social structure, while the final size
of the epidemic is primarily affected by heterogeneity
in social time. The isolated sensitivity of attack rates to
heterogeneous social activity, i.e. differences in contact
time, can be studied in a well-mixed compartmental
model, as was recently done [52], underscoring that the
effect is not only present in structured networks. The
influence of social structure, however, is a more complex
phenomenon and requires network models, either syn-
thetic or using observational social network data [1].
The effects of network structure in epidemic spread-
ing were previously studied by Barthélemy et al. using
synthetic social networks, which were however assumed
static [50]. They found the mechanism to be a hierar-
chical progression, with more well-connected individu-
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als being infected early on, and more sparsely connected
nodes being affected later in the epidemic, if at all. How-
ever, this mechanism depends on connectivity being a
quenched variable, i.e. one that sticks to each individ-
ual over time. We find that this condition is satisfied,
at least on a timescale of a few months.

The sizable effects of social structure and heteroge-
neous activity seen in this study has implications for
epidemiological modelling in general. Due to their lack
of social structure, traditional well-mixed S(E)IR mod-
els would overestimate the severity of the epidemic, or,
conversely, lead to an underestimation of transmission
risk when fitted to an observed epidemic trajectory. In
a previous modelling study [53], it was shown that het-
erogeneity in the susceptibility of individuals likewise
reduces the overall severity.

Once contact tracing is implemented, the effect of
social heterogeneity becomes more complex. We found
that social structure and heterogeneous activity levels
substantially increase the efficiency of contact tracing.
However, when the contact tracing threshold is low, het-
erogeneity in activity levels alone improves effectiveness
substantially, and network structure alone has less of
an effect. When the contact tracing threshold is high,
both social network structure and heterogeneous activ-
ity levels are necessary for efficient tracing. Further-
more, we found that the presence of heterogeneity in
contact duration improves the efficiency of contact trac-
ing in itself. Our findings also highlight that neither a
quenched nor an annealed view of contact networks are
sufficient for modelling the spread of a disease such as
COVID-19, since no clear separation of scales is present.
Important network dynamics takes place on time-scales
shorter than an infectious period, while some aspects
of network structure and social activity are stable on
timescales corresponding to several generations of the
disease. While many previous approaches have relied on
such a separation of time scales, sophisticated analytic
frameworks for epidemic spreading on time-varying net-
works have been proposed in recent years, allowing for
e.g. continuously varying networks [54,55].

The two central parameters of our contact tracing
algorithm, the rate of testing and the contact thresh-
old, are not on equal footing. The rate of testing is
influenced both by factors which are within our con-
trol, such as the overall availability of testing, and by
factors which are essentially intrinsic to SARS-CoV-2,
such as the rate at which symptoms develop. The con-
tact threshold, on the other hand, is a fully controllable
parameter and essentially constitutes a design decision
when e.g. developing contact tracing applications [35].
Our results indicate that the contact threshold must be
kept quite low (< 30 min) if relatively efficient control
(reducing epidemic final size by about two thirds) is to
be attained in an otherwise unmitigated epidemic. We
find that the strength of mitigation depends strongly on
the rate of testing. This is expected since the ability to
trace contacts depends on the chance of identifying at
least one case in the infection chain by regular testing.
What is perhaps less obvious is that the total quaran-
tine time has a nontrivial (inverted U-shaped) depen-

dence on the rate of testing. As the rate is increased
from 0, the quarantine time increases. However, once an
appreciable level of epidemic control has been achieved
through contact tracing, it begins to decline, with the
peak value being attained at a rate corresponding to a
10% probability of being tested while infected.

In this study, we have only considered forward con-
tact tracing, where the primary objective is to track
down individuals who might have been infected by
the index case. However, other schemes exist, and two
recent papers which came out after the initial publi-
cation of this manuscript have shown that backwards
contact tracing has an advantage in scenarios with
highly clustered cases [56,57], i.e. where the transmis-
sion dynamics is overdispersed such that a few individ-
uals cause a high number of secondary infections while
the majority cause few. Such clustering may arise by
several mechanisms of biological as well as social origin
[58]. Recently, several studies have found that COVID-
19 transmission is in fact highly heterogeneous [58–64].
While we have focused on the impact of social hetero-
geneity on mitigation by contact tracing, a recent study
showed that heterogeneity in biological infectiousness
has a considerable impact on the feasibility of COVID-
19 mitigation strategies which rely on contact network
reduction [65], such as lockdowns.

While our study has highlighted the importance of
network and activity heterogeneity for the efficiency of
contact tracing, some previous studies have highlighted
other network measures, such as degree, betweenness
and reach as useful in further targeting contact trac-
ing [30,66]. It is our opinion that there is still much
to be learned about the usage of network data for
the improvement of contact tracing – and in order to
identify the relevant mechanisms, modeling studies are
indispensable.

In conclusion, heterogeneity in social activity makes
mitigation by contact tracing much more effective. If
only more frequent contacts can be traced, social net-
work structure becomes important as well. It is thus
important that realistic social heterogeneity and struc-
ture be taken into account when modeling contact trac-
ing, as failure to do so may lead to underestimation of
its effectiveness.
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