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Abstract: A convincing case has been made that the scale of human activity has reached such
pervasiveness that humans are akin to a force of nature. How environmental science responds
to the many new challenges of the Anthropocene is at the forefront of the field. The aim of this
perspective is to describe Anthropocene as a concept and a time period and discuss its relevance to
the contemporary study of environmental science. Specifically, we consider areas in environmental
science which may need to be revisited to adjust to complexity of the new era: (a) recalibrate the
idea of environmental baselines as Anthropogenic baselines; (b) rethink multiple stressor approaches
to recognize a system under flux; (c) re-evaluate the relationship of environmental science with
other disciplines, particularly Earth Systems Science, but also social sciences and humanities. The
all-encompassing nature of the Anthropocene necessitates the need to revise and reorganize to meet
the challenge of complexity.

Keywords: environmental science; Earth System Science; multiple stressors; ecosystem health;
Anthropocene baselines

1. Introduction

“ . . . as we know, there are known knowns; there are things we know we know. We
also know there are known unknowns; that is to say we know there are some things we
do not know. But there are also unknown unknowns—the ones we don’t know we don’t
know.” Donald Rumsfeld, Former US Secretary of Defense, 2002.

It is perhaps an unwritten rule of scientific writing to not start an article with the much-
maligned quote of a politician, but these words, whilst confusing when first uttered, may
now capture the difficulties of studying environmental science in the Anthropocene. In this
new epoch, the key challenge is to understand, assess and mitigate human impacts upon
the environment when not all individual stressors can be known. Thus, to paraphrase Mr.
Rumsfeld: there are known stressors whose impacts we understand. We also know there
are known stressors, but whose impacts are not fully understood (i.e., known unknowns).
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However, there are also unknown stressors, either stressors that we are not yet fully aware
of or the combined impact of an untold number of stressors within the environment
that are difficult to comprehend and disentangle (unknown unknowns). The challenge
within the Anthropocene for environmental scientists is to capture and assess all this
complexity in which numerous ‘known and unknown’ stressors act simultaneously upon
the environment. To do so, it may be necessary to rethink and recalibrate some concepts
within the field and re-evaluate the relationship with other areas of research.

Since the turn of the century, a convincing case has been made that the scope of
human activity has reached such a pervasive and all-encompassing level that our impacts
on the Earth have left an indelible mark on the geological timescale. In their landmark
paper “Human Domination of Earth Ecosystems”, Vitousek and colleagues [1] provided
an overview of humanity’s effects on the environment at large. To support dramatic popu-
lation increases, human enterprises such as agriculture, industry, fishing and international
commerce, have radically altered the planet by modifying land use, biogeochemical cycles
and species composition. Consequently, there are no ecosystems that escape the pervasive
human presence [1]. To capture this new reality, the term ‘Anthropocene’ was introduced
to refer to the current time-period in which human impacts have become just as important
as natural processes [2,3]. This new era is characterized by rapid increase in both the
population and consumption of our species to the detriment of the other species that share
our planet. However, it is important to note that the relationship between human popu-
lation increases and environmental degradation is not straightforward, with a multitude
of socio-economic and geo-political variables that result in the unequal distribution of
impacts [4,5]. Nonetheless, with rates of species loss and decreased biodiversity alarmingly
high across both terrestrial and aquatic ecosystems, a sixth great extinction event is being
described [1,6].

The primary goal of this short paper is to describe the relevance of the Anthropocene to
the contemporary environmental science. In doing so, (1) we provide a brief history of the
Anthropocene, as a concept and period, and (2) we examine those areas in environmental
science which may need to be revisited in order to adjust to complexity. Specifically,
(a) given the pervasiveness of the human footprint there may be a need to recalibrate the
concept of environmental baselines; (b) whether (known and unknown) human impacts
are so complex and inter-linked that it is time to rethink multiple stressor approaches to
recognize a ‘system under flux’; and (c) whether we should re-evaluate the relationship
of environmental science with other disciplines and, in particular, Earth Systems Science
which views the Earth as a total system of which the environment makes up a portion. This
paper does not profess to offer any grand solutions to the topics described herein, but as
we progress into the Anthropocene, there is a need to revise and reorganize to meet the
challenge of complexity.

2. A Brief Guide to the Anthropocene

The term ‘Anthropocene’ (from the Greek word Anthropos ‘human being’ and -cene
from -kainos ‘new’) was introduced during a meeting of the Scientific Committee of the
IGBP (International Geosphere Biosphere Programme) in 2000 and immediately gained
popularity in referring to the current time-period in which humankind has established itself
as the driving force for planetary change [2,3]. However, similar concepts and expressions
predate the establishment of the ‘Anthropocene’ term, with Antonio Stoppani (in 1873)
referring to an “anthropozoic era” to describe humans as a rival to the greatest forces on
earth, and Teilhard de Chardin and Vernadsky (in the 1920s) using the term ‘noösphere’
as a new state of the biosphere in which the role of human thought shapes both its’ own
future and the environment [2,3].

Whilst the exact start date of this epoch remains open to debate regarding what
stratigraphic layer denotes the transition from the Holocene to the Anthropocene [7], the
beginning of industrialization is regarded as an important milestone in the human footprint
on this planet [3,7]. James Watt’s invention of the steam engine in 1784 marks the expanded
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use of fossil fuels, and consequently increasing atmospheric CO2 emissions, which has
been often used to track the progression of the Anthropocene [3,7]. Steffen et al. (2007) [7]
argues that the Anthropocene proceeded in three stages (Figure 1) with Pre- Anthropocene
events, including the aforementioned use of fossil fuels, leading into the first stage of the
Anthropocene, namely, ’The Industrial Era’. ’The Industrial Era’ stage started around 1800
and ended at the end of the Second World War in 1945. During this first stage, energy
sources were massively altered by the expansive use of oil, gas and coal in industry. In
the second stage, termed ‘The Great Acceleration’ (starting in 1945), the global human
population grew to over 6 billion with a corresponding increase in global economies, and
accompanied by changes in land use, deforestation and fossil fuel burning. This stage has
been characterized by expansion, discovery, technological advancement, and innovation,
but also widespread habitat loss and deterioration of Earth Systems [7,8]. Atmospheric
CO2 levels, an overarching marker of the Anthropocene that reflects the stages of the
Anthropocene, rose from <300 ppm at the start of the industrial area to >400 ppm by the
end of The Great Acceleration [9]. Further increases are expected as we pass into the
Anthropocene’s third stage.
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Figure 1. The stages of the Anthropocene [7]. The trajectory of stage 3 where humankind become
aware and mitigates anthropogenic impacts upon Earth systems (termed as the ‘Stewards of the
Earth System’ stage) is presently unclear [10]. Atmospheric CO2 levels that have increased through
the stages are presented (values cited from National Oceanic and Atmospheric Administration
(NOAA) [9].

In describing the stages of the Anthropocene, Steffen et al. (2007) [7] suggested that
by 2015, we as a species would become aware of our impacts and take decisive action to
reverse the trajectory of the Anthropocene. Stage 3 was thus termed ‘Stewards of the Earth
System’ and would be characterized by growing awareness, global information-flow, and
more stable and democratic governments placing environmental welfare, and social and
cultural concerns at the forefront of their policies. With both the Paris Climate Agreement
and United Nations Sustainable Development Goals agreed in 2015, the predicted onset
on the third Anthropocene stage appeared on course. However, these agreements have
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not yet resulted in the expected ‘tipping point’ towards stewardship and thus it is over the
next decade that will either see this vision carried through or missed [10]. In 1948, Fairfield
Osborn authored ‘Our Plundered Planet’ and wrote “It is man’s earth now. One wonders
what obligations may accompany the infinite possession” [11]. These words encapsulate
the notion of stewardship that is required in the coming period.

3. Conceptual Recalibrations for the Anthropocene

With widespread acceptance within the scientific community that we have entered
the Anthropocene [12], the question for many areas of science will be how to incorporate
the complexities of the new epoch within their research field. This is especially important
for environmental science, a subject born from human-driven impacts. In this section, we
focus on some of the most prescient challenges that the Anthropocene presents. Firstly,
with regard to environmental assessment as a key step in recognizing and mitigating
impact, what is the nature of baselines in a system under change? Secondly, is a multiple
stressor framework based on the selection of known stressors a realistic model for the
Anthropocene? Additionally, thirdly, what relationship should environmental science
have with other disciplines and, more controversially, has the multitude and interconnect-
edness of stressors, environments and systems on a global scale changed the field from
environmental science to one that is part of Earth System Science?

3.1. Recalibrating Environmental Baselines

Assessing the impacts and effects of numerous stressors is one of the biggest chal-
lenges facing contemporary environmental science since the proportional risk associated
with individual stressors versus their cumulative impacts and their interactions is largely
unknown, which limits the applicability and robustness of multiple-stressor ecological
risk assessments (ERA) [13–15]. Several authors have highlighted the issues related to
incorporating multiple stressors and their interactions into ERA [16–19] and the aim here
is not to provide a comprehensive treatise of this topic. For our purposes, it is sufficient
to highlight that the task is complicated by data and knowledge gaps regarding the inter-
actions between stressors. A less-considered concern and perhaps where a recalibration
needs to occur within the sphere of environmental assessment relates to the reference
points that an ERA aims for. More specifically, when protection goals for an ERA are
formulated for a given ecosystem, what is the baseline for that assessment? However, to
assess a declining state requires an understanding of the concept of ecosystem health. The
notion that ecosystems have an optimal healthy, natural state which is important to protect
and retain, underlies the concept of ecosystem health.

A healthy ecosystem is characterized as one that is capable of maintaining its vigor
(overall metabolism and energy flow) and organization (diversity of interactions between
ecosystem components) over time, in the presence of stress (i.e., ecosystem resistance) [20].
Conversely, ecosystem resilience, the ability to recover from disturbance, has two main
components: the length of time (RT) that a system needs to recover from stress, and the
magnitude of stress (Ms) from which the system can return to its former state [20]. These
factors are important because ecosystems can show little change under stress until they
reach a critical threshold, related to RT and Ms. After this point, they react in highly unpre-
dictable (i.e., non-linear) ways and this may lead to their collapse [21]. Thus, degradative
symptoms characterize many ecosystems that are experiencing the impacts of multiple
stressors (both known and unknown). For instance, aquatic ecosystem distress syndrome
can include some or most of the following symptoms: alteration in biotic community
structure, reduced species diversity, increased dominance by another species, increased
dominance by exotic species, shortened food-chain length, increased disease prevalence,
and reduced population stability [22].

With the idea of what constitutes a healthy ecosystem in mind, the idealized scenario
for an ERA is to return the ecosystem to an optimal state and, therefore, historical baselines
are often promoted for multiple stressor assessments. However, there is an argument to be
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made that historical baselines are increasingly irrelevant and inappropriate for conserving
and managing human-dominated ecosystems, since these systems have been impacted to
such a degree that they now constitute a novel ecosystem that has no natural analogue [23].
Furthermore, since the onset of the Industrial Era (Stage 1 of the Anthropocene) and
then the dramatic rise of human impacts (‘The Great Acceleration’ Stage 2 of the Anthro-
pocene) there are virtually no examples left of ecosystems that can be assumed to be in
a state representative of conditions in absence of human disturbance [23]. This suggests
a lack of suitable contemporary least-disturbed reference points that are representative
of ecosystem functioning without human interference. Nonetheless, contemporary base-
lines are still conducive to ‘shifting baseline syndrome’ and may lead to unambitious and
misguided restoration goals [24], while increasing the risk of the unexpected collapse of
ecosystems [25].

Thus, a new pragmatic type of baseline termed ‘Anthropocene baselines’ may be
considered in human-dominated ecosystems [23]. This approach acknowledges that re-
turning to historical states may be impossibly unrealistic since recovery cannot match
the trajectory of decline, for two reasons in particular: (1) socioeconomic limitations on
reducing anthropogenic pressure and (2) limitations by ecological constraints. In the for-
mer case, human habitation may be dependent on the modified ecosystem state so as to
make restoration practically but not principally impossible, whilst in the latter case, the
modifications may be so extreme that reversal is impossible, either because critical abiotic
or biotic remnants of the former state are gone (e.g., keystone species extinction), or because
catastrophic non-linear thresholds have otherwise caused a state shift [23]. Since setting
the historical baselines as a restoration goal is not feasible, there is a shift from restoring the
pre-disturbance ecosystem state to restoring the overall function which may be recoverable
by the novel state based on the anthropogenic baseline [23].

3.2. Rethinking Multiple Stressors as a System in Flux

Individual stressors vary in time and space, and in intensity and frequency. Similarly,
the responses that these stressors induce at organismal levels and at ecosystem levels
depend on the characteristics of the receptors and their environments. The responses are
not static, but vary temporally as a function of environmental change, natural variability,
life history and community composition [26,27]. In addition, the environmental conditions
under which these impacts and interactions occur are undergoing long-term systemic
changes, which are themselves stressors. In other words, there are a large number of
moving parts. Thus, the following considerations should be contemplated: (1) stressor
impacts are not intrinsic stressor characteristics, but arise from complex interactivity
between stressors, receptors and their environment; (2) responses to different stressors
are highly variable, especially with categorically different stressors; (3) stressors are not
universal, they are not necessarily stressors for all species; they may have different effects
on different species; (4) stressor impacts can reverberate throughout ecological networks to
produce cascading dynamic effects [17].

Thus, it has become increasingly evident that the cumulative impact of several stres-
sors differ from the impact of any single stressor owing to the complexity of environmental
systems [13]. This is the basis of the focus on multiple stressors and the frameworks
that are used to assess multiple stressor impacts [18,28,29]. The marine environment, as
a familiar case study, is arguably amongst the most impacted of ecosystems. This may
not be surprising since 60% of human populations reside within 100 km of coastlines [1].
However, for centuries, the marine system had been regarded as an inexhaustible source of
food and a convenient dumping ground too vast to be affected by human activity. Yet, it
has become increasingly clear that the ocean has limits and that sustainability thresholds
have been breached in numerous locales [30,31]. Marine environments have undergone
large physical and biogeochemical modifications in response to human induced stressors.
These stressors include, but are not limited to, climactic perturbations (i.e., ocean surface
warming, changes in ocean salinity, modifications of density structure and stratification, an
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increase in dissolved inorganic carbon concentrations, as well as decreasing seawater pH
in response to ocean uptake of carbon [30–32], pollution (including both chemical pollu-
tants [33] and plastic debris [34,35]) as well as other stressors such as habitat destruction,
decrease in marine primary producers, nutrient input and overfishing that reduce species
richness and biodiversity. Figure 2 provides a non-exhaustive overview of the distinct but
interconnected stressors that are present in the marine environment. The key point is that
no single stressor occurs in isolation, but rather within a highly changeable environmental
system [36].

Importantly, there is a divergence between global or systemic stressors (e.g., biogeo-
physical changes) and local stressors (e.g., pollution) in terms of duration and intensity.
Staying with the marine environment (Figure 2), stressors can be grouped in two main
categories: (1) a group that acts globally such as increased temperature, ocean deoxygena-
tion (the global trend of decreasing oxygen as a result of ocean warming and increasing
stratification) and ocean acidification; (2) a group that acts at a local to regional level but
occurs globally, such as overfishing, pollution (chemical and plastic debris) and hypoxia.
According to Hamilton (2015) [37], the aggregation of local environments to make up the
‘global environment’ is still insufficient in the face of the Anthropocene, because it pertains
to shifts in the functioning of the Earth System. However, given complexity within just a
single, albeit vast, environmental compartment, it may become increasingly necessary to
rethink the multiple stressor approach and pivot towards considering the environment as
a system in a perpetual state of flux [38].

In this constantly changing system, it is the impacts and effects of a combined stressor
load that need to be understood, but importantly it is the combination of known and
unknown stressors in which complexity lies. The challenge in this epoch (perhaps as it has
always been) is to find a way to assess the culmination and complexities of all human-driven
impacts on the environment and biota. Kramm et al. [39] recently suggested “complexity
is the new normal”, but, perhaps more accurately, complexity needs to be recognized
as normal [38]. This realization may suggest a rethinking from multiple stressors to a
more holistic all-encompassing approach capable of incorporating unknown factors is now
needed.

3.3. Re-Evaluating the Inter- and Intra-Disciplinarity of Environmental Science

A common misconception, according to Hamilton (2015) [37] is to conflate the changes
in the environment, however complex, to the Anthropocene. Similarly, it belies the reality of
the subject to label any single stressor as indicative of the Anthropocene. The fundamental
point concerning the Anthropocene is it encompasses all human impacts upon the totality
of Earth Systems rather than simply ‘the environment’ [37]. The distinction is not obviously
apparent, but the Earth is a total system of which the environment makes up a portion. It
is upon the Earth System, and not its divisions, that humans act upon as a global force [37].
The concept of planetary boundaries illustrates the grand scale upon which Anthropocene-
level considerations must be made. In total, nine planetary boundaries have been identified
that have the capability to drive the Earth System into a new state: (1) Stratospheric ozone
depletion; (2) Loss of biosphere integrity (biodiversity loss and extinctions); (3) Chemical
pollution and the release of novel entities; (4) Climate Change; (5) Ocean acidification;
(6) Freshwater consumption and the global hydrological cycle; (7) Land system change;
(8) Atmospheric aerosol loading; (9) Nitrogen and phosphorus flows to the biosphere and
oceans [7,40]. The threshold levels for some of these boundaries have been surpassed,
suggesting that the planet is now outside of the safe operating space [40].
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Each of these boundaries relates to an area of environmental science, i.e., chemical
pollution relates to ecotoxicology and freshwater consumption relates to hydrology. Thus,
it is obvious to emphasize and embrace the need for inter-disciplinary collaborations.
The emergence of Earth System Science as an overarching transdisciplinary subject area
consolidates the holistic view that the Earth is a complex adaptive system [41]. Although
Earth System Science has its origins in the writings of Stoppani’s “Anthropozoic era”, and
Teilhard de Chardin and Vernadsky’s “noösphere”, its contemporary challenge now is to
provide a unifying space for all disciplines related to biophysical processes and human
dynamics to converge to improve the understanding of the Earth System [41].

The ‘umbrella’ of Earth System Science should include social sciences and humanities
disciplines, which have taken an interest in human–environment interactions [42]. Ad-
ditionally, if the Anthropocene is truly a human-made phenomenon, then studying the
trajectory of humanity should go together with studying the impacts of humankind. The
broad studies of anthropology, culture, linguistics, and economics describe how our species
claimed its place as a dominant force on the planet. Specifically cultural ecology, ecological
anthropology and historical ecology tell us from where we emerged and ecological eco-
nomics, environmental sociology, ecolinguistics may suggest where our species intends to
go next. Furthermore, the emergent disciplines of environmental philosophy and ethics,
and ecocriticism correspond to the third stage of the Anthropocene and the newfound
awareness that will potentially lead to stewardship. The packaging of these subject areas
into the more inclusive subject of ‘environmental humanities’ is underway and from here a
plausible step to ‘planetary humanities’ [42] may mirror the trajectory of environmental
sciences into Earth System Science. A re-evaluation of how these overarching fields rely
upon each other to respond to the challenges of the Anthropocene is timely.

4. Conclusions

The common thread amongst the considerations made in this paper is the need to
further recognize complexity as a necessary factor within the research field. Complexity
theory suggests that the greater interconnectedness within a system the more that system is
prone to chaotic dynamics and surprising outcomes [43,44]. As illustrated in this paper (and
many others), the Anthropocene presents the Earth System as an extraordinarily complex
changeable system and, thus, traditionally held ideas of multiple stressors interacting upon
the environment and of historical baselines as ideal reference points of ecosystem health
need to be revised. The complexity of the Earth as an adaptive system made up of numerous
inter-connected components means that all ecosystems exist within a perturbed state. The
analysis of complexity also needs to extend to the complexity of human behavior from
which a profound awareness of anthropogenic damage may lead us to become ‘Stewards
of the Earth System’.

This perspective has started from the rather uncritical vantage point that the Anthro-
pocene has dawned and with it a new level of complexity needs to be incorporated into
our discipline. However, there is a contrarian argument to be made, that even if the An-
thropocene has stared—so what? Environmental science, science in general since the time
of Aristotle, has always been burdened with the knowledge that the natural world contains
variables that are known to us and variables that are not. Is this not the natural limitation
of scientific knowledge? Does the Anthropocene really bring something new or require
special consideration in terms of understanding complexity? Moreover, is it presumptuous
of us to think that we can understand complexity, if no reasonable methods exist to capture
it? Regarding the specific cases described in this paper, it could be argued that all baselines
are, to some degree, arbitrary and furthermore it is not possible to study the impact of
multiple stressors or a truly fluctuating system without an agreed upon baseline—how
else would change be recognized? Thus, there is a danger that the Anthropocene provides
the opportunity to reinvent concepts and terms without changing practices—a semantic
change, but not a real one.
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The aim of this perspective is to start a discussion on whether and how the An-
thropocene now pervades our thinking. It is possible that at end of this discussion the
‘so what?’ arguments prevail, but inter- and intra-disciplinary conversations need to be
held. At the very least, the interdependence between subject areas, such as global change,
environmental science, human health, and the broad humanities, need recognition and
discussion [45]. The idea that environmental science sits within the broader scope of Earth
System Science is intriguing and certainly requires greater debate within the field. How-
ever, a positive outcome of accepting such a notion would be to facilitate the inter- and
intra-disciplinary collaborations that are required to study the Anthropocene in its fullest
sense. The paring of Earth System Science with a corresponding humanities field such
as ‘Planetary Humanities’ [42] may well reconcile the study of human civilization with
the impact of human civilization. The greatest challenge, arguably that our species has
ever faced, is of our own making. By seeing our field as part of a broader research scheme
and rethinking, recalibrating and re-evaluating viewpoints that define the meaning and
scope of the environment (Earth System), the capacity to respond to the challenges of the
Anthropocene may well be enhanced.
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