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Thioredoxin Fold as Homodimerization Module in the
Putative Chaperone ERp29: NMR Structures of the
Domains and Experimental Model of the 51 kDa Dimer

Introduction

Protein maturation in the luminal compartment of the
endoplasmic reticulum (ER) is accomplished by the tight
network of molecular chaperones and folding enzymes
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Karolinska Institute control of the proteins exiting from the ER [1, 2]. The
most abundant folding enzyme of the ER is protein disul-171 77 Stockholm

Sweden fide isomerase (PDI), which catalyzes the formation and
rearrangement of disulfide bonds but may also act as3 Biomedical Research and Study Center

of Latvian University a general chaperone [3]. The family of eukaryotic PDIs
includes ERp72, ERp57, P5, PDIp, and PDIR [4]. A recentLV-1067 Riga

Latvia and unusual addition to this family is a redox-inactive
and ubiquitously expressed rat endoplasmic reticulum
protein, ERp29 [5–7].

After cleavage of the N-terminal signal peptide, ma-
ture ERp29 contains 228 residues (Figure 1). It forms a
51 kDa homodimer and also higher oligomers both inSummary
vivo and in vitro [8]. Amino acid sequence comparisons
predict the presence of a thioredoxin-like N-terminalBackground: ERp29 is a ubiquitously expressed rat en-

doplasmic reticulum (ER) protein conserved in mamma- domain in ERp29 and a helical C-terminal domain of
unknown fold. The sequences of both domains alignlian species. Fold predictions suggest the presence of

a thioredoxin-like domain homologous to the a domain with sequences found in the group of P5-like PDIs (also
termed PDI-D� [4]) from plants (Medicago sativa [alfalfa],of human protein disulfide isomerase (PDI) and a helical

domain similar to the C-terminal domain of P5-like PDIs. Arabidopsis thaliana, Nicotiana tabacum, and others) and
amoebae (Dictyostelium discoideum) (Figure 1). In con-As ERp29 lacks the double-cysteine motif essential for

PDI redox activity, it is suggested to play a role in protein trast to these proteins, ERp29 does not contain the active-
site double-cysteine motif which is a hallmark of redox-maturation and/or secretion related to the chaperone

function of PDI. ERp29 self-associates into 51 kDa di- active PDIs. ERp29 is conserved among mammalians, in-
cluding humans [9, 10]. In addition, the windbeutel genemers and also higher oligomers.
product from Drosophila is highly similar to ERp29
(�30% sequence identity) and lacks the double-cyste-
ine motif at the canonical location, while a double-cyste-Results: 3D structures of the N- and C-terminal do-

mains determined by NMR spectroscopy confirmed the ine motif of unknown function appears near the amino
terminus (Figure 1) [11]. The Windbeutel protein hasthioredoxin fold for the N-terminal domain and yielded

a novel all-helical fold for the C-terminal domain. Studies been shown to act as a dedicated chaperone in facilitat-
ing the function and specific Golgi targeting of Pipe,of the full-length protein revealed a short, flexible linker

between the two domains, homodimerization by the a putative oligosaccharide-modifying enzyme essential
for embryonic development [12].N-terminal domain, and the presence of interaction sites

for the formation of higher molecular weight oligomers. While the function of ERp29 cannot be predicted from
its amino acid sequence, growing evidence suggests itsA gadolinium-based relaxation agent is shown to pres-

ent a sensitive tool for the identification of macromolec- involvement in the protein maturation and/or secretion
processes in the ER, in analogy to the Drosophila homo-ular interfaces by NMR.
log Windbeutel. It is induced in certain cell types under
stress conditions characterized by the accumulation of
unfolded proteins in the ER and elevated levels of molec-Conclusions: ERp29 is the first eukaryotic PDI-related

protein for which the structures of all domains have been ular chaperones [7]. In rat enamel cells and other secre-
tory cells, ERp29 levels may reach those of the majordetermined. Furthermore, an experimental model of the

full-length protein and its association states was estab- chaperones and folding enzymes of the ER [10]. The
human ortholog of ERp29, ERp28 (Figure 1), can belished. It is the first example of a protein where the

thioredoxin fold was found to act as a specific homodi- coimmunoprecipitated with overexpressed hepatitis B
small surface antigen [9]. Similarly, ERp29 has beenmerization module, without covalent linkages or sup-

porting interactions by further domains. A homodimer- found to associate with the misfolded � isoform of immu-
noglobulin light chains (S.M., unpublished data) and withization module similar as in ERp29 may also be present

in homodimeric human PDI. the transport-incompetent form of immunoglobulin
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erone; homodimer; NMR spectroscopy4 Correspondence: gottfried.otting@mbb.ki.se
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Figure 1. Amino Acid Sequence of ERp29 and Alignment with Selected Proteins

Bars at the top indicate the positions of regular secondary structure elements in ERp29. The residue numbering of ERp29 is shown at the
top. The linker residues between the N- and C-terminal domains are underlined. Alignments for both domains are shown for the ERp29
homologs, human ERp28 (GenBank XM007009), Drosophila Windbeutel (AF025408), and the P5-like PDIs from alfalfa (Aa-PDI; P38661) and
Dictyostelium discoideum (Dd-PDI; AAB86685). The latter two proteins have two thioredoxin-like domains, both of which were included in the
alignment. Dark shading indicates identical residues; lighter shading indicates conservative changes. (a) N-terminal domain of ERp29. Additional
alignments are with the a, b, b�, and a� domains of human PDI. (b) C-terminal domain of ERp29. Filled and open boxes at the bottom identify
buried residues for which side chain solvent accessibilities of less than 10% and 20%, respectively, were calculated from the NMR conformers,
when compared to the solvent accessibility of the corresponding side chain in a conformation with maximum solvent exposure.

heavy chains in the multipartite complex containing all seems to be involved in thyroglobulin processing, as its
mRNA expression is enhanced 3-fold in rat thyrocytesmajor ER chaperones (L. Hendershot, personal commu-

nication). Furthermore, ERp29-BiP complexes were ob- upon induction by thyroid-stimulating hormone [13].
These data demonstrate the capability of ERp29 to bindserved in FAO rat hepatoma cells [7]. Finally, ERp29
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Results and Discussion

Protein Expression
Full-length ERp29 (residues 33–260) was expressed as
a 27 kDa construct with the N-terminal His tag sequence
MRGSHHHHHHGS. Two additional constructs were de-
signed, comprising the individual domains with N-ter-
minal His-tag. The N-terminal domain (Leu33–Met154)
was expressed with the same tag as the full-length pro-
tein. The construct of the C-terminal domain (Met154–
Leu260) was preceded by the tag sequence MRGS
HHHHHHGIR. Whereas the C-terminal domain was
readily expressed in E. coli, the N-terminal domain ex-
pressed poorly and was prone to irreversible precipita-
tion. Therefore, NMR samples of the N-terminal domain
were prepared by the expression of full-length ERp29
followed by chemical cleavage at Cys157 by the cyste-
ine-specific reagent NTCB and purification as described
in Experimental Procedures. The presence of the His-
tag did not interfere much with the NMR analysis, as no
clear cross peaks could be observed for any of the
histidine protons.

Structure of the N-Terminal Domain of ERp29
The structure of the N-terminal domain of ERp29 was
determined in aqueous solution at pH 4.9, 31�C, using
protein concentrations of about 0.5 mM. Although the
NMR signals were broader than expected for a mono-

Figure 2. Ribbon Diagram of an ERp29 Monomer as Determined by
meric protein (Figure 3), no intermolecular nuclear Over-NMR Spectroscopy
hauser effects (NOEs) could be identified without ambi-The structures of the N-terminal domain (bottom) and the C-terminal
guity, as the analysis of weak NOEs was hampered bydomain (top) were determined individually. In both domains, the
spectral overlap encountered in the two-dimensionalcolors change from red (N-terminal ends) to blue (C-terminal ends).

The linker segment, interrupted between residues Met154 and (2D) NOESY spectra, the presence of impurities, and
Pro155 in the drawing, is continuous in the full-length protein. insufficient sensitivity in the 3D NOESY-HSQC spectra.

Thus, all distance restraints were taken as arising from
a monomer, and the structure at the dimer interface may
be distorted as a result.to a range of different proteins and suggest a role similar

to human PDI, which can assist protein folding in a The NMR structure of the N-terminal domain of ERp29
(Figures 2 and 4) resembles the a domain of humandisulfide-independent manner [14, 15].

Only limited structural information is available on PDI, with helices for residues 43–52, 71–82, 100–108,
138–148, and strands for residues 55–60, 86–90, andPDIs. Crystal structures have been determined of the

PDI from Pyrococcus furiosus [16] and of E. coli DsbA 117–121. The three-stranded � sheet is extended on
either side by hydrogen bonds between residues 39 and[17] and DsbC [18]. The latter two proteins do not pos-

sess all of PDI’s activities but are involved in disulfide 88 and between 120 and 130, but too few residues of
these outer peptide segments align to define a properbond processing in a similar way as eukaryotic PDIs.

Besides human PDI, only DsbC displays additional five-stranded sheet as in thioredoxin or the PDI a do-
main. The structure is well defined for residues 35–152.chaperone activity [19]. The structures of the a and b

domains of human PDI have been solved individually Broad line shapes and no long-range NOEs were ob-
served for the residues outside this region, suggestingby NMR spectroscopy [20–22], and progress toward

structure determinations of the a� and b� domains has increased mobility.
All peptide bonds of the NMR structure are in transbeen reported [23, 24].

To provide a basis for further functional studies, we orientation. In particular, Pro116 was modeled with a
trans peptide bond, although only one of the two se-determined the three-dimensional structure of ERp29

(Figure 2). Initial attempts to crystallize ERp29 failed. quential d�� NOEs seemed to be intense, and the ab-
sence of a sequential d�� NOE could not be verified,Consequently, we have determined the three-dimen-

sional structures of the N- and C-terminal domains sepa- due to overlap with t1 noise from the residual water
resonance. This residue is conserved between ERp29rately by NMR spectroscopy. In addition, the full-length

protein was studied to identify the dimerization domain and PDIs (Figure 1) and forms a cis peptide bond in
most thioredoxin-like domains. trans peptide bondsand interface, interdomain mobility, and sites involved

in the formation of higher oligomers. ERp29 presents have, however, also been observed. Examples are gluta-
thione peroxidase [25] and the spliceosomal protein U5one of the largest systems that has been studied by

NMR spectroscopy at this level of detail. [26], where the corresponding residues are nonproline
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Figure 3. 15N-HSQC Spectrum of the N-Terminal Domain of ERp29, Showing the Resonance Assignments of the Amide Protons

Side chain amides and the indol NH of Trp144 are identified by Greek characters. The sequence numbers used are those of Figure 1, while
residues from the N-terminal tag are numbered 1–12.

residues, and the third domain of calsequestrin, which long-range NOE was observed already for Leu158, indi-
cating a relatively rigid conformation, despite the varia-has a proline at this position [27]. Like in ERp29, the

thioredoxin-like domains of all these proteins are devoid tion observed between the different NMR conformers
(Figure 6b).of the redox-active Cys-X-X-Cys motif. When thiore-

doxin and glutaredoxin bind peptides via a disulfide In many proteins with all-helical domains, the helices
tend to arrange in a right-handed superhelix which canbridge to the Cys-X-X-Cys sequence, additional con-

tacts take place at a site located between this motif and persist over many helical turns as in the structure of
lytic transglycosylase (Protein Data Bank [PDB] codethe cis proline corresponding to Pro116 in ERp29 [28].

There is no evidence that the corresponding site in 1QSA) [30]. The structure of the C-terminal domain of
ERp29 is unusual in that the helices arrange in a super-ERp29 is involved in peptide binding or dimerization.
secondary structure that is partly right handed and partly
left handed. The structure presents a stable fold, asStructure of the C-Terminal Domain of ERp29

The structure determination of the C-terminal domain slowly exchanging amide protons could be observed
for all helices after dissolving the lyophilized proteinof ERp29 was performed under the same conditions as

that of the N-terminal domain, except that the protein in D2O.
The sequence homology between the C-terminal do-concentration was about 2 mM. The widths of the NMR

signals were characteristic of a monomeric protein (Fig- mains of different PDI-like proteins also suggests struc-
tural conservation, which is strongly supported by theure 5). The higher solubility and narrower line widths

greatly facilitated the structure determination compared present NMR structure. Virtually all of the buried resi-
dues of the C-terminal domain of ERp29 are hydropho-to the N-terminal domain, resulting in more restraints

per residue and better Ramachandran statistics (Table bic in the homologous domains (Figure 1b), and also
the salt bridges observed in ERp29 between Lys208 and1). The structure (Figures 2 and 6) contains five helices

and presents a novel fold, as indicated by the failure to Asp211, Glu220 and Arg223, Lys226 and Glu229, and
Lys236 and Glu239 seem to be conserved. Glu240 in thefind any protein structure matching all helices in a search

with DALI [29]. The helices comprise residues 159–170, Windbeutel protein (corresponding to the buried residue
Thr248 in ERp29) may participate in a salt bridge with174–189, 196–212, 215–228, and 236–250. Very narrow

resonances were observed for residues 254–260, indi- Arg218 (Arg223 in ERp29).
cating increased mobility on the subnanosecond time-
scale for these C-terminal residues that comprise the Homodimerization of ERp29

Cross-linking experiments showed that ERp29 formsER-retrieval signal peptide sequence KEEL (Figure 1). No
significant line narrowing was observed for the N-ter- homodimers both in vivo and in vitro [8]. The line widths

observed for the NMR signals of the individual domainsminal residues after the His-tag. Furthermore, the first
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Figure 4. Different Stereorepresentations of
Residues 33–154 of the NMR Solution Struc-
ture of the N-Terminal Domain of ERp29

All three representations show the structure
in the same orientation as in Figure 2. (a)
Backbone trace of the conformer with the
lowest energy after restrained energy minimi-
zation. (b) Ensemble of 20 conformers, using
the backbone atoms of residues 35–152 for
superposition. (c) Heavy-atom display of the
conformer of (a). The following color code
was used: black, protein backbone; yellow,
hydrophobic side chains (Ala, Ile, Leu, Met,
Phe, Pro, Trp, Val); gray, polar side chains
(Asn, Gln, His, Ser, Thr, Tyr); blue, positively
charged side chains (Arg, His, Lys); red, nega-
tively charged side chains (Asp, Glu).

indicated that homodimerization is exclusively mediated sisting of two N-terminal domains (2 � 15.5 kDa),
whereas the 42 kDa fragment recognized by both anti-by the N-terminal domain. This view was confirmed by

a more detailed cross-linking experiment, where the bodies probably contains two cross-linked N-terminal
domains and one C-terminal domain, as expected forcross-linked product was chemically cleaved at Cys157

and the fragments analyzed by immunoblotting using incomplete cleavage of a cross-linked dimer. No evi-
dence for two cross-linked C-terminal domains (23 kDa)domain-specific antibodies (Figure 7a). Uncleaved mo-

nomeric and dimeric species and an additional �42 kDa could be found. The bands of the monomeric cleaved
domains were clearly resolved on the gels, confirmingband are visible on both blots (lanes 3 and 3�), while

the band of �31 kDa size is absent from the sample the specificity of the antibodies used.
Several NMR experiments were performed to checkdeveloped by the C-terminal domain-specific antibodies

(lane 3�). The latter band corresponds to the dimer con- for the involvement of the C-terminal domain in homodi-
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Figure 5. 15N-HSQC Spectrum of the C-Ter-
minal Domain of ERp29, Showing the Reso-
nance Assignments of the Amide Protons

Side chain amides and the indol NH of Trp198
are identified by Greek characters. The se-
quence numbers used are those of Figure 1,
while residues from the N-terminal tag are
numbered 1–13.

merization. 15N-HSQC spectra recorded of full-length the full-length protein, which showed on average higher
values for the N- than for the C-terminal domain (Figure15N/13C/2H-labeled ERp29 at pH 4.9 showed weaker reso-

nances for the N-terminal than for the C-terminal do- 8a). Furthermore, the backbone chemical shifts hardly
changed between the individual domains and the full-main, indicating that the C-terminal domain is consider-

ably more mobile in the dimer than the N-terminal length protein, except for residues of the linker region.
Finally, upon addition of unlabeled C-terminal domaindomain. These results were confirmed by the T1(15N)

relaxation times measured for the amide nitrogens of to 15N-labeled N-terminal domain or addition of unla-

Table 1. Structural Statistics for the NMR Structures of the N- and C-Terminal Domains of ERp29

Value

Parameter N Domain C Domain

Assigned NOE cross peaks 1845 1956
Nonredundant NOE upper distance limits 1279 1492
Stereospecific assignments 65 121
Scalar coupling constantsa 185 340
Dihedral angle restraints 358 328
AMBER-energy (kcal/mol) 	5338 
 166 	5759 
 89
Residual NOE restraint violations (Å)

Sum 18.1 
 0.7 20.7 
 0.3
Maximum 0.11 
 0.10 0.11 
 0.00

Residual dihedral-angle restraint violations (�)
Sum 128.0 
 11.0 69.9 
 5.4
Maximum 2.9 
 1.2 2.7 
 0.2

Rmsdb,c (Å)
Backbone atoms N,C�, C� 0.83 
 0.22 0.61 
 0.22
All heavy atoms 1.34 
 0.17 0.98 
 0.20

Ramachandran plot appearancec,d

Most favored regions (%) 66.3 86.0
Additionally allowed regions (%) 26.0 12.9
Generously allowed regions (%) 7.7 0.0
Disallowed regions (%) 0.0 1.1

a N-terminal domain: 54 3J(HN,H�), 131 3J(H�,H�); C-terminal domain: 97 3J(HN,H�), 101 3J(H�,H�), 142 3J(N,H�).
b To the mean structure.
c N-terminal domain, residues 35–152; C-terminal domain, residues 160–250.
d From PROCHECK-NMR [72].
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Figure 6. Different Stereorepresentations of
Residues 155–256 of the NMR Solution Struc-
ture of the C-Terminal Domain of ERp29

All three representations show the structure
in the same orientation as in Figure 2. (a)
Backbone trace of the conformer with the
lowest energy after restrained energy minimi-
zation. (b) Ensemble of 20 conformers, using
the backbone atoms of residues 160–250 for
superposition. (c) Heavy-atom display of the
conformer of (a). The same color code was
used as in Figure 4.

beled N-terminal domain to 15N-labeled C-terminal do- servation of chemical shifts between the isolated N-ter-
minal domain and the full-length protein. At the samemain, only minimal chemical shift changes were ob-

served that did not indicate a unique binding site. Taken time, the tight dimer prevented the identification of the
dimerization interface by monitoring chemical shifttogether, these data indicate a flexible linker between

the two domains and no involvement of the C-terminal changes as a function of protein concentrations.
An initial indication of the location of the dimer inter-domain in the dimer interface.

The affinity of the homodimer was determined by ESI face came from the observation of slowly exchanging
amide protons in the N-terminal domain, where themass spectrometry to be about 1 �M at pH 4.5, based

on equal peak intensities of the monomer and the dimer backbone amides of Asp71, Phe118, Arg122, and
Asp123 did not yield exchange cross peaks with theat a total protein concentration of 3.5 �M. This affinity

corresponds to less than 5% of monomeric protein at water resonance in a 3D NOESY-15N-HSQC experiment,
although they are solvent accessible in the NMR struc-NMR concentrations (0.4–0.7 mM), explaining the con-
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ture (Figure 8c). Except for Asp71, all these residues
map onto the same face of the protein which is devoid
of charged residues (Figures 4, 9a, and 9b). As expected
for a protein-protein interface, no rapidly exchanging
amide protons were identified on this surface. However,
the data are of limited value, as only a total of 14 cross
peaks with the water could be identified for backbone
amide protons. A more significant observation may be
that the only 1H NMR resonance that could be observed
for a tyrosine hydroxyl proton was that of Tyr132, indi-
cating slow exchange with the water, although this pro-
ton is solvent exposed in the monomeric structure (Fig-
ure 9a).

Independent confirmation of the dimer interface came
from a novel experiment where we used the paramag-
netic relaxation agent Gd(DTPA-BMA) to probe amide-
proton solvent accessibility in full-length ERp29. Com-
pared to TEMPOL, which is most frequently used in
studies of solvent exposure, Gd(DTPA-BMA) is effective
at about 20-fold lower concentration [31]. Because of
the lower concentrations needed, chances for binding
of the relaxation agent to the protein backbone are re-
duced. Consequently, the chemical shifts are more likely
to be preserved in the presence of the relaxation agent.
In the case of ERp29, the HN chemical shift changed by
less than 0.04 ppm in the presence of 8 mM Gd(DTPA-
BMA), which was important for tracking the resonances
in crowded spectral regions. At this concentration of
relaxation agent, some of the cross peaks disappeared.
For example, the NεH cross peak from the side chain of
Trp198 disappeared, while that of Trp144 was still visible
(Figures 7b and 7c). As both side chain protons are
solvent exposed in the structures of the monomeric do-
mains, the protection of Trp144 suggests its participa-
tion in the dimerization interface.

To assist with the interpretation of the experimentally
observed effects of Gd(DTPA-BMA) on the backbone
amides (Figure 8b), the water accessibility of the amide
protons and a relaxation enhancement parameter R
were calculated, using the NMR structures of the N- and
C-terminal domains to predict the relaxation enhance-
ment. Figure 8c plots the water accessibility of the amide
protons, and Figure 8d presents the predicted relaxation
rate enhancement of the amide protons for a uniformFigure 7. Experiments for the Identification of the Dimerization Do-
concentration of Gd(DTPA-BMA) in the solvent. Com-main and Dimer Interface of ERp29
parison of Figures 8b and 8c shows that water-exposed(a) Chemical cross-linking with DSP followed by specific chemical
amide protons are generally relaxed more efficiently bycleavage between the N- and C-terminal domains using NTCB. The

fragments were analyzed by reducing SDS-PAGE and immunoblot- the relaxation agent than amide protons in regular sec-
ting with domain-specific antibodies. Samples in the lanes 1–3 were ondary structure elements. For example, all helices of
developed with antibodies against the N-terminal domain, while the the C-terminal domain are clearly separated by loop
sample in lane 3� was developed with an antibody against the C-ter- regions that are sensitive to the relaxation agent. The
minal domain. Arrows labeled “N,” “m,” “d,” and “C” identify the

same holds, in principle, for the N-terminal domain. Al-bands of monomeric N-terminal domain, monomeric ERp29, dimeric
though the amide protons in the loop between helix 2ERp29, and monomeric C-terminal domain, respectively. A star iden-

tifies the position of an �42 kDa dimer consisting of the N-terminal and strand 2 are not very water accessible, an increased
domain cross-linked to a full-length ERp29 molecule, while the dia- relaxation rate is expected based on Figure 8d. The
mond indicates the band of the �31 kDa dimeric N-terminal domain. polypeptide segment between helices 3 and 4 is the
(b) 15N-TROSY spectrum recorded of a 0.3 mM solution of uniformly only region, where Gd(DTPA-BMA) does not completely15N/13C/2H-labeled full-length ERp29 in 90% H2O/10% D2O (pH 4.9),

suppress any of the amide-proton cross peaks. The31�C, using a 1H NMR frequency of 600 MHz, t1max � 26 ms, t2max �
amide protons between helix 3 and strand 3 are not very115 ms, and a total experimental time of 7 hr. Selected cross peaks
solvent exposed, but Figure 8d would predict a similarare assigned. (c) Same as (b) but with 8 mM Gd(DTPA-BMA) present.

Total experimental time 42 hr. relaxivity as for the loop between helix 2 and strand 2,
based on a monomeric model. These data thus indicate
protection of residues 109–137 in the dimer.

While the correlation between experimental and pre-
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Figure 8. Overview of NMR Data Demonstrating Increased Mobility of the C-Terminal Domain versus the N-Terminal Domain and Identifying
the Homodimerization Interface of ERp29

(a) T1 relaxation times of the backbone amide protons. The increased scatter of the data for the N-terminal domain results from the broader
line widths observed for these residues. (b) Ratios of cross-peak intensities, measured as peak heights in the 15N-TROSY spectra of Figure
7, showing the signal attenuation by Gd(DTPA-BMA). The location of regular secondary structure elements is shown underneath. The dashed
line highlights a region of the N-domain, where amide cross peaks were less affected by Gd(DTPA-BMA) than expected for a monomer. (c)
Solvent-accessible surface area of the amide protons, calculated with a circular probe of 1.4 Å radius and averaged over all NMR conformers.
The vertical scale is in arbitrary units. (d) Relaxation enhancement of amide protons by Gd(DTPA-BMA) predicted by a grid search algorithm,
where the Gd complex was represented by a sphere of 3.5 Å radius with equal residence probability on each grid point in the solution. The
relaxation contribution of each accessible grid point was weighed by d	6, where d is the distance between the grid point and the amide
proton, and the effects from all grid points were averaged. The figure shows the average of the predictions calculated for all NMR conformers
in arbitrary units.

dicted relaxation enhancement provides good qualita- the discrepancy between predicted and observed relax-
ation enhancement for the amides of Ser189 and Lys231tive criteria for the identification of interaction sites, the

correlation is not quantitative. Notably, the experimental may reflect proximity of the N-terminal domain in the
full-length protein.intensity ratios (Figure 8b) vary more strongly between

exposed and protected amides than predicted for a sim- The proton exchange data and amide protons for
which little relaxation enhancement by Gd(DTPA-BMA)ply distance-dependent effect (Figure 8d). Therefore,

water accessibility of the amide protons (Figure 8c) is was observed despite water accessibility predicted from
monomeric structures (Figure 9a) identify the same pro-a helpful additional parameter for the interpretation of

relaxation enhancement data, as the signals from water- tein surface as the dimerization interface. Unfortunately,
the dimer structure could not be refined by residualexposed amide protons seem to be reliably attenuated

by the relaxation agent. An exception is Gly92 HN, which dipolar couplings, as ERp29 was precipitated by lamel-
lar phases [32] and associated tightly with Pf1 phagesis water accessible (Figure 8c) but not easily approached

by Gd(DTPA-BMA) (Figure 8d). Another exception is the [33]. Similarly, saturation transfer experiments in mix-
tures of unlabeled and 15N/2H-labeled ERp29 [34] werelinker residues between the N- and C-terminal domains,

where discrepancies arise from the fact that the solvent unsuccessful due to insufficient sensitivity.
The overall charge distribution of the N-terminal do-exposure was calculated for the individual domains

rather than for a model of full-length ERp29. Similarly, main and shape complementarity suggests a dimer
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Figure 9. Dimer and Multimer Formation of
ERp29

(a) Ribbon drawing of the N-terminal domain
of ERp29. Red spheres indicate the locations
of NHs that are protected from access to
Gd(DTPA-BMA), although significant solvent
accessibility would be predicted from the
NMR structure (Figure 8). In addition, the side
chains of Tyr132 and Trp144 are shown. The
view is centered on the putative dimer inter-
face. (b) Surface display of the N-terminal do-
main in the same orientation as in (a). Red
and blue colors indicate regions of negative
and positive electrostatic potential, respec-
tively. (c) Model of the dimer between two
N-terminal domains, using a representation
as in (b), scaled down in size. The molecule on
the left is in the same orientation as in (b),
except for a rotation by 90� around a vertical
axis. The resulting view is along the two-fold
symmetry axis of the complex. Arrows iden-
tify the approximate locations of the amide
groups of residues 67, 68, 97, and 98, for
which the cross peaks were broadened in the
presence of ERp29 spin labeled at Cys157
in the linker between the N- and C-terminal
domains. Crosses mark the locations corre-
sponding to peptide and glutathione binding
sites in thioredoxin and glutaredoxin, which,
in these proteins, are located between the
Cys-X-X-Cys motif and the cis-proline corre-
sponding to Pro116 in ERp29 [28].

structure as shown in Figure 9c. Additional support for label at residue 157 would be positioned too far from
the N- and C-terminal domains of the other molecule inplacement of the C-terminal domains at opposite ends

comes from results using spin-labeled ERp29 (see the dimer to exert any significant relaxation effect.
below).

Structure-Function Comparison between ERp29
and PDIMultimerization of ERp29

Dynamic light scattering (data not shown) as well as In Figure 1a, the amino acid sequences of the N-terminal
domain of ERp29 and a and b domains of human PDIcross-linking experiments (Figure 7a) [8] indicated multi-

merization of a fraction of ERp29 into high-molecular were aligned using the corresponding secondary struc-
ture elements observed in the respective three-dimen-weight complexes. For further characterization of the

self-association of ERp29, 15N/13C/2H-labeled ERp29 sional structures. This alignment results in about 21%
sequence identity between the N-terminal domain ofwas mixed with an excess of unlabeled ERp29 that had

been spin-labeled at Cys157 by the stable nitroxyl radi- ERp29 and the a domain of PDI. This similarity extends
to their 3D structures; a combinatorial extension searchcal 4-maleimido-TEMPO. While the amide cross-peak

intensities varied less than 1.5-fold between the 15N- of the PDB [35] yielded the a domain of human PDI
as the protein that is structurally most similar to theHSQC spectra with and without the spin-labeled ERp29,

the cross peaks of residues 67, 68, 97, and 98 were N-terminal domain of ERp29, with a rmsd of 2.8 Å for
105 aligned residues.attenuated more than 2.5-fold in the presence of spin-

labeled ERp29. Figure 9c shows that these residues The C-terminal domain of ERp29 revealed a novel five-
helix fold that is apparently conserved also in the groupare located near the ends of a groove that does not

participate in the dimer interface, suggesting that this of P5-like PDIs and the Windbeutel protein from Dro-
sophila. For the P5-like PDIs, which lack the C-terminalgroove is involved in multimerization. Furthermore, resi-

dues 67 and 68 are located more than 20 Å apart from ER-retrieval signal KDEL, the importance of the C-termi-
nal domain for retention in the ER was demonstratedresidues 97 and 98, indicating the presence of more

than one binding mode, as expected for nonspecific by deletion mutations disrupting its structural integrity
[36]. The C-terminal domain of ERp29 could play a simi-self-association. The absence of any other significant

relaxation enhancement by spin-labeled ERp29 further lar role, although its C-terminal tetrapeptide KEEL may be
sufficient for effective retention of the protein in the ER.supports the dimer model of Figure 9c, where a spin
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The amino acid sequence homology of the N-terminal Unfortunately, the sequence alignment of Figure 1 is
too uncertain for the a� and b� domains to model theirdomain of ERp29 is even greater to the thioredoxin-like

domains of the P5-like PDIs than to the a domain of structures and homo- or heterodimers with any reliabil-
ity. If human or P5-like PDIs formed a homodimer likehuman PDI (23%–25% identity; Figure 1). While the func-

tions of ERp29 and P5-like PDIs very likely overlap, only in the dimer model of ERp29, the Cys-X-X-Cys motif
would be near the interface yet accessible to substrateslimited biochemical data are available for these PDIs.

The most studied protein disulfide isomerase is hu- (Figure 9c).
man PDI. It is a multifunctional enzyme that catalyzes
the formation of correct disulfide bonds in oxidation/

Homodimerization and Chaperone Functionreduction equilibria [3]. In addition, PDI has been found
ERp29 is the first example of a protein where a thiore-as a subunit of larger protein complexes in prolyl-4-
doxin-like domain was found to act as a homodimeriza-hydroxylase [37] and triglyceride transfer protein [38],
tion module without supporting interactions by covalentwhere its role seems to be purely structural, similar to
bonds or additional contacts by other domains. Thebacterial thioredoxin in the T7 DNA polymerase complex
dimerization interface identified in ERp29 has so far not[39]. Finally, human PDI has been shown to possess a
been observed in the thioredoxin superfamily. For exam-general chaperone activity that is independent of its
ple, human thioredoxin requires an intermolecular disul-redox activity [14, 15]. Like all PDIs, the redox-active
fide bridge for dimer formation [45, 46], and the intermo-domains of human PDI contain a Cys-X-X-Cys motif
lecular contacts observed in the single crystal ofnear the amino terminus of helix 2. This motif is absent
calsequestrin involve more than two thioredoxin-like do-in ERp29. Correspondingly, ERp29 did not display any
mains [27]. The intramolecular contacts observed be-thiol/disulfide oxido-reductase activity in an assay for
tween the two covalently linked thioredoxin-like do-the oxidative refolding of reduced RNase (S.M., unpub-
mains of Pyrococcus furiosus PDI are also different fromlished data). It was also inactive in a CDNB (1-chloro-2,4-
the interface identified for ERp29 [16]. GST [47] anddinitrobenzene) assay, which probes for glutathione-S-
DsbC [18] also form dimers but show no extensive con-transferase (GST) activity (S.M., unpublished data). To
tacts between the thioredoxin-like domains. All thesedate, neither ERp29 nor its human homolog ERp28 have
examples demonstrate that the thioredoxin fold pre-been found as integral structural components of stable
sents a module highly suitable for protein-protein inter-multiprotein complexes. Therefore, the chaperone role
actions while avoiding noncovalent homodimerization.of PDI remains as the only plausible function that ERp29

Homodimerization and multimer formation has beenmay share with PDI.
observed for many chaperones (BiP [48], GRP94 [49],This assumption is supported by the chaperone role
HSP70 [50], small heat shock proteins [51], DsbC [17]).reported for the ERp29 homolog Windbeutel from Dro-
The role of aggregation for chaperone function is stillsophila [12]. While the expression of Windbeutel is spa-
uncertain, although oligomerization obviously increasestially and temporally restricted, the mammalian protein
the surface area available for the binding of extendedERp29 is expressed more widely and is capable of inter-
polypeptide chains and may generate new binding cleftsacting with a broader range of proteins [7, 9], suggesting
at the dimer interface. In the case of bacterial HSP70,that broad substrate specificity is an essential compo-
DnaK, an all-helical C-terminal domain is connected tonent of the putative chaperone function of ERp29.
the substrate binding domain via a flexible segment thatLittle is known about the functional mechanism of
allows coverage of the peptide binding site by the helicalthe chaperone activity of human PDI or the polypeptide
domain [52]. The linker between the two domains ofbinding sites involved. The protein comprises two re-
ERp29 is different in that it is flexible but too short fordox-active (a and a�) and two redox-inactive (b and b�)
any intramolecular contacts between the two domainsthioredoxin-like domains in the sequence a-b-b�-a� [21].
that are not in the immediate vicinity of the linker (Fig-Under physiological conditions, human PDI forms ho-
ure 2).modimers [40]. When expressed individually, all do-

In the search for a potential peptide binding site, wemains seem to be monomers, except for the b� domain,
noticed that the C-terminal domain of ERp29 partiallywhich aggregates in aqueous solutions [23]. The major
exposes a number of hydrophobic residues to the sol-peptide binding site seems to be exclusively located
vent (Leu158–Ala160, Val191, Ile228) that form a surfacein the b� domain, although presence of all domains is
area of uncharged residues (presenting toward therequired for full activity [41, 42]. In particular, mutations
reader in Figure 6c). This feature, however, is not con-in the C-terminal part of the a� domain have been shown
served between related C-terminal domains (Figure 1b),to affect peptide binding, suggesting an intramolecular
and there is no evidence that it supports ligand bindinginteraction between the a� and b� domains [43, 44].
in ERp29. In particular, we observed no chemical shiftSeveral of the characteristic features reported for the
changes after addition of model peptides (mastoparanfunctionally important b� domain of PDI seem to be
and somatostatin) to a sample of the C-terminal domainshared by the thioredoxin-like domain of ERp29: neither
(data not shown). A much more likely ligand bindingdomain contains a Cys-X-X-Cys motif, while both do-
site is presented by the multimerization sites in themains harbor a site for nonspecific peptide binding,
N-terminal domain, which were detected by the TEMPO-which, in the case of the N-terminal domain of ERp29,
labeling experiment. Binding to these sites was nonspe-causes oligomerization by interaction with the linker re-
cific and involved residues from the flexible linker seg-gion between the N- and C-terminal domains. Both do-
ment, suggesting that other unfolded peptide chainsmains are especially prone to self-aggregation in the

absence of the other domains of the wild-type protein. might associate to the same sites. Interestingly, some
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Experimental Procedureschaperones have been found to self-associate via their
peptide binding sites and to dissociate upon binding to

Gene Expression and Protein Purificationunfolded substrates [53, 54]. A competition between
His-tagged ERp29 was expressed in E. coli as described earlier [7].

homoassociation between dimers of ERp29 and hetero- Subcloning of the coding region of ERp29 cDNA (excluding the
association between ERp29 dimers and unfolded pep- leader sequence) into the pQE30 expression vector (Qiagen) re-

sulted in the N-terminal addition of a dodeca-peptide including sixtide chains would bear strong similarities to the associa-
histidines. Recombinant ERp29 was expressed in the E. coli straintion behavior of other chaperones.
JM109 and purified under nondenaturing conditions on a Ni-NTA-While chaperone function requires the capability of
agarose affinity column according to the manufacturer’s recommen-

binding a range of different polypeptides with little selec- dations (Qiagen), followed by extensive dialysis against 10 mM po-
tivity, the protein binding capacity must not result in tassium phosphate buffer at pH 7.4.
irreversible self-aggregation. In the case of ERp29, the For expression of the His-tagged C-terminal domain of ERp29,

the corresponding gene segment was excised as a SmHI-HindIIIisolated N-terminal domain is much more prone to ag-
fragment from the recombinant pQE30 vector and inserted into thegregation and irreversible precipitation than the full-
pQE32 expression vector. Uniform isotope labeling was achievedlength protein. Possibly, solubilization of the N-terminal
by expression in JM109 in 15N/13C double-labeled Celtone medium

domain is one of the most important functions of the (Martek) and purification as described above. 15N/13C-labeled N-ter-
all-helical, highly soluble C-terminal domain. In addition, minal domain was obtained by expression of full-length, His-tagged

ERp29 in double-labeled Celtone medium, followed by purificationthe flexibility of the hinge between the N- and C-terminal
of the protein and selective chemical cleavage N-terminal of Cys157.domains may have functional importance for polypep-
For chemical cleavage at this unique Cys residue, the protein wastide binding and release.
incubated for 2 hr at 37�C with a 100-fold molar excess of 2-nitro-
5-thiocyanobenzoic acid (NTCB) and subsequently incubated over-
night under mild alkaline conditions (pH 9.5 and 37�C) [55]. The

Biological Implications His-tagged N-terminal domain was separated from the untagged
C-terminal fragment using the Ni-NTA-agarose affinity column. Re-
maining uncleaved full-length protein was removed by adsorptionERp29 is the first eukaryotic PDI-related protein for
chromatography on a hydroxylapatite column, which retained thewhich the structures of all domains have been determined.
full-length protein but not the N-terminal domain. 15N/13C/2H-labeled

The data underline the structural similarity between ERp29 ERp29 was expressed in the E. coli strain M15 using M9 minimal
and the class of P5-like PDIs. The N-terminal domain of medium containing 15NH4Cl, 13C-glucose, and D2O.
ERp29 is also similar to the thioredoxin-like a domain of
human PDI. The structural homologies to PDIs suggest Chemical Cross-Linking and Protein Cleavage

A 10 �M solution of ERp29 was incubated in 50 mM HEPES (pHoverlapping functions between these and ERp29. ERp29
7.4), with 200 �g/ml of the homobifunctional cleavable cross-linkerlacks, however, the redox-active Cys-X-X-Cys motif of
DSP (Pierce) at room temperature for 30 min. The reaction was

conventional PDIs, and there is no evidence that ERp29, stopped by 50 mM Tris-HCl (pH 7.4), and the samples were incu-
in analogy to human PDI, acts as a structural subunit bated on ice for 10 min. Subsequently, the protein was cleaved by
of larger multiprotein complexes. Consequently, only NTCB as described above. The samples were analyzed by reducing

SDS-PAGE and immunoblotting. Rabbit polyclonal anti-ERp29the redox-independent chaperone function of human
raised against purified N-domain and anti-C-terminal peptide anti-PDI may be shared by ERp29, which is further corrobo-
bodies [7] were used for detection of the N- and C-terminal domains,rated by the substrate-specific chaperone properties
respectively.

reported for the Drosophila homolog of ERp29, Wind-
beutel. The function of ERp29 is probably broader, as Spin Labeling
suggested by its ubiquitous expression in parallel to A 1 mM solution of ERp29 was incubated with 1 mM DTT for 1 hr at

37�C. DTT was removed thereafter by centrifugation of the reactionmolecular chaperones, high concentration in many se-
mixture through a 4 ml G-25 Sepharose spin column (Pharmacia)cretory cells, upregulation under conditions when mis-
for 5 min at 200 � g. Subsequently, 4-maleimido-TEMPO (Sigma)folded protein chains accumulate in the ER, and associ-
in DMSO was added at a final concentration of 100 mM and incu-

ation with a number of transport-incompetent secretory bated for 2 hr at ambient temperature [56]. Excess spin label was
proteins. removed as above and the sample further dialyzed overnight against

10 mM potassium phosphate buffer (pH 7.4).The present study revealed a noncovalent homodimer
for the N-terminal domain with additional binding sites

NMR Spectroscopyinvolved in multimerization of the full-length protein.
All NMR spectra of the N and C-terminal domains of ERp29 and ofThese multimerization sites associate with the flexible the full-length protein were recorded at 31�C and pH 4.9, using either

linker region between the two domains of ERp29 in a 95% H2O/5% D2O or 100% D2O as a solvent. No NMR spectra of the
nonspecific manner and might thus serve as a binding N-terminal domain were recorded in 100% D2O solution, because of

the strong tendency of the protein to precipitate during ultrafiltrationlocus also for unfolded polypeptides. Self-association
or lyophilization. In contrast, a sample of the C-terminal domain invia their peptide binding sites and dissociation upon
D2O was readily prepared by lyophilization and redissolving in 100%binding to unfolded substrates has been reported pre-
D2O. Protein concentrations were about 0.5 and 2 mM for the N- and

viously for other chaperones [53, 54]. C-terminal domain, respectively, and 0.3 mM for full-length ERp29.
The thioredoxin fold has not previously been observed All heteronuclear NMR spectra were recorded on Bruker DRX

500 and DMX 600 NMR spectrometers. The homonuclear NOESYas a homodimerization module without covalent link-
spectrum of unlabeled N-terminal domain used for collection of NOEages or additional contacts by other domains. Specific
restraints (40 ms mixing time) was accumulated at 800 MHz on ahomodimerization and nonspecific multimerization may
Varian Unity NMR spectrometer for 1 week. Backbone-resonance

also account for the self-association reported for the b� assignments were achieved by three-dimensional HNCO, HNCA,
domain of human PDI, which has been shown to be the and HN(CO)CA spectra [57], which were recorded with TROSY

schemes [58, 59] in the case of full-length ERp29. Further 1H reso-most important domain for peptide binding.
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