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Abstract 

Energy-coupling sites in the electron transport chain of the obligately fermentative aerotolerant bacterium Zymomonas 

mobilis were examined. The H+/O stoichiometry of the electron transport chain in intact bacteria oxidizing ethanol was 

close to 3.3. Cytoplasmic membrane vesicles coupled NADH oxidation to ATP synthesis. With ascorbate/phenazine 

methosulfate they showed oxygen uptake which was sensitive to antimycin A, but no significant ATP synthesis could be 
detected. Cells with a defective coupling site I, prepared by cultivation on a sulfate-deficient medium, showed a decreased 

rotenone sensitivity of respiration, and they lacked almost all the respiration-driven proton translocation and ATP synthesis. 
We conclude that, despite the reported composition of the electron transport chain, only energy coupling site I was 

functional in Z. mobilis. 

Kewordx Zymomonas mobilis: Oxidative phosphorylation; Transmembrane pH gradient: Energy-coupling site I; H+/O stoichiometry 

1. Introduction 

The obligately fermentative aerotolerant bac- 

terium Zymomonas mobilis has an electron transport 
chain (ETC) consisting of NAD(P)H dehydrogenase, 

a membrane-bound glucose dehydrogenase, coen- 
zyme QlO, and b, c, and d type cytochromes [l-3]. 
So far, the energy-generating function of ETC in this 

bacterium has been a matter of discussion. Oxidative 
phosphorylation apparently does not operate in grow- 
ing cultures of Z. mobilis as judged from the low 

aerobic growth yields on glucose (below 10 g dry 
weight mol- ’ > [ 1,4,5]. Recently, however, oxidative 
phosphorylation activity was demonstrated in starved 

cells and cytoplasmic membrane vesicles of Z. mo- 

bilis 161. Ethanol and acetaldehyde served as non-fer- 

mentable substrates for ATP synthesis in whole cell 

experiments, while NADH oxidation was shown to 

drive ADP phosphorylation in cytoplasmic mem- 
brane preparations. 

The aim of the present paper was to examine the 
energy-coupling sites of Z. mobilis ETC. For this, (i) 

the proton-translocating stoicbiometry of the respira- 

tory chain (H+/O) was determined, (ii) cytoplasmic 
membrane vesicles were tested for oxidative phos- 

phorylation with ascorbate/phenazine methosulfate 
(PMS), (iii) bacteria were cultivated under sulfate 
deficiency to eliminate coupling site I, and aerobic 
energy generation in such cells was examined. 
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2. Materials and methods 

2. I. Strain and culture conditions 

Zymomonas mobilis ATCC 29 19 1 was maintained 

and cultivated as described previously [6], with some 

modifications. The preculture for sulfate-deficient 

cells was grown on the standard medium with 5% 

glucose in which magnesium and ammonium sul- 

fates were substituted by the respective chlorides, 
and only 2.5 g l- ’ (instead of 5 g 1-l) of Difco yeast 

extract was added. The sulfate-deficient culture was 

inoculated with 5% of the preculture and was grown 

on the same medium. The control cells were culti- 
vated on the standard medium with sulfates and 2.5 g 

I ’ Difco yeast extract. Cells were harvested in late 

exponential phase (16- 17 h after inoculation) by 

centrifugation, washed 161, concentrated up to 20 mg 
dry weight ml _ ’ , and starved on a shaker at 150 rpm 

for 3-3.5 h. Potassium phosphate buffer, 50 mM 

(pH 6.5) with 5 mM MgC12 . 6H,O (for sulfate-defi- 

cient cells) or with 5 mM MgSO, (for control cells) 
was used both for washing and for starvation. Culti- 

vation and starvation of the cells and all experiments 
were done at 30°C. 

2.2. Preparation of cell-free extracts and cytoplas- 

mic membranes 

Cell-free extracts (protein concentration 1.5-2.0 

mg ml-‘) were prepared by sonication [61. Cytoplas- 

mic membrane vesicles were obtained from sphaero- 

plasts prepared by batch cultivation in the presence 
of glycine and sorbitol [7], harvested by centrifuga- 

tion at 3000 X g for 15 min, resuspended in a S-10 
times smaller volume of the phosphate buffer with 

MgSO, (see above; buffer was supplemented with 
15% sorbitol, 0.1 mg ml - ’ dithiothreitol, and 0.1 mg 
ml _~ ’ DNAse), and disrupted by sonication [6]. After 
removal of unbroken sphaeroplasts by centrifugation 
at 3000 X g for 15 min, the supernatant was filtered 
through a Synpor membrane filter (0.22 pm pore 
diameter Chemapol, Prague) in a 200-ml Amicon 
filtration unit under 1 atm pressure at 0°C. The 
membrane vesicles sedimented on the filter were 
washed with a small volume of the same buffer and, 

by using a brush, carefully resuspended to a final 
protein concentration of 0.2-0.5 mg ml- ‘. The 

membrane preparations thus obtained were stored at 
-20°C for several days without any loss of activity. 

2.3. Measurement of respiratory-dricen proton 

translocation 

The assay for H+/O was essentially as described 

for Gluconobacter oxydans [8]. Z. mobilis suspen- 
sion in 150 mM KC1 (6 g dry weight 1~ ’ ) was 

equilibrated with 100 mM KSCN at pH 6.5 in a 
MBR minibioreactor, model MCS-1 1, working vol- 

ume 1.5 1. The medium p0, was brought to zero by 

gassing the suspension with N,. Deoxygenated 
ethanol was added at a final concentration of 0.5%. 

Proton expulsion was induced by the addition of 20 

ml of air-equilibrated 150 mM KC1 solution. pH was 
monitored with an Ingold pH electrode, model 465, 

and calibrated by addition of 1 ml deoxygenated 0.1 

N HCI. 

2.4. Assay of oxidatiue phosphorylation 

Oxidative phosphorylation was measured by ATP 

synthesis from ADP and inorganic phosphate, and by 
oxygen utilization in the following reaction mixture 

which was a modification of that described by 

Hempfling and Hertzberg [9]: 400 ~1 phosphate 

buffer with 15% sorbitol, 20 ~1 ADP (34 mg ml-‘), 
5 ~1 methanol, 100 ~1 membrane vesicle prepara- 

tion, and either 20 ~1 of NADH (0.5 mM final 
concentration), or 20 ~1 of ascorbate (20 mM final 

concentration) + 20 ~1 of PMS (5 PM final concen- 
tration). Oxygen consumption was monitored by a 

Radiometer Clark type oxygen electrode. Oxygen 
consumption rates with PMS/ascorbate were cor- 
rected for the ETC-independent PMS autoxidation. 
Samples for ATP determination were fixed in paral- 
lel with the oxygen consumption measurements by a 
transfer of aliquots of the reaction mixture into five 
times smaller volumes of ice-cold 60% perchloric 
acid. A correction for the traces of adenylate kinase 
activity present in the membrane preparations was 
made by sampling for ATP a reaction mixture with- 
out added electron donors. In the whole-cell experi- 
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ments the samples for ATP determination were fixed 
in an equal volume of ice-cold 10% trichloroacetic 

acid. 

2.5. Measurement of 9-aminoacridine ,jluorescence 

(9.AA) 

The fluorescence of 9-AA was measured with 

excitation at 382 nm and emission at 454 nm [IO] 

using a home-built fluorimeter. A 200-~.~1 aliquot of 
the cell suspension starved at pH 6.5 was transferred 

into the fluorimeter cuvette containing 2.3 ml of 

phosphate buffer with 30 PM 9-AA at pH 7.0, thus 
inducing an inverted transmembrane pH gradient. 

The biomass concentration in the fluorimeter cuvette 

was 1.5-l .6 mg dry weight ml- ‘. A reversible 

quenching of 9-AA fluorescence was observed after 

Z. mobilis cell addition. The degree of quenching 

could be varied by changing the magnitude of the 

induced pH gradient, as demonstrated for Es- 

cherichia coli [ 111. 

2.4. Analytical assays 

Samples for ATP determination fixed in the mem- 

brane vesicle experiments were neutralized, cen- 
trifuged, and assayed by the hexokinase/glucose-6- 

phosphate dehydrogenase method [12]. The assay 
was carried out under nitrogen to avoid the PMS- 

mediated oxidation of NADPH. For whole cell ex- 

periments the ATP samples were assayed by the 
luciferin-luciferase method [ 131 using a LKB Wallac 

model 125 1 luminometer. Protein concentration was 

determined according to Bradford [14]. Cell concen- 
tration was determined as optical density at 550 nm 

and the dry cell mass was calculated using a calibra- 
tion curve. Standard errors of the mean are given for 

the experimental data with number of assays in 
parentheses. 

2.7. Chemicals 

Firefly lantern extracts, NADP and 9-AA were 
purchased from Sigma, Deisenhofen, Germany. Hex- 
okinase/glucose-6-phosphate dehydrogenase, 
NADH and ADP were from Boehringer Mannheim 

GmbH, Germany. All the other chemicals were of 
analytical grade from commercial sources. 

3. Results 

3.1. The stoichiometr?, of proton translocation 

The H+/O stoichiometry of the electron transport 

chain in anaerobically grown, washed Z. mobilis 

cells in the presence of 0.5% ethanol was 3.35 + 0.48 

(4 repeats). 

3.2. Oxidatice phosphotylation in membrane vesicles 

with NADH and ascorbate/ PMS 

Oxygen consumption in the cytoplasmic mem- 

brane vesicles of Z. mobilis with ascorbate/PMS as 

electron donor was sensitive to antimycin A; oxygen 

consumption was inhibited by more than 80% by 

100 nmol (mg protein)- ’ , implying that cytochrome 
b (and not cytochrome c, as in mitochondria [ 151) is 

the main electron acceptor for ascorbate in the ETC 

of Z. mobilis. Therefore, we used ascorbate/PMS to 

examine the ATP synthesis downstream the cy- 

tochrome 6, in the putative energy-coupling sites II 

and III. 
Respiration rate and ATP synthesis were deter- 

mined in membrane vesicles prepared from Z. mo- 

bilis grown anaerobically on the complete medium 

both with NADH and with ascorbate/PMS as the 

electron donors (Table 1). In the presence of 5 PM 

PMS and 20 mM ascorbate, the oxygen consumption 
rate, corrected for the ETC-independent PMS autoxi- 

dation, was about 2.5 times lower than with 0.5 mM 

NADH. A similar proportion between NADH oxi- 

dase and N, N, N’, N’-tetramethyl-p-phenylenedia- 

mine/ascorbate oxidase activities in Z. mobilis was 
observed previously [3]. The rate of ATP synthesis 

and, hence, the calculated P/O ratios varied for 

different membrane vesicle preparations. The P/O 
ratio with NADH for several membrane preparations 

Table I 

Oxygen consumption rate and P/O ratio in 2. mobilis cytoplas- 

mic membrane vesicles with NADH and ascorbate/PMS 

Electron Oxygen consumption P/O 
donor (nmol min- ’ 

tmg protein)- ’ ) 

NADH 201.5 + 25. I (6) 0.13OkO.056 (3) 
Ascorbate/PMS 88.0+ 19.7 (5) 0.012+0.024 (3) 
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ranged between 0.1 and 0.2, close to the values 
reported earlier [6]. The P/O ratio obtained with 

ascorbate/PMS was close to zero (Table 1). 

3.3. Growth and respiration of sulfate-deficient Z. 

mobilis 

Z. mobilis cells grown on a medium where yeast 

extract (2.5 g 1-l > was the sole source of sulfur 

differed markedly from the control grown on com- 

plete medium. The sulfate-deficient cells showed a 

higher respiration rate with ethanol (Table 2), while 

their rotenone sensitivity was lower than that of 

control cells. At the same time, the sensitivity to 

antimycin A was not affected. No significant differ- 

ences in the growth yield or growth rate between the 

control and sulfate-deficient cells were noticed. These 

observations are in accordance with earlier reports 

[ 161 that sulfate limitation in bacteria causes a selec- 
tive loss of rotenone sensitivity. This, together with a 

disappearance of electron paramagnetic resonance 

signals from the NADH-dehydrogenase-linked FeS 
cluster N2 [ 16- 181, is indicative for impairment of 

the energy-coupling site I. 

3.4. Transmembrane proton gradient in normal and 

sulfate-deficient cells 

The generation of the transmembrane proton gra- 

dient after ethanol addition was monitored in normal 

and sulfate-deficient cells by 9-AA fluorescence (Fig. 
1). Addition of 200 ~1 of the cell suspension, starved 

at pH 6.5, into a 2.3-ml volume of phosphate buffer 

with 9-AA at pH 7.0 led to a rapid quenching of 
fluorescence due to accumulation of 9-AA inside the 

more acid intracellular space. Subsequent addition of 

CELLS 
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I 

_:T” 

1 min. - 

J 
Fig. I. 9-AA fluorescence in response to ethanol addition to 

washed and starved 2. mobilis cells. (A) control; (B) sulfate-defi- 

cient cells; (C) control cells in the presence of 1 mM KCN. 

ethanol to a final concentration of 1% caused a 

partial restoration of the fluorescence intensity in the 
control cell suspension (Fig. IA), pointing to an 
alkalinization of the intracellular medium as a result 

of respiration-driven proton translocation. In the 
presence of 1 mM KCN, when the respiration was 
totally inhibited (not shown), the increase of the 

Table 2 

Respiration rate, growth yield, and inhibitor sensitivity of NADH oxidase in cell-free extracts of Z. mobilis cultures grown on complete and 

sulfate-deficient media 

Growth 

medium 

Y X/k 
(g dry weight 

mol-’ ) 

Respiration 

with 1% EtOH 

(nmol min- ’ 
(mg dry weight)- ’ ) 

NADH oxidase activity with inhibitors 

(% of control) 

Rotenone ’ Antimycin A a 

Sulfate-deficient 3.98 72.9 + 3.7 (3) 

Normal 4.18 63.9 + 1.1 (3) 

’ Inhibitors were added at a concentration of 100 nmol (mg protein)- ’ 

95.2 f 5.0 (IO) 48.4 + 4.8 (4) 

81.2 + 3.4 (IO) 46.0 + 7.0 (5) 
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4ATP, nmol/mg dry wt 

Time, minutes 

Fig. 2. Time-course of intracellular ATP concentration after 

ethanol addition to washed and starved Z. mobilis cells. (*) 

control; ( 0) sulfate-deficient cells. 

fluorescence in the control cell suspension was abol- 

ished (Fig. 1C). The ethanol-dependent fluorescence 

increase was strongly reduced in the sulfate-deficient 

cells (Fig. lB), although their respiration rate with 

ethanol was higher than that of the control cells 

(Table 2). 

3.5. ATP synthesis with ethanol in normal and sul- 

fate-dt@ent cells 

Samples for luminometric ATP determination 

were taken immediately before and at OS-min inter- 

vals after ethanol was added to an aerated suspension 
of washed and starved Z. mobilis (Fig. 2). An in- 

crease of the intracellular ATP concentration up to 3 

nmol (mg dry weight)-’ was observed in the control 

cell suspension. However, in the sulfate-deficient 

cells, the ATP level rose to only about 0.5 nmol (mg 
dry weight)- ’ , and after 2.5-3 min dropped down to 

the initial level. 

4. Discussion 

A selective impairment of the energy-coupling 
site I by sulfate deficiency in the growth medium 

abolished the respiration-dependent energy genera- 
tion in Z. mobilis cells. Also, when electrons were 
fed into the ETC downstream of coupling site I using 
ascorbate/PMS as a substrate in membrane prepara- 

tions, no significant ATP synthesis was observed. A 
small, residual ethanol-dependent proton gradient and 

some ATP synthesis could still be seen in the sul- 

fate-deficient cells (Fig. 1B; Fig. 2). However, these 

effects were too small to account for one more fully 

operative energy-coupling site. The H+/O stoi- 

chiometry of intact Z. mobilis cells oxidizing ethanol 

did not exceed the values reported for the bacteria1 

energy-coupling site I [ 181. Therefore, we concluded 

that under our experimental conditions the energy- 

coupling site I was the only functional energy-cou- 

pling site in Z. mobilis. 

The low proton-motive stoichiometry is appar- 

ently not consistent with the composition of Z. mo- 

bilis ETC, which is reported to contain cytochromes 

b, C. and d [ 1,2]. However, the existing data on Z. 

mobilis cytochromes and the other ETC components 

are still incomplete and can be regarded as prelimi- 

nary. More information about the routes and possible 

bypasses of electrons in the ETC of Z. mobilis 

would be necessary for understanding why the en- 

ergy-coupling sites usually associated with cy- 

tochromes [ 191 do not function in this bacterium. 

Acknowledgements 

The authors wish to thank Prof. Dr. H. Sahm, 

Prof. Dr. R. KAmer, and Dr. S. Bringer-Meyer for 

critical reading of the manuscript and for valuable 

suggestions. This work was supported by a grant 

from Forschungszentrum Jiilich GmbH. 

References 

[II 

[21 

[31 

[41 

[51 

Belaich. J.P. and Senez, J.C. (1965) Influence of aeration and 

pantothenate on growth yields of Z~momonus mobilis. J. 

Bacterial. 89, 1195-1200. 

Pankova, L.M., Shvinka , Y.E., Beker, M.E. and Slava, E.E. 

(1985) Effect of aeration on Zwnomonas mohilis metabolism. 

Mikrobiologiya 54, 141-145. 

Strohdeicher, M., New, B., Bringer-Meyer. S. and Sahm, H. 

(1990) Electron transport chain of Zwnom~na~ mobilis. Inter- 

action with the membrane-bound glucose dehydrogenase and 

identification of ubiquinone IO. Arch. Microbial. 154, 536- 

543. 

Bringer, S., Finn, R.K. and Sahm, H. (1984) Effect of 

oxygen on the metabolism of Z~wwmonas mobilis. Arch. 

Microbial. 139, 376-38 1. 

Vore, R.D. and Talburt, D.E. (1993) The effects of gas 

sparging on growth and glucose utilization of Zymomonas 

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sle/article/133/1-2/99/498177 by am
llibrary user on 03 Septem

ber 2021



104 Ii. Kalnenieks et al. / FEMS Microbiology Letters 133 (19951 99-104 

mobilis at low glucose concentrations. Biotechnol. Lett. 15, 

1067-1070. 

[6] Kalnenieks, U.. de Graaf, A.A., Bringer-Meyer, S. and Sahm, 

H. (1993) Oxidative phosphorylation in Zymomonas mobilis. 
Arch. Microbial. 160, 74-79. 

[7] Michel, G.P.F. and Baratti, J.C. (1989) Phosphate-irre- 

pressible alkaline phosphatase of Zymomonas mobilis. J. 

Gen. Microbial. 135, 453-460. 

181 Matsushita, K., Nagatani, Y., Shinagawa, E., Adachi, 0. and 

Ameyama, M. (1989) Effect of extracellular pH on the 

respiratory chain and energetics of Gluconobacter suboxy- 
dans. Agric. Biol. Chem. 53, 2895-2902. 

[9] Hempfling, W.P. and Hertzberg, E.L. (1979) Techniques for 

measurement of oxidative phosphorylation in intact bacteria 

and in membrane preparations of Escherichia co[i. In: Meth- 

ods in Enzymology (Fleischer, S. and Packer, L., Eds.), Vol. 

LV, pp. 164-175. Academic Press, New York, NY. 

[IO] Vigne, P., Frelin, C. and Lazdunski, M. (1984) Intracellular 

pH measurements using the fluorescence of 9-aminoacridine, 

FEBS Lett. 172, 275-278. 

[I I] Puchkov, E.O., Bulatov, I.S. and Zinchenko, V.P. (1983) 

Investigation of intracellular pH in Escherichia coli by 

9-aminoacridine fluorescence measurements. FEMS Micro- 

biol. Lett. 20, 41-45. 

[ 121 Pelroy, R.A. and Whiteley, H.R. (1971) Regulatory proper- 

ties of acetokinase from Veillonella olcalescens. J. Bacterial. 

105. 259-267. 

[ 131 Lundin, A., Richardson, A. and Thore, A. (1976) Continuous 

monitoring of ATP converting reactions by purified firefly 

luciferase. Anal. Biochem. 75, 61 I-620. 

[I41 Bradford, M. (1976) A rapid and sensitive method for the 

quantitation of microgram quantities of protein utilizing the 

principle of dye binding. Anal. Biochem. 72, 248-254. 

[I51 Sanadi, D.R. and Jacobs, E.E. (1967) Assay of oxidative 

phosphorylation at the cytochrome oxidase region (site III). 

In: Methods in Enzymology (Estabrook, R.W. and Pullman, 

ME., Eda.), Vol. X, pp. 38-41. Academic Press, New York 

and London. 

[I61 Meijer, E.M., Wever, R. and Stouthamer, A.H. (1977) The 

role of iron-sulfur center 2 in electron transport and energy 

conservation in the NADH-ubiquinone segment of the respi- 

ratory chain in Paracoccus denitrifcans. Eur. J. Biochem. 

8 I, 267-275. 

1171 Poole, R.K. and Haddock, B.A. (1975) Effects of sulphate- 

limited growth in continuous culture on the electron-transport 

chain and energy conservation in Escherichia co/i Kl2. 

Biochem. J. 152, 537-546. 

[I 81 Yagi, T. (199 I) Bacterial NADH-quinone oxidoreductases. J. 

Bioenerg. Biomembr. 23, 21 l-225. 

[I91 Jones, C.W., Brice, J.M., Downs, A.J. and Drozd, J.W. 

(1975) Bacterial respiration-linked proton translocation and 

its relationship to respiratory-chain composition. Eur. J. 

Biochem. 52, 265-27 I. 

D
ow

nloaded from
 https://academ

ic.oup.com
/fem

sle/article/133/1-2/99/498177 by am
llibrary user on 03 Septem

ber 2021


