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Itis generally acknowledged that reactive oxygen species (ROS) play crucial roles in a variety of natural processes in cells. If increased
to levels which cannot be neutralized by the defense mechanisms, they damage biological molecules, alter their functions, and also
act as signaling molecules thus generating a spectrum of pathologies. In this review, we summarize current data on oxidative
stress markers associated with human immunodeficiency virus type-1 (HIV-1) infection, analyze mechanisms by which this virus
triggers massive ROS production, and describe the status of various defense mechanisms of the infected host cell. In addition,
we have scrutinized scarce data on the effect of ROS on HIV-1 replication. Finally, we present current state of knowledge on
the redox alterations as crucial factors of HIV-1 pathogenicity, such as neurotoxicity and dementia, exhaustion of CD4"/CD8"
T-cells, predisposition to lung infections, and certain side effects of the antiretroviral therapy, and compare them to the pathologies

associated with the nitrosative stress.

1. Introduction

Reactive oxygen species (ROS) is a general term of oxygen
intermediates with high reactive capacity towards various
biological molecules. They include hydroxyl radical (HO"),
singlet oxygen ('O,), superoxide anion (O,"”), hydrogen
peroxide (H,0,), and other reactive species [1, 2]. ROS
are produced in various cellular processes and organelles:
electron leakage from the mitochondrial electron transport
chain (ETC), degradation of lipids, amino acids, and biogenic
polyamines, protein folding in the lumen of endoplasmic
reticulum (ER), and so forth [3-7]. The most reactive type
of ROS is the hydroxyl radical. It is produced from hydrogen

peroxide that oxidizes divalent iron cations via the Fenton
reaction

Fe’" + H,0, — Fe’* + HO" + HO™ )

or as a result of the Haber-Weiss cycle that involves a
reduction of ferric ions by superoxide anions into ferrous ions
followed by the Fenton reaction:

Fe*t + 0, — Fe?t + 0, 2)

Thus, the net reaction of the Haber-Weiss cycle can be
described as

0, +H,0, — HO" + 0, + HO™ 3)



Superoxide anions have several sources in cells. First,
they are generated in mitochondria. Electron transport
through the ETC during oxidative phosphorylation is gen-
erally accompanied by escape of up to 1-2% of electrons
that are trapped by molecular oxygen [7]. Alteration of
mitochondrial bioenergetics by various factors usually gives
rise to superoxide anion production. Secondly, superox-
ide anion is produced by a family of NADPH oxidases
(NOX/DUOX), comprised of seven isoforms: NOX1-NOX5
and DUOXI1-DUOX2 [6]. They transport electrons across the
membranes and generate superoxide with the exception of
NOX4 that produces hydrogen peroxide [8]. Activation of
NOX-mediated ROS production can be achieved by various
mechanisms. For example, NOX4 is controlled only at the
level of transcription since this enzyme is constitutively active
[6]. NOXI-NOX3 are generally induced on the transcrip-
tional level and activated by a controlled assembly of the
multisubunit complexes. Finally, several isoforms includ-
ing NOX5 and DUOXI-DUOX2 possess calcium-binding
domains that mediate additional level of ROS production.
Third, superoxide anions are generated by cytochromes P450
(CYP) which catabolize various endogenous compounds and
xenobiotics [9]. Hydrogen peroxide is mainly formed as a
stoichiometric by-product in catabolic reactions and through
formation of disulfide bonds during protein folding in the
ER [5, 10]. Finally, reactive oxygen species can derive from
the activity of xanthine oxidoreductase (XOR) [11, 12]. XOR
is widely distributed throughout various organs including the
liver, gut, lung, kidney, heart, and brain as well as the plasma.
It is generally accepted that the enzyme is normally present in
vivo as an NAD-dependent cytosolic dehydrogenase (XDH),
incapable of ROS production. However, sulthydryl oxida-
tion or limited proteolysis converts the XDH into xanthine
oxidase (XO) which produces superoxide and hydrogen
peroxide, with the latter being the major product under
physiological conditions [11]. Furthermore, both XO and
XDH can oxidize NADH, with the concomitant formation of
the reactive oxygen species [11, 12].

Different types of ROS are characterized by their varying
ability to react with biological molecules. The most reactive
ROS is the hydroxyl radical, HO®, the one-electron oxidized
form of the hydroxide ion (HO") [1, 13]. It can oxidize almost
any molecule in its proximity including DNA, phospholipids,
and proteins [13, 14]. Oxidation results in the accumulation
of 8-oxoguanine (8-oxoG) and other oxidized nucleic bases,
malondialdehyde (MDA), and 4-hydroxynonenal (HNE) as
typical lipid peroxidation products and in protein damage
manifested in the increase of the protein carbonyl content
[15]. Much less active is the superoxide anion: its reactivity
is hampered by a negative charge of the species; however, its
protonation generates the perhydroxyl radical (HO,") with
a higher oxidizing potential [16]. The reaction potential of
H,0, is also very low; however, it is converted into the
hydroxyl radical with a much higher oxidizing capacity [17].
H,0, also possesses a unique (for ROS) capacity to cross
biological membranes which turns it into a classical signaling
molecule [17, 18].

Eukaryotic cells have developed multiple mechanisms
of ROS neutralization (“scavenging”) in order to protect
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themselves against oxidation of biological molecules. First,
ROS can be neutralized directly by the low molecular weight
compounds referred to as antioxidants, such as vitamins
C and E and glutathione (GSH) [19], and a wide set of
ROS-converting enzymes [20] including NAD(P)H:quinone
oxidoreductase 1 (Nqol) that scavenges superoxide anion
[21] and superoxide dismutases (SODs) that convert O,
into H,0, [22]. SODs exist in three isoforms expressed
in different cellular compartments: SOD1 (Cu/Zn-SOD) is
mostly localized in the cytoplasm; SOD2, (MnSOD) in the
mitochondrial matrix; and SOD3 (EC-SOD), at the cell
surface. Neutralization of H,O, is performed by multiple
enzymes such as catalase (CAT), glutathione peroxidases
(GPx, eight isoforms), and peroxiredoxins (Prdx, six iso-
forms) [23, 24]. Of these enzymes, GPx4 and 1-Cys per-
oxiredoxins are responsible for scavenging lipid peroxides
thus protecting lipids from the oxidative damage [25-
27]. Additional protection from ROS is mediated by heme
oxygenase, the rate-limiting enzyme of heme catabolism
which leads to the release of free iron, which in turn
offers protection against oxidative stress [28]. Other antiox-
idant proteins include enzymes that mediate biosynthesis of
glutathione and proteins that recycle oxidized glutathione,
peroxiredoxins, and glutathione peroxidases (glutaredoxins
and thioredoxins) [20, 29]. Noteworthily, expression of a
wide set of antioxidant enzymes is controlled by NF-E2-
related factor 2 (Nrf2), a transcription factor that recognizes a
common short sequence, referred to as Antioxidant Response
Elements (ARE), in the promoters of genes encoding ROS-
converting enzymes [20]. Components of antioxidant defense
systems differ in their capacity to neutralize ROS. Hydrogen
peroxide is much more efficiently neutralized by peroxire-
doxins and glutathione peroxidases, while classical antiox-
idants such as glutathione have a much lower potential
[16, 30]. The actual levels of ROS are defined by the bal-
ance between the activities of ROS-generating and ROS-
scavenging molecules, being different for different cellular
compartments [31].

Several techniques are currently used to analyze the
redox status of the cell and to determine the levels of
ROS. Firstly, oxygen radicals can be detected by the elec-
tron paramagnetic resonance (EPR) using a spin-trapping
technique; however, this method requires highly specialized
equipment [32]. Secondly, ROS levels can be quantified indi-
rectly using low molecular weight compounds (sensors) that
are oxidized by ROS into fluorophores. They include 2',7'-
dichlorodihydrofluorescein (DCFH,DA), dihydroethidium
(DHE) and its mitochondrially targeted derivative MitoSOX,
and boronate probes [33, 34]. Protein sensors such as HyPER
or roGFP can be introduced as genes which makes them suit-
able for measuring ROS levels in almost any organelle [35-
37]. Thirdly, the oxidative stress can be assessed indirectly by
evaluating the levels of oxidative stress biomarkers, such as
stable (by-)products generated under conditions of oxidative
stress which enter the tissues, cells, or circulation, such as
oxidized glutathione (GSSG), MDA, and HNE (for lipids) and
8-0x0G (DNA) and protein carbonyls [15, 38]. In addition,
the cellular redox state can be quantified by estimating the
capacity of blood/serum/tissue samples to oxidize/reduce
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some standard compounds that mimic cellular targets of ROS
(e.g., see [39, 40]).

Oxidative stress accompanies a wide variety of viral
infections including those induced by hepatitis B (HBV) [41],
C (HCV) [42], and delta (HDV) [43] viruses, herpes [44, 45],
respiratory [46, 47], and other viruses. In this review, we will
summarize data on the mechanisms by which HIV triggers
massive ROS production in the host cell and deregulates
the antioxidant defense system. We will also present current
concepts on the role of HIV-induced oxidative stress in the
development of HIV-associated pathologies.

2. HIV-1 Biology

The human immunodeficiency virus type-1 (HIV-1) is a
lentivirus that infects and by various mechanisms kills vital
cells of human immune system, such as T-helper cells,
macrophages, and dendritic cells, thus causing immunodefi-
ciency [48, 49]. The acquired immunodeficiency syndrome
(AIDS) is a condition in humans in which the progressive
failure of the immune system undermined by HIV-1 infection
allows life-threatening opportunistic infections and cancers
to thrive. Without treatment, the survival time of HIV-1
infected individuals is estimated to be 9 to 11 years. However,
during the three decades since its discovery, 27 antiretroviral
drugs have been approved for HIV therapy [50]. Current
antiretroviral therapy (ART), based on combinations of 3-4
drugs, now allows us to efficiently suppress HIV viral load
and to prolong life of HIV/AIDS patients almost to the one
of the general population, at least in high-income countries
[51].

HIV is a single-stranded, positive-sense, enveloped RNA
virus. The genome carries nine genes (gag, pol, env, tat, rev,
nef, vif, vpr, and vpu) that encode 19 proteins; the coding
sequence is framed by the long terminal repeats (LTRs)
[48, 49]. Three of these genes, gag, pol, and env, contain
information needed to make new viral particles. Processing
of pol gene results in formation of three enzymes: reverse
transcriptase (RT), integrase, and protease. Translation of
env gene produces glycoprotein 160 (Gpl60) that further
is processed to give Gpl20 and Gp4l. Gag gene ensures
production of matrix (MA), capsid (CA), nucleocapsid (NC),
and P6 proteins as well as spacer peptides 1 (SP1) and 2 (SP2).
The six remaining genes, tat, rev, nef, vif, vpr, and vpu (or vpx
in the case of HIV-2), are regulatory genes for proteins that
control the ability of HIV to infect cells, produce new copies
of virus (replicate), or cause the disease [52]. Upon entry
into the target cell, HIV reverse-transcribes the RNA genome
into the double-stranded DNA, transports it into the cell
nucleus, and integrates into the chromosomes, the activities
mediated by virus-encoded enzymes reverse transcriptase
and integrase, and cellular cofactors [48]. Once integrated,
the virus may become latent, which allows the infected cells
to avoid detection by the immune system. Alternatively, the
virus may be transcribed and translated, producing new RNA
genomes and viral proteins that are packaged and released
from the cell as new virus particles to start the new infection
cycle.

3. Oxidative Stress during HIV Infection

To date, numerous lines of evidence show that HIV infec-
tion triggers pronounced oxidative stress in both laboratory
models and the context of in vivo infection. HIV-infected
individuals exhibit enhanced ROS production in monocytes
[53] and severely elevated levels of oxidized nucleic bases such
as 8-0x0G and lipid peroxidation products, including MDA
in plasma and alkanes in the breath output [54-63].

Compensation of the pathogenic effects of HIV-1 replica-
tion requires intact functions of ROS detoxifying enzymes.
Parsons et al. showed that HIV-1 individuals with a null-
allele polymorphism in gstml gene, associated with a loss of
function of the Phase II detoxifying enzyme glutathione S-
transferase [64], exhibit lower count of CD4 T-cells, increased
HIV viral load, and increased 8-0xoG in mitochondrial
DNA [65]. However, HIV-infected individuals demonstrate
a reduction of total antioxidant capacity [59], decreased
GSH/GSSG ratio in epithelial lung fluid [3], and decreased
GSH content in blood [56, 58, 61, 63, 66-69]. Marked
elevation of ROS levels was also detected in the HIV-infected
cell cultures [70, 71]. The most profound decrease of the
total antioxidant capacity was detected in subsets of CD4"
and CD8" T-lymphocytes [66], with low CD4 T-cell counts
correlating with more severe oxidative stress [59, 60, 62,
72]. Corroborating these observations, the number of CD4"
cells positively correlates with the total levels of ROS scav-
engers such as glutathione [56]. Noteworthily, these changes
are more pronounced in treatment-naive patients than in
patients under ART [58, 61] since ART restores the numbers
of CD4" T-cells but at the same time augments the imbalance
of the redox status [73]. In HIV/HCV-coinfected patients, the
levels of oxidative stress markers are generally higher than in
individuals with HIV monoinfection, as indicated by MDA
and GSSG plasma levels [74, 75].

Elevated levels of the oxidative stress markers are also
detected in other tissues and body fluids. Brain tissues
(brain frontal cortex collected from autopsia) of HIV-infected
individuals are characterized by the increased levels of 8-
0x0G in the nuclear DNA [76] and increased HNE levels
[69]. Elevated levels of superoxide radical and HNE are also
detected in the cerebrospinal fluid [69, 76]. Interestingly,
similar effects are observed in the NL4-3A transgenic rat
model expressing HIV proteome devoid of the Gag-Pol
polypeptide. In these animals, high levels of superoxide
anion can be indirectly detected by electron spin resonance
spectroscopy/ESR using CMH probe in the aortas [77] and
by fluorescent microscopy with DHE dye in the lungs [78].
Altogether, this indicates that HIV-1 actively interferes with
the development of oxidative stress response.

4. Mechanisms of ROS
Production during HIV Infection

HIV-1 induces oxidative stress by deregulation of oxidative
stress pathways with escalation of ROS production and by
inducing mitochondrial dysfunction [70, 71]. The enhance-
ment of ROS production is mediated by the envelope protein
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FIGURE 1: Cellular sources of reactive oxygen species in HIV infection. Several HIV proteins enhance ROS production by different
mechanisms. These viral proteins include amongst others the envelope protein Gpl20, Tat, Nef, Vpr, and RT. The envelope protein Gpl20
enhances ROS production via upregulation of cytochrome P450 2E1 (CYP2E1), proline oxidase (POX), and activation of NOX2 and NOX4.
Tat protein induces spermine oxidase (SMO), an enzyme involved in catabolism of biogenic polyamines, and may impact mitochondrial
function. Tat also activates NADPH (but not xanthine) oxidases and in particular Nox4, which in turn may induce other peroxide-generating
enzymes involved in unfolded protein response (UPR) such as ER oxidoreductin 1o (Eroler). Vpr protein interacts with adenine nucleotide
translocator (AN, a component of mitochondrial permeability transition pore (PTP)) that is implicated in Ca** influx into mitochondria.
Nef protein can directly interact with the p22phox subunit of NADPH oxidases without affecting NOX expression. Finally, RT triggers ROS

production by yet undiscovered mechanism(s).

Gpl120 [79-85], Tat [83, 84, 86-88], Nef [89-91], Vpr [71, 92,
93], and reverse transcriptase (RT) [94].

The envelope protein Gpl20 enhances ROS production
in various cell lines of lymphoid origin [82], in endothelial
brain cells [83], microglia cells, neurons, and astrocytes [79,
80]. In astrocytes, it enhances ROS production by several
parallel mechanisms: via cytochrome P450 2E1 (CYP2EL),
NOX2 and NOX4, and the Fenton-Weiss-Haber reaction
(Figure1) [79, 95]. The effect of Gp120 on CYP2E1 is mediated
through upregulation of CYP2E1 expression. Interestingly,
however, EPR analysis of the HIV-1 infected monocyte-
derived macrophages revealed no increase in the production
of either hydroxyl or other oxygen radicals [96]. In neuroblas-
toma cells, Gp120 was shown to induce proline oxidase (POX)
that produces pyrroline-5-carboxylate with a concomitant
generation of ROS (Figure 1) [85].

The regulatory Tat protein triggers ROS production via
several independent mechanisms (Figure 1). The first involves
the NADPH (but not xanthine) oxidases [86]. The second
implies the induction of spermine oxidase (SMO), an enzyme
involved in the catabolism of biogenic polyamines [88, 97].
The third relies on mitochondrial dysfunction [98] but was

questioned in a later study [86]. A detailed analysis of
the levels of ROS in different subcellular compartments of
the HIV-1 infected cells revealed no significant increase in
the content of H,O,in either cytoplasm or mitochondria
but a strong increase in the ER [99]. ER is the primary
“residence” for NOX4 that produces hydrogen peroxide [8,
100]. An increase in H, O, levels in ER of HIV-1 infected cells
was demonstrated using a genetically encoded ratiometric
HyPER sensor [99]. Moreover, in these cells, NOX4 medi-
ated the induction of unfolded protein response (UPR). In
concordance with these data, an elegant study demonstrated
that the suppression of NOX4 by RNAi in Tat-expressing
cells results in a significant reduction of H,O, levels in the
ER [99]. The results generated using HyPER sensor could
be questioned. Such sensors have been used in a number of
studies (such as [4, 99]) that demonstrated that the dynamic
range of its signal is small [101] to negligible [102], with
changes in the HyPER ., fluorescence reflecting not so much
the changes in peroxide levels but rather the influence of
other factors such as proline disulphide isomerases (PDI)
[103]. Also, one cannot rule out that NOX4 contributes to the
induction of oxidative stress indirectly, through the induction
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of other peroxide-generating enzymes involved in UPR. If
so0, one could propose a component of the protein-folding
machinery which could be involved, namely, ER oxidore-
ductin 1« (Eroler) [104] which is upregulated within the PERK
branch of UPR (Figure 1) [105]. Intriguingly, the elevation of
hydrogen peroxide levels in the ER contradicts the existing
concept on the efficient neutralization of hydrogen peroxide
in the ER by scavenging enzymes, including peroxiredoxin 4
[106] and glutathione peroxidases 7/8 [101, 107]. This may not
be widely accepted, which leaves open the actual mechanism
of the Tat-mediated oxidative stress in the ER.

HIV-1 Nef protein has shown a prooxidant activity in
microglial cells and in neutrophils [89-91]. The activity is
related to the ability of Nef to interact with Vav protein
(Figure 1) [89]. Vav is a nucleotide exchange factor for
Racl that is recruited to the NOXI-NOX3 complexes [6],
with the p22P™* subunit of NADPH oxidases, but without
affecting NOX expression [91]. These interactions are in
perfect concordance with the absence of changes in the
expression of NOX1, NOX2, and NOX4 in NL4-3A gag-pol
transgenic rats compared to the wild-type animals [77].

Viral protein R (Vpr) is another important regulator
of ROS production [108]. In yeast, Vpr expression induces
an oxidative stress leading first to the decreased levels
of superoxide anion and hydroxyl radical as well as glu-
tathione and significantly decreased activities of catalase,
glutathione peroxidase, glutathione reductase, glucose-6-
phosphate dehydrogenase, and glutathione S-transferase and
later on to elevated levels of superoxide anion and peroxides
and increased activities of most of antioxidant enzymes
[108]. It was shown that Vpr triggers oxidative stress by
causing mitochondrial dysfunction [92, 109, 110] and ROS
production in mitochondria (Figure 1) [71]. Mitochondrial
dysfunction is promoted by binding of Vpr to the adenine
nucleotide translocase (ANT) [110], a protein that forms an
inner channel of the mitochondria permeability transition
pore (PTP) [110]. This indicates the propensity of Vpr to
unbalance the redox state of the cells contributing to the HIV-
1 pathology.

Mitochondrial dysfunction is a general mechanism of
ROS production common for most viral infections [111-113].
NADPH oxidases and CYP2E] serve as the major sources
of ROS in infections with human hepatitis C, influenza, and
respiratory syncytial viruses [114-121]. The overview of the
field demonstrates that sources of ROS operational in HIV-
1 infection follow similar trends.

5. HIV and Antioxidant Defense Pathways

The effect of HIV-1/HIV-1 proteins on the cellular antiox-
idant defense system is debatable. Several groups reported
a decrease in SOD (SOD3 in particular), CAT, and GPx
activities in plasma of the HIV-infected individuals [61,
63, 75, 122]. The data on Gpl20 is controversial; it was
shown to either enhance [123] or not affect the expression of
sod2 gene [82]. However, the individual Tat protein causes
an opposite effect: it suppresses the expression of MnSOD
through inhibition of binding of Spl and Sp3 transcription

factors to sod2 gene promoter and binding to its mRNA [124,
125]. In addition, studies done in HIV-1 NL4-3A transgenic
rats demonstrate a decrease in the Cu/Zn-SOD expression,
whereas the expression of MnSOD remains unaltered [77].

Overall, both Gp120 and Tat suppress expression of the
glutathione synthesizing and metabolizing enzymes. Both
downregulate the expression of glutathione synthase (GSS),
glutathione reductase (GR), and GPx, leading to a decrease
in the total glutathione content and an increase of the
GSSG/GSH ratio [83, 84, 123, 126]. Gpl20 also shows a
strong ROS-dependent inhibitory effect on the expression
of glutamine synthase (GS) [127]. Interestingly, Tat exhibits
a stronger inhibitory effect on glutathione than Gp120 [83].
In addition to the inhibition of GSH biosynthesis pathways,
Tat induces the expression of glutathione peroxidase isoform
GPx4 [126], which scavenges lipid peroxides. At the same
time, Tat has no effect on the expression of thioredoxin
reductase [126], an enzyme that reduces thioredoxin, which
in turn reduces glutathione peroxidases and peroxiredoxins
[29]. Vpr is yet another virus protein that triggers a decrease
in the GSH levels [128]. The latter is caused by the suppression
of ATP biosynthesis in mitochondria [128] (two molecules of
ATP are required for biosynthesis of every glutathione moiety
[129]).

A majority of glutathione metabolizing genes are con-
trolled by the Nrf2 transcription factor [20]. In vivo, HIV-
1 appears to suppress the Nrf2/ARE pathway. Indeed, brain
cortex tissues of HIV-1 infected individuals demonstrate the
decreased levels of heme oxygenase 1 [130]. This effect is not
mediated by Tat, Nef, or Vpr proteins but is apparently due to
the replication of the viral genome. HO-1 protein expression
correlates negatively with HIV replication levels. In vitro
analysis of HO-1 expression in HIV-infected macrophages, a
primary central nervous system (CNS) HIV reservoir along
with microglia, demonstrated a decrease in HO-1 as HIV
replication increased; HO-1 repression was mediated by high
levels of IFN-y concomitant with virus replication in the CNS
[131]. While HIV replication seems to (indirectly) suppress
the Nrf2/ARE pathway, the effects of the individual viral
proteins are the opposite. HIV reverse transcriptase activates
Nrf2 and upregulates the transcription of both HO-1 and
Nqol, at least in the cell culture system [94]. An ability to
activate the Nrf2/ARE pathway was recently reported also for
Tat [88]. It is mediated through the induction of spermine
oxidase and concomitant production of hydrogen peroxide.
Gp120 induces yet another classical Nrf2-dependent gene,
multidrug resistant protein 1 (Mrpl) [81]. Such discrepancy
between the factual data from in vitro studies and the status of
Nrf2/ARE signaling during HIV infection has been observed
also for other viruses such as HCV [132-135]. The actual
(also long-term) effects of HIV-1 on the Nrf2/ARE pathway
and their outcomes for the pathogenesis of HIV-1 infection
remain to be elucidated.

6. ROS in HIV’s Life Cycle

Hypoxia induces oxidative stress via an overgeneration of
ROS [136]. A crucial role in the mammalian response to



oxygen levels is played by the transcription factor Hypoxia-
Inducible Factor-1 (HIF-1). Increased expression of HIF-l«
contributes to the mitochondrial activity and ROS formation
during the hypoxia [137]. HIV-1 protein Vpr induces HIF-
1 resulting in the ROS-dependent activation of HIV LTR
[71]. HIV-1 LTR is activated even by low concentrations of
H,0, [138] (whereas antioxidants inhibit viral transcription
[139]). Further enhancement of the transcription is triggered
by proinflammatory cytokines, including TNF-« [140, 141]
induced through the redox-dependent NF-«B pathway [142].
Additional influence of elevated ROS levels on HIV life cycle
is achieved through the redox-sensitive transcription factors
AP-1 and p53 [143]. Interestingly, transcription activation
by exogenous hydrogen peroxide takes place only after the
prolonged treatment, allowing us to hypothesize that virus-
induced oxidative stress can play a crucial role in activation
of the latent viral infection [138]. Supporting this, activation
of the latent infection was triggered by modest changes in
the cell redox potential (25 mV) [144]. Such changes can be
induced either directly by HIV proteins or indirectly through
the induction of proinflammatory cytokines such as TNF-«
[145].

Oxidative stress may be also beneficial for the late stages
of the HIV life cycle, since glutathione treatment of chroni-
cally infected cells leads to the abrogation of virion budding
and release [146] preventing the infection of new T-cells [147].
The addition of GSH or GSH analogues is able to block
late steps of viral replication [148], possibly by inhibiting the
proper folding of glycosylated surface viral proteins in the ER,
as was demonstrated for influenza virus [149]. The inhibitory
effects of antioxidant treatment could also be attributed to the
ability of ROS to induce CXCR4 receptor [150] as well as the
glucose transporter Glutl [151]. Enhanced expression of Glutl
was observed in both the infected cell cultures [152] and the
neuronal tissues of the patients [153]. It leads to the elevation
of glucose influx into the lymphocytes, monocytes, and
epithelial cells. Enhanced glucose flux is known to promote
infection with oncogenic viruses [154, 155]. In case of HIV-
1, it also leads to augmented ROS production and enhanced
infection of target cells [147, 156, 157]. However, opposite data
were also reported: overexpression of peroxide-scavenging
enzyme, GPxl, enhances production of HIV virions, whereas
treatment of such cells with buthionine sulfoximine (BSO)
that inhibits glutathione biosynthesis inhibits such increase
[158].

7. ROS in HIV-1 Related Pathologies

HIV-induced oxidative stress plays an important role in
the development of a wide spectrum of virus-associated
pathologies. Among them are neurotoxicity and dementia
and immune imbalance with the exhaustion of the pool
of CD4 T-lymphocytes, as well as lung and cardiovascular
disorders.

71. CNS Toxicity. Neurotoxicity and dementia are believed
to be the direct consequences of HIV-1 infection: a majority
of the cases with these neurological symptoms below 60
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years of age are AIDS patients. HIV-1 affects the microglial
cells; progressive infection leads to damage to astrocytes
and neurons [159]. Levels of oxidative stress markers such
as mitochondrial 8-0x0G in serum inversely correlate with
the volume of the grey substance from selected brain areas
(hippocampus, pallidum, etc.) [160]. Moreover, an increase
in 8-0x0G in the nuclear DNA is accompanied by a decrease
in the mitochondrial DNA content observed in the frontal
cortex of the patients, altogether pointing at a direct link
between ROS and neurological pathologies in AIDS patients
[160]. The accumulated data points at the neurotoxicity
being triggered by Gpl20, Tat, and Vpr proteins which can
penetrate the blood-brain barrier (BBB) (Figure 2) [161, 162].
Penetration is likely due to the disruption of BBB through
several redox-regulated processes, including the induction
of matrix metalloproteinases (MMP) 2 and 9 that target
BBB tight junction receptors ZO-1, laminin, claudin 5, and
occludin ([84, 163, 164], see also a comprehensive review by
Toborek et al. [165]).

Gp120, Tat, and Vpr proteins contribute to the CNS
pathology by both direct and indirect mechanisms (Figure 2).
The direct mechanism involves induction of ROS production,
which leads to the exhaustion of the antioxidant defense
system and decreased cell viability [79, 98, 128, 166, 167].
Elevated levels of ROS result in the enhanced oxidation
of DNA nucleic bases in both the nucleus and mitochon-
dria, while their removal and DNA reparation are inhibited
through suppression of DNA glycosylase 1 (enzyme the
function of which is the removal of 8-0xoG; OGGI) [76].
This scenario leads to DNA instability, particularly to the
deletion of the D-loop in mitochondrial DNA. Significantly,
contribution to neurotoxicity of Gp120 and Tat is made by an
increased lipid peroxidation and accumulation of ceramide
[69].

An indirect promotion of CNS pathology is believed to be
mediated by the enhanced production of the inflammatory
cytokines and chemokines in astrocytes and microglia [159].
Gp120 and Vpr induce TNF-a, IL-6, IL-8, and MCP-1 in
the ROS-dependent fashion (Figure 2) [80, 87, 167, 168].
In addition, Gp120 stimulates A-type transient outward K*
currents that contribute to the cell death [169]. Notably, this
effectis also ROS-dependent [80]. An additional contribution
to the pathogenic effects could come from the induction
of spermine oxidase, an enzyme that mediates one of the
two alternative pathways of polyamine metabolism [5]. It
catalyses a reaction that yields H,0O, and acrolein as stoi-
chiometric by-products. The latter compound is implicated
in the brain pathology during ischemia-reperfusion [170,
171]. The induction of SMO may therefore represent an
important mechanism of the HIV-induced brain damage.
Finally, recent data of Pandhare et al. revealed that Gpl20-
mediated induction of proline oxidase leads to autophagy that
at least partially alleviates neurotoxicity [85].

Interestingly, certain regions of AIDS patient brain are
characterized by an increased expression of the opioid
receptors [172]. In line with this, drugs such as morphine
and amphetamine can per se trigger ROS production and
dysregulate the antioxidant defense system, augmenting the
pathogenic properties of Gp120 (Figure 2) [79, 123]. This may
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FIGURE 2: Mechanisms of HIV neurotoxicity. Enhanced ROS production, triggered by gpl20, Tat, and Vpr proteins that circulate in the
blood, results in alteration of blood-brain barrier (BBB) through matrix metalloproteinase 2/9- (MMP2/9-) mediated disruption of tight
junction receptors ZO-1, laminin, claudin 5, and occludin. Gp120, Tat, and Vpr proteins activate a consequence of proapoptotic events. They
include (i) oxidation of DNA and consequent genomic and mitochondrial DNA instability, (ii) increased lipid peroxidation and accumulation
of ceramide that aggravates toxicity, (iii) induction of spermine oxidase (SMO) augmenting oxidative stress and producing toxic acrolein,
(iv) stimulation of A-type transient outward K* currents by Kv channels, and (v) induction of proinflammatory cytokines. In addition, it
upregulates expression of opioid receptors that contribute to neurotoxicity in HIV-infected drug addicts.

account for a more severe progression of the disease in the
intravenous drug users.

7.2. Redox Associated Cardiovascular and Lung Pathologies.
HIV-1 infection is accompanied by an increased risk of
various cardiovascular diseases including arterial hyperten-
sion [173], atherosclerosis [174, 175], injury to coronary
arteries [176], vasculitis [177], pericarditis, and myocarditis
[173]. HIV-associated lung pathologies include increased
susceptibility to infections, emphysema, and lung cancer
(178, 179]. Their development is believed to be promoted
by virus-induced oxidative stress. Oxidative stress in the
lung leads to a decreased expression of the tight junction
receptors, disrupting the epithelium and rendering lungs
more susceptible to the microbes [180]. Moreover, treatment
with lipopolysaccharide aggravates the redox imbalance in
HIV-infected cells [78]. It may be speculated that these
redox perturbations can trigger the inflammatory response,
resulting in the tissue damage, as well as causing the genomic
instability.

7.3. Effects of the Oxidative Stress on the Immune System.
Very recent vivid example of the effects of oxidative stress
on retroviral infection was provided by the study of Brundu
et al. in a murine model [181]. Infection with the murine
leukemia virus LP-BM5 causes murine AIDS, a disease char-
acterized by many dysfunctions of the immunocompetent
cells. Mice infected with LP-BM5 murine leukemia have a
marked redox imbalance reflected by GSH and/or cysteine
depletion in multiple immune organs/tissues. Significant
decrease in cysteine and GSH levels was measured also in
pancreas and in the brain, respectively [181]. Mice demon-
strated a predominance of T-helper 2 (Th2) responses man-
ifested by the expression of Th2 cytokines. Their peritoneal
macrophages expressed the genetic markers of the alternative
M2 macrophage polarization as Fizzl, Yml, and Arginase 1
[181]. Conversely, macrophages capable of expressing iNOS
(a marker of classical activation of macrophages) produced
predominantly T-helper 1 (Thl) cytokines [181]. Restoration
of the GSH/cysteine levels in the infected mouse organs (done
with a N-acetyl-cysteine supplier) reduced the expression of
M2 macrophage markers and increased the production of



IFN-y, while decreasing the production of Th2-cytokines as
IL-4 and IL-5 [181]. Interestingly, this is not the first report of
the association between the Th2 polarization and alteration of
the redox status by retroviral infection and/or retroviral pro-
teins. We have earlier shown that HIV-1 reverse transcriptase
induces potent oxidative stress and, when expressed in mice
as DNA immunogen, induces potent strongly Th2-polarized
type of specific immune response [94]. Thus, HIV-1 infection
and even expression of HIV-1 antigens induce an immune
imbalance marked by M2-shift of the macrophage response
and Th2-shift of the T-cell profiles which together promote
the continuation of viral replication.

A separate set of immune abnormalities in HIV-1
infection is linked to the abnormalities in the tryptophan
metabolism. In HIV-1 infected individuals, these abnor-
malities correlate with the enhanced oxidative kynurenine
pathway of tryptophan catabolism [182, 183]. This path-
way generates quinolinic acid, 3-hydroxykynurenine, and 3-
hydroxyanthranilic acid, all of which are known to have
the ability to generate free radicals [184]. Indoleamine 2,3-
dioxygenase (IDO) is an intracellular enzyme involved in
the first step of tryptophan catabolism [185]. Increased
IDO expression occurs during human [186] and simian
[187] retroviral infections. The data on the murine LP-BM5
immunodeficiency-causing retroviral infection is contradic-
tory [188,189]. In HIV-1infection, increased IDO mRNA cor-
relates with increased viral loads, while ART decreases IDO
expression, which may be anticipated as a proof of the direct
correlation between IDO and HIV virus propagation [190].

Catabolism of tryptophan by IDO leads to the reduction
in tryptophan levels [191]. Thl cell clones are more sensitive to
changes in tryptophan levels than Th2 cell clones, resulting in
a selective immunosuppression with the shift of the immune
response towards the Th2-type [192]. Besides, IDO activity
results in the increased levels of toxic downstream metabo-
lites and generation of free radicals which contribute to Thl-
cell suppression [191]. Furthermore, IDO activity causes even
more imbalance in the T-cell subsets by increasing the pro-
portion of T-regulatory [193] and decreasing the proportion
of T-helper 17 cells [194]. In chronically infected hosts, the
dysregulated activation/alterations in the immune regulatory
mechanisms involving IDO lead to a compromised antiviral
response and enhancement of viral replication [195-197]. In
short, chronic IDO activation leads to the immune impair-
ment, whereas IDO inhibition represses viral replication.
Thus, the effects of IDO on the viral replication may in fact
be indirect, being modulated by the disturbances in the virus-
specific immune response.

These series of studies demonstrate that longitudinal
(chronic) oxidative stress has detrimental consequences to
the HIV-1 specific immune response, impairing the capacity
of the body to control viral replication. On the contrary,
suppression of the chronic oxidative stress with restoration of
the antioxidant levels can reestablish the disturbed Th1/Th2
balance and open a possibility to control retroviral infection.

7.4. T-Cell Exhaustion. ROS levels correlate inversely with the
CD4" cell counts [59, 60, 62, 72, 198]. This may relate to a
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decrease in the reduced glutathione pool and the exhaustion
of ROS-scavenging systems of the host cells [68, 70, 199].
It could also be due to the accumulation of DNA damage
in these cells due to both increased production of ROS
and the suppression of the respective DNA repair enzymes
[62]. The molecular interrelations between HIV-induced
oxidative stress and CD4"/CD8" cell exhaustion remain to
be investigated.

7.5. Pathological Consequences of the Nitrosative Stress. HIV
is capable of infiltrating the brain and infecting brain cells.
In the years following HIV infection, patients show signs
of various levels of neurocognitive problems termed HIV-
associated neurocognitive disorders (HAND) which afflict
about half of HIV-infected patients. In Section 71, we
described multiple links between neurological pathologies
in AIDS patients and ROS. It is important to note that the
latter are attributed not only to the oxidative but also to
nitrosative stress and overproduction of nitrosative species
during neuroinflammation [200]. Both processes occur due
to the early direct and indirect effects of the viral proteins
and through the late effects on mitochondrial integrity during
apoptosis. There is clear experimental and clinical evidence
linking the CNS symptoms of HIV with the effects of reactive
nitrogen species (RNS), specifically nitric oxide (NO).

Mammalian cells generate NO as a by-product of NO
synthase (NOS) activity. Neurons express neuronal NOS
(nNOS), a constitutive isoform that synthesizes moderate
amounts of NO; glial cells express inducible NOS (iNOS),
which generates major NO amounts [201]. The nitrosative
species are involved in the posttranslational modification of
the brain proteome. NO is required for regular neuronal
function, is produced by neuronal (nNOS), endothelial
(eNOS), and inducible (iNOS) nitric oxide synthases, and is
an important neurotransmitter in the brain.

At the same time, NO is the main mediator of mitochon-
drial dysfunction associated with HIV central nervous system
symptoms, with an increased production of NO related to
HIV-associated dementia. Nitrosative stress in microglia and
astrocytes can be promoted by the individual viral proteins,
such as Tat [202, 203]. Another viral protein Gp41 (its N-
terminus) induces iNOS protein activity [204]. HIV-1 Gp120
is also involved in the induction of iNOS leading to the
nitrosative stress [205]. Recent study by Mangino et al. in the
murine model suggests a potential role in the promotion of
the neuronal injury of the extracellular Nef which upregulates
the expression of iNOS and production of NO [206].

The data on the effects of RNS outside of the brain is less
“homogenous.” The overproduction of NO and the reduction
of mitochondrial transmembrane potential correlate with the
level of apoptosis in PBMCs of HIV-1 patient [200, 207].
This may be explained by the inhibitory effects of NO on
the electron transport chain in the mitochondria as well as
by the amino acid modifications. Amino acid modifications
ascribed to NO are associated with the S-nitrosylation of cys-
teine and nitration of tyrosine and tryptophan (resulting in 6-
nitro tryptophan or nitrohydroxytryptophan). The latter may
be, at least in part, responsible for the abnormalities in the
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tryptophan pathway in HIV-1 infected individuals with neu-
rological or psychiatric complications [182]. S-Nitrosylation
of phosphatidylinositol 3-kinase (PI3K)/protein kinase B
(Akt) has been demonstrated both in the brains of HIV-1
patients with HAND and in the HIV-Gp120 transgenic mouse
model, leading to decreased Akt activity [208].

Another RNS-centered hypothesis for the mechanism
of neuronal damage following HIV infection involves the
downstream effects of nitrosative radicals produced during
the immune response [209]. Proinflammatory factors (as
iNOS) are released in the astrocytes by the HIV-infected
macrophages [210, 211]. The severity of HIV-related dementia
is correlated with the levels of iNOS expression [212]. This
confirms a link between nitrosative stress and the neuroin-
flammatory environment in the HIV-1 infected brain [212-
214].

HIV-l-infected children with high viral load exhibited
higher NO blood levels than those with viral load below this
threshold [215]. This and other studies in AIDS patients point
at the involvement of NO in the apoptosis and functional
impairment of the lymphocytes [215-217]. Pathophysiolog-
ical significance of these findings was demonstrated by
showing an enhanced effect of NO on HIV-1 replication in
vitro [215]. This study has shown that the addition of NO
donors together with TNF-alpha to mitogen-activated HIV-1-
infected human peripheral blood mononuclear cell (PBMC)
cultures produces a significant increase in viral replication,
whereas the addition of iNOS specific inhibitors suppresses
replication [215]. Altogether, these results suggest that NO
promotes HIV-1 replication, especially in proinflammatory
settings [215], which lines up with similar effects of ROS (as
depicted in Section 6).

However, NO donor compounds present in the human
circulatory system, such as S-nitrosothiols (RSNOs), can
inhibit HIV-1 replication in acutely infected human PBMCs
demonstrating an additive inhibitory effect on HIV-1 repli-
cation with 3'—azidothymidine (AZT) [218]. One of the
explanatory mechanisms might be the inhibition of HIV-
1 protease subjected to S-nitrosation [219, 220]. Thus, in
acute HIV-1 infection, RNS may inhibit viral replication.
Indeed, a study done with the fluorescent probes with an
enhanced sensitivity to NO demonstrated that low NO and
iNOS levels in PBMC from HIV-infected patients correlate
with enhanced viral replication [221]. Interestingly, HIV-1
transgenic rats are also characterized by low NO-hemoglobin,
serum nitrite, serum S-nitrosothiols, and the aortic tissue NO
levels [77]. The latter indicates that the decreased levels of NO
and its downstream products are linked to the direct effects
of the viral proteins [77]. Their propensity to downregulate
levels of RNS may create a microenvironment favouring
(acute) viral infection. These considerations are in line with
findings that HIV can be targeted by the compounds that
affect oxidative status of the central and transitional memory
T-cells: the major cellular reservoirs for HIV [222] (see
Section 8 for an overview).

This set of somewhat contradictory data indicates that,
in HIV-1 infection, the predominant tissue exposed to the
effects of RNS is apparently the brain, while the effects of
RNS on other tissues and organs of HIV-1infected individuals

may be positive and/or negative depending on RNS levels and
duration of exposure.

8. Oxidative Stress and Antiretroviral Therapy

One of the milestone findings in the redox biology of HIV-
1 was the induction of oxidative stress during antiretroviral
therapy (ART). To date, numerous reports show that nucleo-
side and nonnucleoside RT inhibitors, as well as inhibitors of
the viral protease, trigger massive ROS production in various
cell types (e.g., [223-229]). Series of studies reported an
increase in oxidative stress additional to the persistent redox
imbalance associated with HIV-1 infection manifested by an
increase in oxidants and a decrease in antioxidant serum
levels [73, 230, 231]. Specifically, a study done in 84 HIV-
infected patients during a 6-month period of ART demon-
strated a significant increase in serum peroxidation potential,
total hydroperoxide, MDA, and advanced oxidation protein
product levels as well as a decrease in glutathione level,
compared to their levels before the treatment and to healthy
controls [232]. Ngondi et al. as well registered an aggravation
of the oxidative stress by certain ART regimens in the form of
a significant decrease in the levels of GSH (sulthydryl group)
[233]. Again, in patients receiving nonnucleoside reverse-
transcriptase inhibitors, peroxide concentrations were signif-
icantly lower than in those treated with protease inhibitors
[185]. This could be attributed to an enhancement in GSH
utilization or/and to the limited intracellular reduction of
its oxidized form [234]. It is generally acknowledged that
the components of ART may contribute to the development
of cardiovascular diseases and CNS pathologies. Some of
the antiretroviral drugs, such as 2',3'-dideoxycytidine (ddC),
can penetrate the BBB and trigger oxidative stress also in
the brain [235]. Experiments in the ART-exposed cell lines
and laboratory animals demonstrated that the enhanced
production of the oxidized metabolites occurs through the
mitochondrial interference ([225]; reviewed in [73]). Mito-
chondrial dysfunction under ART arises from the altered
replication of mitochondrial DNA and inhibited oxidative
phosphorylation [236]. Some of the abovementioned dys-
functions correlate with the duration of antiretroviral therapy
[237,238]. The exact impact of oxidative stress on the efficacy
of ART and HIV-1/AIDS progression and the molecular
mechanisms of the redox imbalance in ART-treated HIV-
infected individuals are still obscure and require further
comprehensive studies.

Although ART is able to clear viremia and improve the
immunological condition of HIV-infected individuals for
prolonged time, the virus rebounds to levels comparable
to those observed before treatment initiation shortly after
treatment withdrawal due to intactness of the major cellular
reservoirs for HIV, central and transitional memory T-cells
(Teym and Ty, resp.) which harbour the transcriptionally
silent form of viral DNA not affected by classical antiretrovi-
ral drug regimens. Interestingly, novel oxidative stress-based
therapies are arising that target these major cellular HIV
reservoirs that are inaccessible to classical ART. A candi-
date anti-HIV reservoir compound dubbed auranofin (AF)
is a prooxidant gold-based drug that inhibits thioredoxin
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reductases thus affecting cellular/protein redox status [239].
Auranofin was shown to exert a selective “antimemory” effect
by exploiting the baseline oxidative status of lymphocytes
[222]. A study by Chirullo et al. [240] explored the molecular
bases of the effects of auranofin. T, and T, lymphocytes
were shown to have lower baseline antioxidant defenses as
compared with their naive counterparts. AF was able to exert
a prodifferentiating and proapoptotic effect preferentially in
these memory subsets. Namely, AF induced redox-sensitive
cell death pathways initiated by an early activation of the
P38 mitogen-activated protein kinase (p38 MAPK) followed
by the mitochondrial depolarization and finalized by the
burst in intracellular peroxides [240]. AF-induced apoptosis
was inhibited by pyruvate, a well-known peroxide scavenger.
Proapoptotic and prodifferentiating effects involved different
pathways. Similar effect of AF was described for simian
immunodeficiency virus (SIV) in monkey model [241, 242].
Additional effect on T-lymphocyte can be achieved by com-
bining AF with drugs that inhibit glutathione biosynthesis
and lower its level such as buthionine sulfoximine (BSO)
[243]. Using a combination of AE, BSO, and standard ART
drugs, Shytaj et al. achieved complete clearance of SIV
viremia in macaques with a 100% AIDS-free survival for at
least 2 years after discontinuation of the therapy [242, 244].
This data indicates that AF and other drugs inducing redox-
sensitive cell death pathways can be recruited to restrict
viral reservoirs in vivo, limit the “stem-cell-ness” of the Ty
and Tpy pools, and turn these cells into the short-lived
lymphocytes [240].

9. Conclusions and Future Perspectives

In this review, we summarized current knowledge on the fact
that HIV infection leads to a pronounced oxidative stress,
described the mechanisms by which the virus triggers ROS
production, and discussed the impact of HIV on antioxidant
defense systems. In addition, we presented an analysis of
HIV-driven oxidative stress on the associated pathology. All
these data clearly show that reactive oxygen species underlie
a wide spectrum of events in infected cells and tissues. At the
same time, there are still notable gaps in the field that might
become targets for future studies. As such, we can propose the
following subjects. First, many of the multiple sources of ROS
that are activated by HIV may undergo common regulation
and, hence, common prohibitive or stimulative treatment.
Second, the current data on the status of antioxidant defense
systems are rather contradictory, and many efforts are still
required to understand the actual effect of the virus in acute
versus chronic infection, not only in in vitro and animal
model systems. Third, HIV-induced oxidative stress might
impact susceptibility towards other viral infections, and this
question has not yet been properly addressed. Fourth, virus-
triggered ROS production is a strong modulator of the
immune system, a property which needs to be controlled
and that can be targeted for immune suppression of viral
replication. Continuation of these studies would contribute
to the development of efficient antiretroviral treatments and
HIV vaccines.
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