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1. Introduction 

Autism Spectrum Disorder (ASD) is a neurodevelopmental disability that affects a child with symptoms of behavior. 

Childhood-onset of ASD occurs in the first year of life. It begins early in childhood when there is little social interaction 

and poor language development. The number of ASD children is rising annually in Malaysia and worldwide. The Ministry 

of Health (MOH) announced that in Malaysia, One in every 600 children was diagnosed with an autism spectrum disorder 

in 2004 [1]. In the more advanced nations like the United States, the Centers for Disease Control and Prevention (CDC) 

estimates that 1 in every 68 children is diagnosed with ASD, and the prevalence in the United Kingdom (UK) recorded 

that 1 in every 100 children has ASD [2]. Clinical specialist and paediatrics usually perform a continuous character, and 

behavioural evaluation in ASD diagnosis process and these may take a longer time in confirming the diagnoses.  

Abstract: Autism Spectrum Disorder (ASD) is categorized as a neurodevelopmental disability. Having an automated 
technology system to classify the ASD trait would have a huge influence on paediatricians, which can aid them in 
diagnosing ASD in children using a quantifiable method. A novel autism diagnosis method based on a bidirectional 
long-short-term-memory (LSTM) network's deep learning algorithm is proposed. This multi-layered architecture 
merges two LSTM blocks with the other direction of propagation to classify the output state on the brain signal data 
from an electroencephalogram (EEG) on individuals; normal and autism obtained from the Simon Foundation 
Autism Research Initiative (SFARI) database. The accuracy of 99.6% obtained for 90:10 train:test data distribution, 
while the accuracy of 97.3% was achieved for 70:30 distribution. The result shows that the proposed approach had 
better autism classification with upgraded efficiency compared to single LSTM network method and potentially 
giving a significant contribution in neuroscience research. 
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A recorded paediatrics study indicated that a two-years old autistic child is still unable to produce two meaningful 

words which need not to be imitated or even repeated [3]. The exact reasons for the existence of this disorder remain 

unanswered, despite so much research being conducted. Autism Spectrum Disorder diagnoses are very complicated 

because it is not an inherited. ASD is defined as unusual, abnormal and episodic behavior, which typically begins at a 

young age and continues into childhood [4]. Detection is thus extremely unlikely prior to the age of three. Sometimes, 

ASD could also be mistaken with other neurodevelopmental symptoms. Maybe due to the little obvious variations in the 

primary neural conditions itself, this atypical behavior is so difficult to identify.  

The Electroencephalogram (EEG) is a brain activity measurement device representing the brain electromagnetic 

signals state. According to Liu [5], the frequency of autistic children's brain waves shows a decrease in both their 

functional complexity and synchrony with the brain development. Studies carried out in [6–8] observed that there were 

noticeable differences found between the right and the central side of brain areas. Previous studies have shown that there 

is a relationship between autistic and non-autistic brain EEG signals [9–13]. 

Previous research in [8] revealed that the EEG recording could provide information that can benefit scientist in fields 

such as neuroscience compared to functional Magnetic Resonance Imaging (fMRI) due to the higher temporal resolution, 

lower complexity, lower cost and being an acceptable technique.  In addition, the EEG is much superior inaccessibility 

than Magnetoencephalogram (MEG) since the dataset is more widely available [14-16]. As stated in [16], EEG is a useful 

method used to investigate the brain function in healthy individuals and those who are mentally impaired. EEG can 

rigorously analyze rest and active state of brain activity [17]. Additionally, the EEG may reveal which areas of the brain 

are actively involved in particular activities and is effective through it [18-19].  Another way to illustrate this is, for 

example, if you are in a happy mood, it not only causes part of your brain to ‘happy' hormones to be released but that it 

also causes your face to smile or laugh. This is a simplistic illustration of how we are made to respond to brain activity. 

The brain signal of EEG is also a method used to identify changes in brain function.  However, for the ASD individuals, 

it is as recorded otherwise by the EEG signal [20–23]. A study found that the apparently increased brain activation in the 

frontal and temporal lobes was the cause of the symptoms observed in children with autism [10]. Furthermore, a similar 

study indicated that it might be critical for both of these differences to be altered in order for behavioural symptoms of 

ASD to manifest. As stated in [24], ASD is triggered by a lack of functions in the frontal mirror neuron. 

 

2. Methodology 

2.1 Dataset 

An institutional review board (IRB) review from our institution and the approval of the request for the EEG data on 

Simon Foundation Autism Research Initiative (SFARI) base. It was met with general approval after fulfilling the terms 

and conditions of the agreement and making the required statements and disclosures. SFARI obtained initial ethical 

approval for the Simons Variation in Individuals Project (SVIP).   As part of the SVIP, approval was obtained for the 

data collection on individuals with 16p11.2 copy number variants (CNVs) and normal (non-autism) for their research 

data to be shared only with an approved researcher. The finding in this article represents the analyses of a previously 

collected dataset The Simons VIP Consortium, which was obtained via the SFARI upon data request process.  

       An Event-Related Potential (ERP) is the measured brain response that directly results from a specific sensory, 

cognitive, or motor event. The ERP of EEG recording taken in this study based on four tasks which are Visual Evoked 

Potential (VEP), Faces House (HF), Match Mismatch (MTH) and Congruent Incongruent (SEN) task. The dataset used 

in this work was collected on 128-channel HydroCel Geodesic nets at 500Hz sampling rate using NetAmps 300 amplifier. 

Eleven electrodes were removed marked as the missing channels and eye channels (eye blinks and eye movement) 

consists of channel 1,8,14,17,21,25,32,125-128. The remaining 117 channels being processed and performed in 

NetStation at 0.3-30Hz Bandpass filter. There are fourteen normal individuals (their ages 3-14years old) and thirty-nine 

cases (1-11years old). Dataset originally obtained from SFARI were 57 cases and 4 of them were excluded (2 individuals 

from each classes) in this work since contained a poor number of recording trials. Summary of the database is shown in 

Table 1 for each category, together with the number of good trials of four different tasks. The stimuli and procedure were 

as per described in earlier study in [33]. EEG recording and pre-processing steps performed prior to the study consisting 

of the refusal of obvious bad recording trial (three trials in total) based on manual visual inspection. These additional pre-

processing steps were subsequently described in the section on the methodology presented in the following sub-section. 

 

.Table 1 - Description of the EEG database on four different tasks  

Genotype Gender Age No. of Good Trial                                       

Case VEP HF MTH SEN 

Normal 

(Non-autism) 

Male-6 Min:3          910                 267          188    267 

Female-8 Max:14     

Autism Male-22 Min:1        2128                 462          386      576 

 Female-17 Max:11     
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2.2 Proposed Method 

Fig. 1 indicates the principal procedures for the proposed method. The following sections provide thorough 

explanations of each stage in this work.  

 
Fig. 1 - The proposed method structure diagram 

 

2.2.1   Data Segmentation 

In this work, the EEG signals collected from each channel are analyzed for both labels; normal (non-autism) and 

autism. Data obtained from the original SFARI will be converted in the form of MAT-files that contains EEG signals. A 

two variables were loaded into workspace contained Signals with obtained Labels: normal (N) and autism (A). 

Signals are a cell array containing the EEG channels, which totalled 117 channels (after removing all the poor 

channel) for each case. Label is an array of groups containing the necessary ground truth signal labels. For these EEG 

signals of a particular channel, the EEG data signals were segmented from originally 200k signal samples to 5k signal 

samples each and labelled in consecutive order for both as normal and autism. These segmented signals essentially have 

their own labels based on the original type of signal previously present.  

 

2.2.2   Data Pre-processing 

For any deep-learning-based approach, data pre-processing is crucial as the real-world involves incomplete, noisy, 

and inconsistent data. Poor quality of data can lead to poor classification.  

       The training and validation sets were chosen according to the 90:10 and 70:30 data distribution ratios for each patient. 

The dataset is identical in length that is being augmented to train the proposed deep learning algorithm on a bidirectional-

LSTM network, while the remaining normal and autism EEG data has been considered as the testing data to validate its 

output. There were 53 subjects (normal and autism) in total of the EEG data consisting of 117 channels for each case. 

The EEG data distribution is used both to train and test the deep learning model output performance. Listed in Table 2, 

the distribution of training and test data along with the segmented data 

 

Table 2 - Distribution of the segmented data samples 

Genotype 

Case 

Segmented data Distribution 90:10 70:30 

Normal 524 Training 472 367 

(Non-autism)  Test 52 157 

Autism 1565 Training 1408 1096 

  Test 157 469 

 

2.2.3   Bidirectional-LSTM Network 

  The term LSTM refers to a Long-Short-Term-Memory. It is a deep learning system under artificial intelligent (AI). 

It can be used to address issues associated with the Recurrent Neural network (RNN) model, in terms of replacing the 

updates of hidden layers with its mechanism of gates and memory cells. LSTM networks can acquire dependencies of a 

long-term sequences data between the interval of time [32]. As Fig. 2 shows, inside a single LSTM block consists of 

three gates called input, forget and output gates. The input gate decides to specify if present state condition on the block 

is modified using a sequence of input. The forget gate is used to hold or delete the prior condition on the LSTM block 

while the output gate tracks the information output and decides whether the current hidden state is moved to the next 

restatement. 
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Fig. 2 - LSTM internal block structure [32] 

 

The activation function used by these three gates is sigmoid, which produces values between ‘zero’ and ‘one’, 

whereby ‘0’ implies the gate is closed and it passes no information through while ‘1’ does the contrary. During the 

training phase, both bias (b) and weight matrix (w) are updated. The equation for the LSTM gates expressed as: 

 

   ittit bxhwi   ,1                  (1) 

   fttft bxhwf   ,1               (2) 

   ottot bxhwo   ,1                  (3) 

 

where it, ft and ot denotes the gate’s input, forget and the output. The LSTM network typically collects data from the 

previous input, without using data from the future possible input. The bidirectional-LSTM network which made up of 

two separate blocks, not only relay information front-to-back, but also back-to-front data and the output value is computed 

together. Thus, in working with the EEG data that have the pre-and-post dependencies, this deep model can achieve 

excellent performance.   

 

 
Fig. 3 - Proposed bidirectional-LSTM network structure 

 

Fig. 3 demonstrates a deep network of bidirectional-LSTM network is designed. The (ht→) in the forward layer 

portrays the first LSTM block with front-to-back passed information, while the (ht←) represents the backward layer of 

final LSTM block with back-to-front information transferred. The input layer consists of all 117 channels of EEG signal 

while output layer Yt specify the last sequence of output. The sequence in both forward and reverse directions 

bidirectional-LSTM is used in this work (as illustrated in the rectangular box with a dotted line). The brain signal from 

the dataset indicates the one-dimensional (1D) array for each channel, so the input size specified to be sequences of size 

one. An LSTM network with a hidden layer with an output size of 100 and the output of the last element of the sequence 

was specified. 

The architecture of this proposed network allows the information to be saved for a long time in memory units. It 

can also process information in both directions, allowing for the full use of both preceding and following information. 

The input series will then be mapped into 100 features by this proposed network model and the output will be generated 

for the fully connected layer. Finally, two classes labelled as normal and autism were specified by including a fully 

connected layer of size 2, connected by a classification and softmax layers as its activation function. A training option 
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classifier has been developed. The maximum epoch been set to 10 to allow the network to make 10 training passes since 

the dataset larger size in amount., A mini-batch size is set at 150 to ensure a hundred and fifty training signals at a time. 

Since the mini-batches have long sequences, the ‘Execution of environment’ is set to ‘single GPU’ to train the dataset on 

a GPU.  It much faster compared to running by a CPU. The 0.01 of learning rate helped the training process speed up. 

When many pieces of data are being analysed at once, a 1,000-point cycle period is used to divide the signal into smaller 

bits so the computer does not use up all of its memory capacity by looking at too many data. This work also used the 

Adaptive Moment Estimation (ADAM) optimizer since it fits best with RNNs as it requires less memory than the default 

Stochastic Gradient with Momentum (SGDM) solver as the optimizer. 

 

2.2.4   Data Post-processing 

Since EEG signals have previously been tested by maximum epoch, the deep bi-LSTM network will generate a 

sequence of successive decision variables. The proposed network connected to the previously mentioned training option 

and layer architecture were trained using the function of trainingNetwork. As the training set is big, the training phase on 

signal data was processed for several hours. The same processes repeated for a single LSTM network and the comparison 

in these two recorded in the accuracy graph tabulated in Result section. 

2.3 Performance Measure 

 The efficiency of classification is measured in terms of few performance measure such as overall accuracy, 

sensitivity and precision. Confusion matrices are used in classification problems to visualize the output of a classifier on 

a set of data recognized for the true values. The Predicted Class is the signal’s ground-truth label and the Output Class is 

the label the network applied to the signal. Two axes labels reflect the class labels of cases in this study: Normal for 

control case and Autism. The classification performance is visualized in confusion matrix. Table 3 demonstrates the 

possible answers for a prediction and actual class for both cases. 

  

Table 3 - Confusion matrix on Autism prediction 

Actual Class Predicted Class 

Autism Normal 

Autism (A) True Positive (TP) False Negative (FN) 

Control (N) False Positive (FP) True Negative (TN) 

 

The proposed network model's accuracy on the signals was demonstrated through the classification of training data. 

On a given test dataset, the accuracy of a classifier is the percentage that the classifier classifies the test dataset correctly. 

The following statistical indicators used in this study: 

FNFPTNTP

TNTP
Accuracy




  

FNTP

TP
ySensitivit


  

FPTP

TP
ecision


Pr  

 

3. Result and Discussion 

3.1 Data Signal 

Based on the obtained database which were collected on 128-channel HydroCel Geodesic nets sampled at 500Hz 

sampling frequency. Eleven channels have been extracted with originally obtained 128 recorded electrodes; marked as 

missing and eye artifact removal channels as mentioned previously. The remaining 117 channels are being processed, 

and these segments from these signals are represented in Fig. 4 for a single person in both the normal and autism classes. 

As for five thousand of signal sampled data, the autism brain signals are scattered irregularly, while the brain signals of 

normal person occur regularly. 
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Fig. 4 - The plotted figure represents rhythm signals on control (normal) and autism 

 

3.2 Training Results 

Fig. 5(a) and Fig. 5(b) show the accuracy and loss graph for two data distribution training test ratio of 90:10 and 

70:30 on training samples for a bidirectional-LSTM proposed model. 

 

 
 

Fig. 5 - Training progress accuracy and loss for (a) 90:10 distribution; (b) 70:30 distribution 

 

Based on both Fig. 5(a) and Fig. 5(b) on 90:10 and 70:30 training test ratio respectively, the top subplot of the 

training-progress plot represented the training accuracy, which is the classification accuracy on each mini-batch. This 

value typically increases towards a hundred percent as training progresses successfully. The bottom subplot displays the 

graph of training loss, which is the cross-entropy loss on each mini-batch. This value generally reduces to zero as training 

progresses successfully.   

The plots will oscillate between values without trending in a certain upward or downward direction if the training 

is not converged. This oscillation does not improve the training accuracy and does not decrease the training loss. This 

situation can happen after training starts, or after some preliminary improvement in training accuracy, the plots could 

plateau. Training options had to be changed to further converge the network. The network has better learned because 

both MiniBatchSize and InitialLearnRate can be reduced, even though the effects take more time to training. The training 

accuracy of the classifier is over ninety percent, and it took several hours to train at the end of ten epochs. Overall, it took 

123min 35sec of training to complete for 90:10 distributed data. The delivery of training progressed 107min 9 sec at 
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70:30 distribution. Table 4 show the previous work that using the bidirectional-LSTM on EEG signal for different 

approaches. 

 
Table 4 - Bidirectional-LSTM on different approaches 

Ref Case Study Accuracy (%) 

[34] Audio/visual stimuli classification 84.3 

[32] Seizure detection 92.6 

[35] Wind power forecasting 98 

This work Autism Classification 99.6 

 

3.3 Assessment Matrix 

Fig. 6(a) and Fig. 6(b) show the confusion matrix on both train and test for 90:10 distribution. While the confusion 

matrix on both train and test for 70:30 distribution shown in Fig. 7(a) and Fig. 7(b). These figures show Confusion 

Matrices for Bi-LSTM model and the performance evaluation recorded in Table 5 for both data distribution. 

 

 
Fig. 6 - 90:10 distribution (a) train; (b) test                        Fig. 7 - 70:30 distribution (a) train; (b) test 

 

Table 5 - Evaluation performance on both data distribution 

Performance 

(100%) 

90:10 data distribution 70:30 data distribution 

Train Test Train Test 

Accuracy 99.61 99.68 99.41 97.33 

Sensitivity 99.64 99.36 99.91 99.79 

Precision 99.15 100 98.92 95.11 

 

Based on Table 5, the used training data updated the bi-LSTM network is classified in three assessment measure.  

Then, the updated network on testing data is classified and examined the testing accuracy. It is noted that the highest 

precision obtained for the 90:10 of distributed data on tested data while lowest precision on the other distributed data. 

Among three performance assessment, the sensitivity had constant percentage of 99 for both data distributions. While, 

the training accuracy of 99.6% and 99.4%; testing accuracy of 99.7% 97.3% were obtained for 90:10 and 70:30 of data 

distribution respectively, executed on the EEG database. The exact process repeated on a single LSTM model only for 

validation scheme of 90:10 distribution. Performance evaluation was recorded in Table 6 for both LSTM and 

bidirectional-LSTM model and then tabulated in Fig. 8. The bi-LSTM achieved higher accuracy compared to a single 

LSTM model. 

 

Table 6 - Evaluation performance on LSTM and bi-LSTM for 90:10 validation scheme 

Model Accuracy Sensitivity Precision 

LSTM         

             - Training 

 

93.7 

 

93 

 

93.2 

                        - Validation 93.9 92.8 94.7 

Bi-LSTM    

             - Training 

 

99.6 

 

99.6 

 

99.2 

             - Validation 99.7 99.4 100 
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Fig. 8 - The performance assessment on 90:10 validation scheme for both models 

 

4. Conclusions 

This research proposed a unique approach autism diagnosis focused on the LSTM-based blocks of deep learning 

model. The EEG data obtained from the SFARI database were first segmented. This was ideal for nonlinear and non-

stationary issues on the brain signal data. A deep learning algorithm network of bi-LSTM developed for both EEG 

classification, autism and normal (obtained from control individuals), consisting of data training and test distribution 

information and the result has been mutually decided. Over 97 percent accuracy was achieved for both data distribution, 

which showed that the approach proposed has an efficient classification capability and performance improvements over 

a single LSTM method. This study is currently essential and potentially give a significant contribution to neuroscience 

research. With the best accuracy achieved, this will lead to aid the doctors in diagnosing ASD in children using a 

quantifiable method rather than depend solely on behavioral observation on the suspected autistic child. 
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