

INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING VOL. 13 NO. 2 (2021) 177-188

© Universiti Tun Hussein Onn Malaysia Publisher’s Office

IJIE

Journal homepage: http://penerbit.uthm.edu.my/ojs/index.php/ijie

The International
Journal of
Integrated

Engineering
 ISSN : 2229-838X e-ISSN : 2600-7916

*Corresponding author: ongp@uthm.edu.my 177
2021 UTHM Publisher. All rights reserved.
penerbit.uthm.edu.my/ojs/index.php/ijie

Mobile Robot Path Planning using Q-Learning with Guided
Distance and Moving Target Concept

Ee Soong Low1, Pauline Ong1*, Cheng Yee Low1

1Faculty of Mechanical and Manufacturing Engineering,
 Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, MALAYSIA

*Corresponding Author

DOI: https://doi.org/10.30880/ijie.2021.13.02.020
Received 1 January 2020; Accepted 3 December 2020; Available online 28 February 2021

1. Introduction

Many applications and fields in this modern world use mobile robots, such as automated guided vehicles [1, 2], self-
driving vehicles [3-5] and cleaning robots [6, 7]. A path is essential for the normal and smooth operation of the robots. If
an optimized path is given, the efficiency of mobile robots increases gradually. This enables the robots to complete the
given task in a faster and safer manner. Hence, researchers start discovering ways to further improve path planning
process for mobile robots.

Path planning for mobile robots has never been easy. A path enables a robot to move from one point to another
desired point without hitting any obstacles [8]. Q-learning is a reinforcement learning that has been widely applied in
mobile robot path planning [9-18]. Q-learning has the ability to learn a suitable strategy through repetitive iteration. The
strategy is continuously improved through actions made by robots at specific states by giving rewards/penalty to Q-values
based on the taken actions. As the iteration increases, when a robot reaches the same state, Q-learning is able to provide
a better action/solution based on the historical Q-values. Ironically, several weaknesses arise from these advantages. First,
Q-learning consumes high computation time to achieve the optimal path. The computational cost is more critical when
dealing with real-world situation due to large amount of states needed [12]. On the other hand, navigation in the
environment with dynamic obstacles requires even more computation power.

In this regard, several modifications have been introduced to Q-learning in order to enhance its performance, where
one of them is by hybridizing the optimization algorithm with Q-learning [14, 19-23]. Integration of improved particle
swarm optimization with perturbed velocity into Q-learning by Das has improved the convergence rate and global search
ability [20]. As a result, robots are able to operate smoothly in an environment with multiple obstacles. In addition to
particle swarm optimization (PSO), artificial bee colony (ABC) optimization algorithm has been utilized to improve the
global search ability of Q-learning in solving multirobot navigation problem [24]. Other than direct implementation of
optimization algorithm, adaptive memetic algorithm (AMA) is used as a medium between Q-learning and optimization
algorithm. AMA is hybridized with ABC optimization in [24] and differential evolution (DE) algorithm in [14], and

Abstract: Classical Q-learning algorithm is a reinforcement of learning algorithm that has been applied in path
planning of mobile robots. However, classical Q-learning suffers from slow convergence rate and high computational
time. This is due to the random decision making for direction during the early stage of path planning. Such weakness
curtails the ability of mobile robot to make instantaneous decision in real world application. In this study, the distance
aspect and moving target concept were added to Q-learning in order to enhance the direction decision making ability
and bypassing dead end. With the addition of these features, Q-learning is able to converge faster and generate
shorter path. Consequently, the proposed improved Q-learning is able to achieve average improvement of 29.34-
94.85%, 18.29-29.69% and 75.76-99.50% in time used, shortest distance and total distance used, respectively.

Keywords: Guided distance, moving target, mobile robot, path planning, Q-learning, reinforcement

http://penerbit.uthm.edu.my/ojs/index.php/ijie

Ee Soong Low et al., International Journal of Integrated Engineering Vol. 13 No. 2 (2021) p. 176-188

178

subsequently, the hybridized AMA is integrated with Q-learning. Besides improvement in runtime and accuracy, the
proposed algorithm outperforms PSO and genetic algorithm (GA) in all simulations. Besides, the abilities of Q-learning
in exploration and exploitation are refined through the introduction of metropolis criterion from simulated annealing (SA)
algorithm [19]. This refinement prevents Q-learning from excessive exploitation while enhancing the convergence
performance.

Artificial neural network (ANN) is another aspect that has been used to improve Q-learning in path planning [17,
25]. Duguleana and Mogan [26] use Pos-Net neural network to determine the next action by using current time, current
state and obstacle detection as references. Experimental results show that better convergence and local minimum
avoidance are achieved, even in an environment full of dynamic and static obstacles. On the other hand, back-propagation
neural network is implemented by Huang et. al for calculation of Q-values [27]. This has significantly accelerated the
learning rate of Q-learning while preserving the obstacle avoidance ability.

It has been reported in literature that the abilities of Q-learning can be improved by including additional information,
such as global knowledge or distance. The studies in [28, 29] reported that including the information of distance between
robots and ball enables the robots to identify which robot is the closest to the ball for modular Q-learning and adaptive
Q-learning in soccer robots. The chosen robot will act as attacker while others will be side kickers and defenders. This
will provide the robots a more refined coordination, and enhance cooperation among soccer robots through role switching.
The results show that soccer robot team with these algorithms scores better than others. On the other hand, Euclidean
distance is used in the formation of fitness function in path planning of mobile robot [20]. In [20], the Euclidean distance
defines the distance between robots and distance between current position and desired position. For multirobot case in
[20], Q-learning with improved particle swarm optimization and differentially perturbed velocity (QIPSO-DV) is used
to optimize the fitness function of multirobot. It has been demonstrated that the time taken and space complexity are
greatly reduced by using classical Q-learning (CQL) as reference. Besides, QIPSO-DV is able to provide better
performance in evaluation function of average total trajectory path travelled (ATTPT), in comparison with IPSO-DV,
PSO and CQL. The better performance in ATTPT is, the lower travelling time and smaller direction fluctuation are.

In order to improve Q-learning, metric of distance and moving target concept will be added into Q-learning in this
work. The improved Q-learning (IQL) model will be able to determine the closest direction towards the target through
metric of distance and avoid local minimum through moving target concept, and thus, improving the convergence rate.

This paper is organized as follows. First, Q-learning is introduced in Section 2, followed by the implementation of
metric of distance and moving target concept in Section 3. Next, in Section 4, results and discussion of the proposed IQL
are presented. Lastly, the conclusion of this work is made in Section 5.

2. Classical Q-Learning

CQL, developed by Watkins in 1992 [10], falls under the category of model-free reinforcement learning. The model
of CQL is formed through continuous learning in an environment by performing actions, evaluating the actions and
calculating the rewards. The Q-table is used to store the reward values (Q-values). The historical Q-values will be recalled
when the agent or robot reaches the same state. The process of updating the Q-values is repeated until the agent reaches
the goal. As the iterations increase, the CQL is able to provide better result when the robot experiences the same state for
multiple times.

The Q-value is updated using:

 1 1(,) (,) max (,) (,)i i i i i i i i ia
Q s a Q s a r Q s a Q s aα γ + +

 = + + −
 (1)

where (,)i iQ s a refers to Q-value with state, is and action, ia at interval i . α represents the learning rate, γ
represents the discount factor and ir represents the reward given at interval i . 1 1max (,)i ia

Q s a+ + represents the highest

Q-values among all action-state sets at interval 1i + . The pseudo code of CQL is presented in Algorithm 1 (Table 1).
When the CQL moves on to the next state, the decision will be based on the maximum Q-values among the next

states. However, when multiple states have the same maximum Q-values, random selection will be done. This situation
becomes a drawback in the initial stage of Q-learning where all Q-values are initially zero. The random selection causes
low convergence rate in the initial stage. Therefore, the metric of distance is integrated into CQL in order to enhance the
convergence rate in this study.

Table 1 - Classical Q-Learning algorithm
1. Initiate all Q-values, (,)Q s a in Q-table which is zero
2. Select a starting state, 1 1(,)Q s a
3. while (iteration < max iteration or goal is not achieved)

Ee Soong Low et al., International Journal of Integrated Engineering Vol. 13 No. 2 (2021) p. 176-188

179

4. Select an action, a within the available actions in the current state according to the highest
Q-value in the next state (randomly choose one if more than 1 state is having Q-values
which is highest)

5. Perform the selected action, a and reward or penalty, r will be given
6. Update the Q-value using Equation (1)
7. Move the state to new state, s′
8. end while

3. Methodology

In this section, the metric of distance and moving target concept are introduced. The metric of distance measures the
distance between target and robot position as reference for Q-learning to enable better convergence. The escape
mechanism is introduced at the same time to allow robots to break free from local minimum. In addition, moving target
concept further enhances the path planning by bypassing the local minimum area.

3.1 Formulation of Metric of Distance

Several rules and assumptions were made for the designed metric of distance, which are:
• The location of robot and target are known
• There are eight possible actions for the robot to select for the next state: (i) North, (ii) North-east, (iii)

North-west, (iv) West, (v) East, (vi) South, (vii) South-east and (viii) South-west
• The environment is modelled into grid in Cartesian plan. Robot motion is limited by grid to grid motion.

The maximum unit for x-axis and y-axis motion of robot is 1 unit
The metric of distance is defined as the total distance from robot to the next state, and the next state to the target,

which is expressed as:
 argdistance distance distancetotal curr next next t− −= + (2)

The distancetotal represents total distance, distancecurr next− represents the distance between the robot’s current position

with next state position, and argdistancenext t− represents the distance between next state position with target’s position.

Particularly, the distancecurr next− is expressed as:

 () ()2 2distancecurr next next curr next currx x y y− = − + − (3)

while argdistancenext t−− is expressed as:

 () ()2 2
distancenext targ targ next targ nextx x y y− = − + − (4)

where x is the x-axis position, y is the y-axis position, next is the next state position and targ is the target’s position.
The idea metric of distance is illustrated in Figure 1.

 Fig. 1 - Metric of distance

Ee Soong Low et al., International Journal of Integrated Engineering Vol. 13 No. 2 (2021) p. 176-188

180

3.2 Applying of Metric of Distance Into CQL
 For the IQL, choosing the next state was no longer based on the maximum Q-value from the available possible

states. Instead, the next state was selected based on the available mode. In this case, two modes were introduced, which
are:

• Default mode: The metric of distance was enacted in the selection of the next state.
• Stuck mode: The escape mechanism was enacted.
The default mode was implemented most of the time during the operation of IQL, except when the robot was stuck

in a local minimum. For the default mode, the next state was selected based on the lowest total distance among the
next possible states. Therefore, the total distance of next possible states was calculated beforehand when selecting the
next state.

However, the IQL lost its ability to escape from the dead end or local minimum when the distance of metric was
applied. This is due to the location of dead end which tends to be the shortest distance towards the target. As a result,
the stuck mode was introduced to prevent the IQL from getting trapped in the local minimum. The stuck mode will be
activated when a dead end is found. The detection of dead end is based on comparing the total distance of the selected
next state and the lowest stored total distance. When the total distance of next state is equal or lower than the shortest
distance, it means that the robot encounters a dead end.

The dead end situation is illustrated in Figure 2, where the robot is located at the position of the lowest total distance.
The next available states are not possible to be lower than the lowest total distance. Therefore, for IQL, when the total
distance of next available state is equal or higher than the lowest total distance for 4 consecutive iterations, the stuck
mode will be activated to replace the default mode until the total distance of the next state is shorter than the lowest total
distance.

In stuck mode, if all the Q-values of next states are zero, the IQL will select the next state randomly from all possible
next states. Otherwise, the next possible state with the highest Q-values is selected. The operation of stuck mode when
the next state is selected randomly is presented in Figure 3.

In order to terminate the stuck mode, the total distance of next state must be shorter than the lowest total distance.
When a robot has escaped from the local minima, the total distance of the next state will be lower than the lowest total
distance. Figure 4 demonstrates stuck mode is deactivated as the total distance of next state is lower than the recorded
lowest total distance.

Fig. 2 - Dead end encountered by robot Fig. 3 - Random motion when stuck mode
activated

Ee Soong Low et al., International Journal of Integrated Engineering Vol. 13 No. 2 (2021) p. 176-188

181

Fig. 4 - Deactivation of stuck mode

3.3 Applying of Moving Target Into CQL

Although the IQL is able to escape from dead end by activating the stuck mode, the generated path will follow the
trace of the agent during the learning stage. Therefore, the final path will still be tangling around the dead end prior to
moving towards the target position. The concept of moving target was introduced in order to solve this limitation. In this
regard, a virtual target was created to act as a real target in the modelled environment. Initially, the virtual target was at
the same position as the target. For each iteration, the virtual target moved to the last step before the robot reached the
virtual target. As the iteration increased, the virtual target would get closer to the initial position. When the virtual target
reached the entry of a dead end, the robot bypassed it, as the total distance towards the virtual target became shorter than
the total distance towards the dead end. Thus, the generated path was able to bypass the local minimum. These processes
are presented in Figure 5 and Figure 6.

The transition of position of virtual target is formulated as follows:

,

, 1 1,

step iteration

n i n i

x
x x+ −= (5)

,

, 1 1,

step iteration

n i n i

y
y y+ −= (6)

where x is x-coordinate, y is y-coordinate and n is the last step for iteration i .
The pseudocode of IQL is presented in Algorithm 2 (Table 2).

Fig. 5 - Path planned without moving target Fig. 6 - Changes in path planned with moving
target

Table 2 - Q-learning with guided distance

1. Initiate all Q-values, (,)Q s a in Q-table which is zero
2. Select a starting state, 1 1(,)Q s a
3. while (iteration < Max iteration)

Ee Soong Low et al., International Journal of Integrated Engineering Vol. 13 No. 2 (2021) p. 176-188

182

 while (goal is not achieved)
4. Calculate next all action-states total distance
5. if (total distance < previous lowest distance)
6. Replace previous lowest distance with total distance
7. Reset stuck status
8. else
9. stuck status = stuck status + 1
10. end if
11. if (stuck status >= 4)
12. if (one of the Q-value of possible next states > 0)
13. Select an action, a within the available actions in the current state according to the highest Q-

value in the next state (randomly choose one if more than 1 state is having Q-values which is
highest)

14. else
15. Select an action, a randomly within the available actions in the current state
16. end if
17. else
18. Select an action, a within the available actions in the current state according to the lowest

total distance
19. end if
20. Perform the selected action, a and reward or penalty, r will be given
21. Update the Q-value using Equation (1)
22. Move the state to new state, s′
 end while
23. Move virtual target to robot last step’s position using Equations (5) and (6)
 end while
24. end while

3.4 Experimental Setup

The proposed IQL was compared with CQL in order to observe the performance of IQL. Simulation was done for
both algorithms in four distinct maps by using MATLAB software. Some of the maps were referred from [30]. Table 3
summaries the setup of the simulation, including the characteristics of maps and the used parameters in both algorithms.

Table 3 - Setup of simulation and parameters for both algorithm

Parameter Value
Map size 20x20 unit
Initial location (1,20)
Target location (20,1)
α 0.1
γ 0.7
Iteration 300
Number of run 30

Both algorithms are evaluated based on the following criteria:

1. The time used to finish each run
2. The total distance used to finish each run
3. The shortest distance used in 30 runs

4. Results And Discussions

This subsection discusses the optimal paths found by IQL and CQL in four different maps. The optimal path was
determined by selecting the result with the shortest distance in 30 runs.

Ee Soong Low et al., International Journal of Integrated Engineering Vol. 13 No. 2 (2021) p. 176-188

183

4.1 Map 1
Map 1 is made up of fifteen equal sized square shaped obstacles, as shown in Figure 7. Multiple narrow paths existed

in between the obstacles due to tight arrangement of obstacles. Passing through these narrow paths has thus become a
challenge for the robot with condition of avoiding collision with obstacles.

By observing paths planned by both algorithms, both paths have similarity in terms of general shape. However, the
path planned by CQL had sharp turnings around the starting point and target point. Thus, the robot suffered drastic
changes in acceleration at both points for CQL that caused jerking.

Table 4 presents the comparison between CQL and IQL in terms of time used, shortest distance used and total
distance used for map 1 in 30 runs. Referring to Table 4, it can be seen that the IQL was able to achieve average
improvement of 94.85% in map 1 in terms of the time used to find the optimal path. The large improvement in time taken
showed that metric of distance was able to guide the robot towards the target effectively.

Other than time used, the average shortest distance attained by IQL has been improved by 29.69% compared to CQL.
Moreover, it can be seen that the shortest path found by the IQL was the same for all simulations (standard deviation of
0). This is due to no dead end that existed in map 1, therefore stuck mode has not been activated in all 30 runs. The
absence of random selection of next state behaviour in stuck mode eliminated the fluctuation in the path taken.

The total distance taken by the IQL to reach the target position has been improved by 99.50% compared to CQL.
The significant reduction in total distance confirmed the effectiveness of metric of distance in reducing randomized
motion and guiding robot towards target once again. Apart from that, zero standard deviation of IQL occurred in
evaluation of total distance used due to there is no local minima in map 1 environment.

In comparison with the attained improvements for time taken and total distance, the achieved improvement for the
shortest distance was the lowest for IQL. This might due to the paths found by CQL and IQL were similar in this map.

4.2 Map 2

Figure 8 shows the optimal path obtained by CQL and IQL for map 2. Map 2 consists of three collateral walls located
in opposite positions. Consequently, such arrangement forced the robot to travel in multiple S-shaped paths.

From Figure 8, it can be seen that the path formed by CQL was curvy, and had several U-turns at (5,17) and (14,9).
This was due to the existence of dead end at the first wall and the third wall. On the other hand, the IQL was able to
bypass both dead ends smoothly, and travelled in the path mostly made up of straight line. The path generated by the IQL
truly presented the usefulness of the moving target concept in bypassing the dead end. The robot was able to travel from
edge to edge of obstacles regardless of existence of dead end.

Table 5 presents the comparison between CQL and IQL in terms of time used, the shortest distance used and the
total distance used for map 2 in 30 runs. In terms of the time used, the CQL consumed more time to reach the target
position, which was 0.7958s in average. The less satisfactory performance of CQL may be due to large amount of free
spaces that existed in map 2 compared to other maps full of obstacles. When the free space increased, the CQL had more
available next states to consider. The worst was the computational complexity that increased exponentially as the free
space increased. On the other hand, the IQL used 0.2808s to complete this map in average, with improvement of 64.72%
compared to CQL.

(a) (b)
Fig. 7 - Optimal path planned by (a) CQL and (b) IQL for map 1

Ee Soong Low et al., International Journal of Integrated Engineering Vol. 13 No. 2 (2021) p. 176-188

184

Table 4 - Comparison of both algorithms for map 1
Evaluati
on

Time used Shortest distance used Total distance used

Algorith
m

CQL IQL Impro
ve-
ment
(%)

CQL IQL Impro
ve-
ment
(%)

CQL IQL Impro
ve-
ment
(%)

Total (30) 12.777
8

0.6585 94.85 1246.4
449

876.39
61

29.69 213131
1

10681 99.50

Minimum 0.3044 0.0140 95.41 31.799
0

29.213
2

8.13 50708 356 99.30

Average 0.4259 0.0219 94.85 41.548
2

29.213
2

29.69 71044 356 99.50

Maximu
m

0.6171 0.0599 90.30 49.355
3

29.213
2

40.81 91550 356 99.61

S.D. 0.0785 0.0093 88.21 3.9520 0.0000 100.00 10540 0 100.00

While that, for the shortest distance and the total distance used, the IQL had made an average improvement of
26.86% and 88.38%, respectively. The improvement was in terms of the shortest distance that remained low compared
to the time used and the total distance. However, the improvement in total distance used remained high, with the
improvements of 84.81-90.41% attained.

4.3 Map 3

In map 3, multiple walls were used to form wall traps that divided the map into several parts although large gaps
were provided for the robot to access from one part to another. The optimal paths generated by both algorithms for map
3 are shown in Figure 9. The path planned by CQL was curvy, and had a few sharp 90° edges such as edge located at
(15,10) and another edge located at (11,12), while the path planned by the IQL was mostly made up of straight lines such
as straight line located at (5,16) and only one sharp 90° edge at (15,10). A curvy path indicates that the robot has to travel
further in order to reach the destination. This can be observed in Table 4 that CQL used 43.4567 units in average in terms
of the shortest distance used compared to IQL which used 35.5081 units in average.

(a) (b)
Fig. 8 - Optimal path planned by (a) CQL and (b) IQL for map 2

Ee Soong Low et al., International Journal of Integrated Engineering Vol. 13 No. 2 (2021) p. 176-188

185

Table 5 - Comparison of both algorithms for map 2
Evaluatio
n

Time used Shortest distance used Total distance used

Algorith
m

CQL IQL Improv
e-ment

(%)

CQL IQL Improv
e-ment

(%)

CQL IQL Improv
e-ment

(%)
Total (30) 23.874

8
8.423

0
64.72 1485.363

7
1086.364

6
26.86 356036

1
41387

3
88.38

Minimum 0.5844 0.201
7

65.49 40.3848 33.8995 16.06 88409 8481 90.41

Average 0.7958 0.280
8

64.72 49.5121 36.2122 26.86 118679 13796 88.38

Maximum 1.0547 0.393
0

62.73 59.3553 39.5563 33.36 157402 19586 87.56

S.D. 0.1217 0.053
0

56.48 4.5299 1.1121 75.45 18228 2768 84.81

Table 6 presents the comparison between CQL and IQL in terms of time used, shortest distance used and total

distance used for map 3 in 30 runs. The average improvement made by IQL in terms of time used for map 3 was
considered low, which is 29.34%. The drop in performance of IQL was due to the dead end located at (20,5). This dead
end was different from map 2 as the dead ends in map 2 did not have a border that prevented the robot from escaping
from the dead end. The border located at (14,6) in map 3 heightened the difficulty for the robot to escape from the dead
end. The robot had to travel in the opposite direction (downward) in order to bypass the border. As a result, the average
improvement made by IQL compared to CQL in map 3 was the lowest among all maps in all evaluations. In spite of
that, no improvement (-40.40%) was made in standard deviation by IQL in map 3. The poor performance of IQL in map
3 for standard deviation may be due to more than one available path towards the target. The IQL may select the path
above the ‘T’ shaped wall or below the ‘T’ shaped wall. The existence of two available paths produced two different
paths with different time used for the robot to complete. The divergence in path occurred when the virtual target was
moving. When the path diverged, different dead ends were met by robot at different locations. Although IQL triggered
the stuck mode wherever it met a dead end, the next state was selected randomly for a new dead end as stated in Section
3.2. This is because the surrounding Q-values were zero for new dead end. This randomized motion might take longer
time to escape from the dead end.

Aside from average improvement of time used, the average improvement in terms of the shortest distance was
merely 18.29%, and the average total distance used was 75.76%. Through observation for trend of improvement in terms
of the shortest distance in map 1 and map 2, it was not surprising that the improvement remained low. While for the
improvements made by the IQL for the total distance used in map 3, even though the improvement was not as significant
as in other maps, it was still acceptable, with improvement of 75.76% attained for all 30 runs.

(a) (b)

Fig. 9 - Optimal path planned by (a) CQL and (b) IQL for map 3

Ee Soong Low et al., International Journal of Integrated Engineering Vol. 13 No. 2 (2021) p. 176-188

186

Table 6 - Comparison of both algorithms for map 3
Evaluatio
n

Time used Shortest distance used Total distance used

Algorith
m

CQL IQL Improv
e-ment

(%)

CQL IQL Improv
e-ment

(%)

CQL IQL Improv
e-ment

(%)
Total (30) 22.584

1
15.958

5
29.34 1303.699

7
1065.241

8
18.29 333733

6
80913

4
75.76

Minimum 0.4518 0.2255 50.08 38.6274 33.2132 14.02 67110 11309 83.15
Average 0.7528 0.5320 29.34 43.4567 35.5081 18.29 111245 26971 75.76
Maximu
m

1.0424 0.9925 4.78 50.2843 39.2132 22.02 156567 50742 67.59

S.D. 0.1417 0.1990 -40.40 3.1936 1.5855 50.35 21030 10330 50.88

4.4 Map 4

Map 4 has a few similar wall traps as in map 3 with addition of several different obstacles. As the maps were alike,
same problems were encountered by the CQL. The paths generated by the CQL were curvy, and had a few sharp 90°
edges such as in edge located at (12,12), while the paths planned by IQL were mostly made up of straight line. In fact,
there was no sharp 90° edge for the IQL in map 4. However, as opposed to map 3, the IQL was able to achieve better
average improvement in map 4. Even though the existence of the same dead end located at (14,6) remained, the IQL took
the upper path when avoiding obstacles in map 4. By maneuvering the robot to the upper path, the dead end can be
avoided and bypassed easily, thus, saving time and travelled distance in order to escape from the dead end.

Table 7 presents the comparison between CQL and IQL in terms of time used, shortest distance used and total
distance used for map 4 in 30 runs. Although the improvement in time used was attained with the average improvements
of 75.81%, the same problem was faced by IQL for map 4 with -9.76% of improvement in standard deviation. For map
4, the robot can move towards the target point by taking the path above the triangle obstacle located at (11,9) or taking
the path below the triangle obstacle. Diverging in path taken produced a huge difference in time taken. The differences
can be observed in Table 7 when IQL was able to complete the run with minimum time of 0.0284 (without diverging
path), but with maximum of 0.4578 (with diverging path).

Aside from that, the improvement in terms of the shortest distance by IQL was 25.64% in map 4. The low
improvement was within expectation. In spite of that, zero standard deviation in finding the shortest distance used was
also experienced by IQL in map 4, similar to map 1. Even though there was a dead end in map 4 located at (15,5), the
final path (upper path) selected in each run by IQL did not go through the dead end. Thus, the shortest path for each run
did not fluctuate. As for the total distance used, 92.17% improvement was made by IQL in map 4. The improvement was
more than 90%

(a) (b)
Fig. 10 - Optimal path planned by (a) CQL and (b) IQL for map 4

Ee Soong Low et al., International Journal of Integrated Engineering Vol. 13 No. 2 (2021) p. 176-188

187

Table 7 - Comparison of both algorithms for map 4
Evaluatio
n

Time used Shortest distance used Total distance used

Algorith
m

CQL IQL Improv
e-ment

(%)

CQL IQL Improv
e-ment

(%)

CQL IQL Improv
e-ment

(%)
Total (30) 19.373

4
4.687

2
75.81 1225.817

5
911.543

3
25.64 281191

9
22004

9
92.17

Minimum 0.4427 0.028
4

93.57 34.6274 30.3848 12.25 64626 1064 98.35

Average 0.6458 0.156
2

75.81 40.8606 30.3848 25.64 93731 7335 92.17

Maximum 0.9453 0.457
8

51.57 48.5269 30.3848 37.39 120041 22478 81.27

S.D. 0.1064 0.116
8

-9.76 3.6700 0.0000 100.00 14402 5692 60.48

5. Conclusion
To alleviate the slow convergence of CQL, distance of metric and moving target concept are proposed in the IQL.

Both algorithms are simulated and compared in four different environments full of obstacles with various shapes. The
results indicate that IQL outperforms the CQL. The average improvements of time used and shortest distance used
ranging from 29.34% to 94.85% and from 18.29% to 29.69% are made by IQL, respectively. Besides that, the outstanding
average improvements are achieved by IQL for total distance used ranging from 75.76% to 99.50%.

Other than that, future research will attempt to verify the simulation results in real-world mobile robot path planning.

Acknowledgement
The authors would like to express the deepest appreciation to Universiti Tun Hussein Onn Malaysia, for funding

this project through the GPPS (Vot H034). Additional support from Ministry of Higher Education Malaysia in the form
of Fundamental Research Grant Scheme (FRGS/1/2018/ICT02/UTHM/02/2 Vot K070) is also gratefully acknowledged.

References
[1] L. Sabattini, V. Digani, C. Secchi, G. Cotena, D. Ronzoni, M. Foppoli and F. Oleari, “Technological roadmap

to boost the introduction of agvs in industrial applications,” In: Intelligent Computer Communication and
Processing (ICCP), 2013 IEEE International Conference on: IEEE, pp 203-8, 2013

[2] Y. Song-hua, “Trajectory Tracking and Control of Logistics AGV [J],” Modular Machine Tool & Automatic
Manufacturing Technique, vol. 6, pp. 022, 2008

[3] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L.D. Jackel, M. Monfort, U. Muller
and J. Zhang, “End to end learning for self-driving cars,” arXiv preprint arXiv:1604.07316, 2016

[4] S. Thrun, “Toward robotic cars,” Communications of the ACM, vol. 53, pp. 99-106, 2010
[5] C. Häne, T. Sattler and M. Pollefeys, “Obstacle detection for self-driving cars using only monocular cameras

and wheel odometry,” In: Intelligent Robots and Systems (IROS), 2015 IEEE/RSJ International Conference
on: IEEE, pp 5101-8, 2015

[6] C. Hofner and G. Schmidt, “Path planning and guidance techniques for an autonomous mobile cleaning robot,”
In: Intelligent Robots and Systems' 94.'Advanced Robotic Systems and the Real World', IROS'94. Proceedings
of the IEEE/RSJ/GI International Conference on: IEEE, pp. 610-7, 1994

[7] T. Aasen, Mobile cleaning robot for floors. Google Patents, 2005
[8] X. Liu and D. Gong, “A comparative study of A-star algorithms for search and rescue in perfect maze,” In:

Electric Information and Control Engineering (ICEICE), 2011 International Conference on: IEEE, pp 24-7,
2011

[9] T. Dean, K. Basye and J. Shewchuk, “Reinforcement learning for planning and control,” Machine learning
methods for planning, pp. 67-92, 1992

[10] C.J. Watkins and P. Dayan, “Q-learning,” Machine learning, vol. 8, pp. 279-92, 1992
[11] J. Xiao, Z. Michalewicz, L. Zhang and K. Trojanowski, “Adaptive evolutionary planner/navigator for mobile

robots,” IEEE transactions on evolutionary computation, vol. 1, pp. 18-28, 1997

Ee Soong Low et al., International Journal of Integrated Engineering Vol. 13 No. 2 (2021) p. 176-188

188

[12] A. Konar, I.G. Chakraborty, S.J. Singh, L.C. Jain and A.K. Nagar, “A deterministic improved Q-learning for
path planning of a mobile robot,” IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 43, pp.
1141-53, 2013

[13] A. Konar, I. Goswami, S.J. Singh, L.C. Jain and A.K. Nagar, “A Deterministic Improved Q-Learning for Path
Planning of a Mobile Robot,” IEEE Trans. Systems, Man, and Cybernetics: Systems, vol. 43, pp. 1141-53,
2013

[14] P. Rakshit, A. Konar, P. Bhowmik, I. Goswami, S. Das, L.C. Jain and A.K. Nagar, “Realization of an adaptive
memetic algorithm using differential evolution and q-learning: a case study in multirobot path planning,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 43, pp. 814-31, 2013

[15] D-H. Kim, Y-J. Kim, K-C. Kim, J-H. Kim and P. Vadakkepat, “Vector field based path planning and Petri-net

based role selection mechanism with Q-learning for the soccer robot system,” Intelligent Automation & Soft
Computing, vol. 6, pp. 75-87, 2000

[16] C. Chen, H-X. Li and D. Dong, “Hybrid control for robot navigation-a hierarchical Q-learning algorithm,”
IEEE Robotics & Automation Magazine, vol. 15, 2008

[17] H. Xiao, L. Liao and F. Zhou, “Mobile robot path planning based on q-ann,” In: Automation and Logistics,
2007 IEEE International Conference on: IEEE, pp. 2650-4, 2007

[18] E.S. Low, P. Ong and K.C. Cheah, “Solving the optimal path planning of a mobile robot using improved Q-
learning,” Robotics and Autonomous Systems, vol. 115, pp. 143-61, 2019

[19] M. Guo, Y. Liu and J. Malec, “A new Q-learning algorithm based on the metropolis criterion,” IEEE
Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 34, pp. 2140-3, 2004

[20] P. Das, H. Behera and B. Panigrahi, “Intelligent-based multi-robot path planning inspired by improved classical
Q-learning and improved particle swarm optimization with perturbed velocity,” Engineering Science and
Technology, an International Journal, vol. 19, pp. 651-69, 2016

[21] C-F. Juang and C-M. Lu, “Ant colony optimization incorporated with fuzzy Q-learning for reinforcement fuzzy
control,” IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, vol. 39, pp. 597-
608, 2009

[22] P. Muñoz, R. Barco and I. de la Bandera, “Optimization of load balancing using fuzzy Q-learning for next
generation wireless networks,” Expert systems with applications, vol. 40, pp. 984-94, 2013

[23] M. Khajenejad, F. Afshinmanesh, A. Marandi and B.N. Araabi, “Intelligent particle swarm optimization using
Q-learning,” In: Proc. IEEE Swarm Intell. Symp: Citeseer, pp 7-12, 2006

[24] P. Rakshit, A. Konar, S. Das and A.K. Nagar, “ABC-TDQL: An adaptive memetic algorithm,” In: Hybrid
Intelligent Models and Applications (HIMA), 2013 IEEE Workshop on: IEEE, pp. 35-42, 2013

[25] C. Li, J. Zhang and Y. Li, “Application of artificial neural network based on q-learning for mobile robot path
planning,” In: Information Acquisition, 2006 IEEE International Conference on: IEEE, pp. 978-82, 2006

[26] M. Duguleana and G. Mogan, “Neural networks based reinforcement learning for mobile robots obstacle
avoidance,” Expert Systems with Applications, vol. 62, pp. 104-15, 2016

[27] B-Q. Huang, G-Y. Cao and M. Guo, “Reinforcement learning neural network to the problem of autonomous
mobile robot obstacle avoidance,” In: Machine Learning and Cybernetics, 2005. Proceedings of 2005
International Conference on: IEEE, pp. 85-9, 2005

[28] K-H. Park, Y-J. Kim and J-H. Kim, “Modular Q-learning based multi-agent cooperation for robot soccer,”
Robotics and Autonomous Systems, vol. 35, pp. 109-22, 2001

[29] K-S. Hwang, S-W. Tan and C-C. Chen, “Cooperative strategy based on adaptive Q-learning for robot soccer
systems,” IEEE Transactions on Fuzzy Systems, vol. 12, pp. 569-76, 2004

[30] Z. Yijing, Z. Zheng, Z. Xiaoyi and L. Yang, “Q learning algorithm based UAV path learning and obstacle
avoidence approach,” In: Control Conference (CCC), 2017 36th Chinese: IEEE, pp. 3397-402, 2017

	Abstract: Classical Q-learning algorithm is a reinforcement of learning algorithm that has been applied in path planning of mobile robots. However, classical Q-learning suffers from slow convergence rate and high computational time. This is due to the...
	Abstract: Classical Q-learning algorithm is a reinforcement of learning algorithm that has been applied in path planning of mobile robots. However, classical Q-learning suffers from slow convergence rate and high computational time. This is due to the...
	Keywords: Guided distance, moving target, mobile robot, path planning, Q-learning, reinforcement

