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1. Introduction 

Many applications and fields in this modern world use mobile robots, such as automated guided vehicles [1, 2], self-
driving vehicles [3-5] and cleaning robots [6, 7]. A path is essential for the normal and smooth operation of the robots. If 
an optimized path is given, the efficiency of mobile robots increases gradually. This enables the robots to complete the 
given task in a faster and safer manner. Hence, researchers start discovering ways to further improve path planning 
process for mobile robots.  

Path planning for mobile robots has never been easy. A path enables a robot to move from one point to another 
desired point without hitting any obstacles [8]. Q-learning is a reinforcement learning that has been widely applied in 
mobile robot path planning [9-18]. Q-learning has the ability to learn a suitable strategy through repetitive iteration. The 
strategy is continuously improved through actions made by robots at specific states by giving rewards/penalty to Q-values 
based on the taken actions. As the iteration increases, when a robot reaches the same state, Q-learning is able to provide 
a better action/solution based on the historical Q-values. Ironically, several weaknesses arise from these advantages. First, 
Q-learning consumes high computation time to achieve the optimal path. The computational cost is more critical when 
dealing with real-world situation due to large amount of states needed [12]. On the other hand, navigation in the 
environment with dynamic obstacles requires even more computation power. 

In this regard, several modifications have been introduced to Q-learning in order to enhance its performance, where 
one of them is by hybridizing the optimization algorithm with Q-learning [14, 19-23]. Integration of improved particle 
swarm optimization with perturbed velocity into Q-learning by Das has improved the convergence rate and global search 
ability [20]. As a result, robots are able to operate smoothly in an environment with multiple obstacles. In addition to 
particle swarm optimization (PSO), artificial bee colony (ABC) optimization algorithm has been utilized to improve the 
global search ability of Q-learning in solving multirobot navigation problem [24]. Other than direct implementation of 
optimization algorithm, adaptive memetic algorithm (AMA) is used as a medium between Q-learning and optimization 
algorithm. AMA is hybridized with ABC optimization in [24] and differential evolution (DE) algorithm in [14], and 
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subsequently, the hybridized AMA is integrated with Q-learning. Besides improvement in runtime and accuracy, the 
proposed algorithm outperforms PSO and genetic algorithm (GA) in all simulations. Besides, the abilities of Q-learning 
in exploration and exploitation are refined through the introduction of metropolis criterion from simulated annealing (SA) 
algorithm [19]. This refinement prevents Q-learning from excessive exploitation while enhancing the convergence 
performance. 

Artificial neural network (ANN) is another aspect that has been used to improve Q-learning in path planning [17, 
25]. Duguleana and Mogan [26] use Pos-Net neural network to determine the next action by using current time, current 
state and obstacle detection as references. Experimental results show that better convergence and local minimum 
avoidance are achieved, even in an environment full of dynamic and static obstacles. On the other hand, back-propagation 
neural network is implemented by Huang et. al for calculation of Q-values [27]. This has significantly accelerated the 
learning rate of Q-learning while preserving the obstacle avoidance ability. 

It has been reported in literature that the abilities of Q-learning can be improved by including additional information, 
such as global knowledge or distance. The studies in [28, 29] reported that including the information of distance between 
robots and ball enables the robots to identify which robot is the closest to the ball for modular Q-learning and adaptive 
Q-learning in soccer robots. The chosen robot will act as attacker while others will be side kickers and defenders. This 
will provide the robots a more refined coordination, and enhance cooperation among soccer robots through role switching. 
The results show that soccer robot team with these algorithms scores better than others. On the other hand, Euclidean 
distance is used in the formation of fitness function in path planning of mobile robot [20]. In [20], the Euclidean distance 
defines the distance between robots and distance between current position and desired position. For multirobot case in 
[20], Q-learning with improved particle swarm optimization and differentially perturbed velocity (QIPSO-DV) is used 
to optimize the fitness function of multirobot. It has been demonstrated that the time taken and space complexity are 
greatly reduced by using classical Q-learning (CQL) as reference. Besides, QIPSO-DV is able to provide better 
performance in evaluation function of average total trajectory path travelled (ATTPT), in comparison with IPSO-DV, 
PSO and CQL. The better performance in ATTPT is, the lower travelling time and smaller direction fluctuation are. 

In order to improve Q-learning, metric of distance and moving target concept will be added into Q-learning in this 
work. The improved Q-learning (IQL) model will be able to determine the closest direction towards the target through 
metric of distance and avoid local minimum through moving target concept, and thus, improving the convergence rate. 

This paper is organized as follows. First, Q-learning is introduced in Section 2, followed by the implementation of 
metric of distance and moving target concept in Section 3. Next, in Section 4, results and discussion of the proposed IQL 
are presented. Lastly, the conclusion of this work is made in Section 5. 

 
2. Classical Q-Learning 

CQL, developed by Watkins in 1992 [10], falls under the category of model-free reinforcement learning. The model 
of CQL is formed through continuous learning in an environment by performing actions, evaluating the actions and 
calculating the rewards. The Q-table is used to store the reward values (Q-values). The historical Q-values will be recalled 
when the agent or robot reaches the same state. The process of updating the Q-values is repeated until the agent reaches 
the goal. As the iterations increase, the CQL is able to provide better result when the robot experiences the same state for 
multiple times. 

The Q-value is updated using: 

 1 1( , ) ( , ) max ( , ) ( , )i i i i i i i i ia
Q s a Q s a r Q s a Q s aα γ + +

 = + + − 
  (1) 

where ( , )i iQ s a  refers to Q-value with state, is  and action, ia  at interval i . α  represents the learning rate, γ  
represents the discount factor and ir  represents the reward given at interval i . 1 1max ( , )i ia

Q s a+ +  represents the highest 

Q-values among all action-state sets at interval 1i + . The pseudo code of CQL is presented in Algorithm 1 (Table 1). 
When the CQL moves on to the next state, the decision will be based on the maximum Q-values among the next 

states. However, when multiple states have the same maximum Q-values, random selection will be done. This situation 
becomes a drawback in the initial stage of Q-learning where all Q-values are initially zero. The random selection causes 
low convergence rate in the initial stage. Therefore, the metric of distance is integrated into CQL in order to enhance the 
convergence rate in this study. 
 

Table 1 - Classical Q-Learning algorithm 
1. Initiate all Q-values, ( , )Q s a  in Q-table which is zero 
2. Select a starting state, 1 1( , )Q s a  
3. while (iteration < max iteration or goal is not achieved) 
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4. Select an action, a  within the available actions in the current state according to the highest 
Q-value in the next state (randomly choose one if more than 1 state is having Q-values 
which is highest) 

5. Perform the selected action, a  and reward or penalty, r will be given 
6. Update the Q-value using Equation (1) 
7. Move the state to new state, s′  
8. end while 

 
3. Methodology 

In this section, the metric of distance and moving target concept are introduced. The metric of distance measures the 
distance between target and robot position as reference for Q-learning to enable better convergence. The escape 
mechanism is introduced at the same time to allow robots to break free from local minimum. In addition, moving target 
concept further enhances the path planning by bypassing the local minimum area. 
 
3.1 Formulation of Metric of Distance 

Several rules and assumptions were made for the designed metric of distance, which are: 
• The location of robot and target are known 
• There are eight possible actions for the robot to select for the next state: (i) North, (ii) North-east, (iii) 

North-west, (iv) West, (v) East, (vi) South, (vii) South-east and (viii) South-west 
• The environment is modelled into grid in Cartesian plan. Robot motion is limited by grid to grid motion. 

The maximum unit for x-axis and y-axis motion of robot is 1 unit 
The metric of distance is defined as the total distance from robot to the next state, and the next state to the target, 

which is expressed as: 
 argdistance distance distancetotal curr next next t− −= +  (2) 

The distancetotal  represents total distance, distancecurr next− represents the distance between the robot’s current position 

with next state position, and argdistancenext t−  represents the distance between next state position with target’s position. 

 
Particularly, the distancecurr next−  is expressed as: 

 ( ) ( )2 2distancecurr next next curr next currx x y y− = − + −  (3) 

while argdistancenext t−−  is expressed as: 

 ( ) ( )2 2
distancenext targ targ next targ nextx x y y− = − + −  (4) 

 
where x  is the x-axis position, y is the y-axis position, next is the next state position and targ  is the target’s position. 
The idea metric of distance is illustrated in Figure 1. 

 Fig. 1 - Metric of distance  
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3.2 Applying of Metric of Distance Into CQL 
 For the IQL, choosing the next state was no longer based on the maximum Q-value from the available possible 

states. Instead, the next state was selected based on the available mode. In this case, two modes were introduced, which 
are: 

• Default mode: The metric of distance was enacted in the selection of the next state. 
• Stuck mode: The escape mechanism was enacted. 
The default mode was implemented most of the time during the operation of IQL, except when the robot was stuck 

in a local minimum. For the default mode, the next state was selected based on the lowest total distance among the 
next possible states. Therefore, the total distance of next possible states was calculated beforehand when selecting the 
next state. 

However, the IQL lost its ability to escape from the dead end or local minimum when the distance of metric was 
applied. This is due to the location of dead end which tends to be the shortest distance towards the target. As a result, 
the stuck mode was introduced to prevent the IQL from getting trapped in the local minimum. The stuck mode will be 
activated when a dead end is found. The detection of dead end is based on comparing the total distance of the selected 
next state and the lowest stored total distance. When the total distance of next state is equal or lower than the shortest 
distance, it means that the robot encounters a dead end. 

The dead end situation is illustrated in Figure 2, where the robot is located at the position of the lowest total distance. 
The next available states are not possible to be lower than the lowest total distance. Therefore, for IQL, when the total 
distance of next available state is equal or higher than the lowest total distance for 4 consecutive iterations, the stuck 
mode will be activated to replace the default mode until the total distance of the next state is shorter than the lowest total 
distance. 

In stuck mode, if all the Q-values of next states are zero, the IQL will select the next state randomly from all possible 
next states. Otherwise, the next possible state with the highest Q-values is selected. The operation of stuck mode when 
the next state is selected randomly is presented in Figure 3. 

In order to terminate the stuck mode, the total distance of next state must be shorter than the lowest total distance. 
When a robot has escaped from the local minima, the total distance of the next state will be lower than the lowest total 
distance. Figure 4 demonstrates stuck mode is deactivated as the total distance of next state is lower than the recorded 
lowest total distance. 

Fig. 2 - Dead end encountered by robot Fig. 3 - Random motion when stuck mode 
activated 
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Fig. 4 - Deactivation of stuck mode 
 
3.3 Applying of Moving Target Into CQL 

Although the IQL is able to escape from dead end by activating the stuck mode, the generated path will follow the 
trace of the agent during the learning stage. Therefore, the final path will still be tangling around the dead end prior to 
moving towards the target position. The concept of moving target was introduced in order to solve this limitation. In this 
regard, a virtual target was created to act as a real target in the modelled environment. Initially, the virtual target was at 
the same position as the target. For each iteration, the virtual target moved to the last step before the robot reached the 
virtual target. As the iteration increased, the virtual target would get closer to the initial position. When the virtual target 
reached the entry of a dead end, the robot bypassed it, as the total distance towards the virtual target became shorter than 
the total distance towards the dead end. Thus, the generated path was able to bypass the local minimum. These processes 
are presented in Figure 5 and Figure 6. 

The transition of position of virtual target is formulated as follows: 

,

, 1 1,

step iteration

n i n i

x
x x+ −=      (5) 

,

, 1 1,

step iteration

n i n i

y
y y+ −=      (6) 

where x is x-coordinate, y is y-coordinate and n  is the last step for iteration i . 
The pseudocode of IQL is presented in Algorithm 2 (Table 2). 

 

Fig. 5 - Path planned without moving target Fig. 6 - Changes in path planned with moving 
target 

 
Table 2 - Q-learning with guided distance 

1. Initiate all Q-values, ( , )Q s a  in Q-table which is zero 
2. Select a starting state, 1 1( , )Q s a  
3. while (iteration < Max iteration) 
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 while (goal is not achieved) 
4. Calculate next all action-states total distance 
5. if (total distance < previous lowest distance) 
6. Replace previous lowest distance with total distance 
7. Reset stuck status 
8. else 
9. stuck status = stuck status + 1 
10. end if 
11. if (stuck status >= 4) 
12. if (one of the Q-value of possible next states > 0) 
13. Select an action, a  within the available actions in the current state according to the highest Q-

value in the next state (randomly choose one if more than 1 state is having Q-values which is 
highest) 

14. else 
15. Select an action, a  randomly within the available actions in the current state 
16. end if 
17. else 
18. Select an action, a  within the available actions in the current state according to the lowest 

total distance 
19. end if 
20. Perform the selected action, a  and reward or penalty, r will be given 
21. Update the Q-value using Equation (1) 
22. Move the state to new state, s′  
 end while 
23. Move virtual target to robot last step’s position using Equations (5) and (6) 
 end while 
24. end while 

 
3.4 Experimental Setup 

The proposed IQL was compared with CQL in order to observe the performance of IQL. Simulation was done for 
both algorithms in four distinct maps by using MATLAB software. Some of the maps were referred from [30]. Table 3 
summaries the setup of the simulation, including the characteristics of maps and the used parameters in both algorithms. 

 
Table 3 - Setup of simulation and parameters for both algorithm 

Parameter Value 
Map size 20x20 unit 
Initial location (1,20) 
Target location (20,1) 
α  0.1 
γ  0.7 
Iteration 300 
Number of run 30 

 
Both algorithms are evaluated based on the following criteria: 

1. The time used to finish each run 
2. The total distance used to finish each run 
3. The shortest distance used in 30 runs 

 
4. Results And Discussions 

This subsection discusses the optimal paths found by IQL and CQL in four different maps. The optimal path was 
determined by selecting the result with the shortest distance in 30 runs. 
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4.1 Map 1 
Map 1 is made up of fifteen equal sized square shaped obstacles, as shown in Figure 7. Multiple narrow paths existed 

in between the obstacles due to tight arrangement of obstacles. Passing through these narrow paths has thus become a 
challenge for the robot with condition of avoiding collision with obstacles. 

By observing paths planned by both algorithms, both paths have similarity in terms of general shape. However, the 
path planned by CQL had sharp turnings around the starting point and target point. Thus, the robot suffered drastic 
changes in acceleration at both points for CQL that caused jerking. 

Table 4 presents the comparison between CQL and IQL in terms of time used, shortest distance used and total 
distance used for map 1 in 30 runs. Referring to Table 4, it can be seen that the IQL was able to achieve average 
improvement of 94.85% in map 1 in terms of the time used to find the optimal path. The large improvement in time taken 
showed that metric of distance was able to guide the robot towards the target effectively. 

Other than time used, the average shortest distance attained by IQL has been improved by 29.69% compared to CQL. 
Moreover, it can be seen that the shortest path found by the IQL was the same for all simulations (standard deviation of 
0). This is due to no dead end that existed in map 1, therefore stuck mode has not been activated in all 30 runs. The 
absence of random selection of next state behaviour in stuck mode eliminated the fluctuation in the path taken. 

The total distance taken by the IQL to reach the target position has been improved by 99.50% compared to CQL. 
The significant reduction in total distance confirmed the effectiveness of metric of distance in reducing randomized 
motion and guiding robot towards target once again. Apart from that, zero standard deviation of IQL occurred in 
evaluation of total distance used due to there is no local minima in map 1 environment. 

In comparison with the attained improvements for time taken and total distance, the achieved improvement for the 
shortest distance was the lowest for IQL. This might due to the paths found by CQL and IQL were similar in this map. 
 
4.2 Map 2 

Figure 8 shows the optimal path obtained by CQL and IQL for map 2. Map 2 consists of three collateral walls located 
in opposite positions. Consequently, such arrangement forced the robot to travel in multiple S-shaped paths. 

From Figure 8, it can be seen that the path formed by CQL was curvy, and had several U-turns at (5,17) and (14,9). 
This was due to the existence of dead end at the first wall and the third wall. On the other hand, the IQL was able to 
bypass both dead ends smoothly, and travelled in the path mostly made up of straight line. The path generated by the IQL 
truly presented the usefulness of the moving target concept in bypassing the dead end. The robot was able to travel from 
edge to edge of obstacles regardless of existence of dead end. 

Table 5 presents the comparison between CQL and IQL in terms of time used, the shortest distance used and the 
total distance used for map 2 in 30 runs. In terms of the time used, the CQL consumed more time to reach the target 
position, which was 0.7958s in average. The less satisfactory performance of CQL may be due to large amount of free 
spaces that existed in map 2 compared to other maps full of obstacles. When the free space increased, the CQL had more 
available next states to consider. The worst was the computational complexity that increased exponentially as the free 
space increased. On the other hand, the IQL used 0.2808s to complete this map in average, with improvement of 64.72% 
compared to CQL. 

(a) (b) 
Fig. 7 - Optimal path planned by (a) CQL and (b) IQL for map 1 
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Table 4 - Comparison of both algorithms for map 1 
Evaluati
on 

Time used Shortest distance used Total distance used 

Algorith
m 

CQL IQL Impro
ve-
ment 
(%) 

CQL IQL Impro
ve-
ment 
(%) 

CQL IQL Impro
ve-
ment 
(%) 

Total (30) 12.777
8 

0.6585 94.85 1246.4
449 

876.39
61 

29.69 213131
1 

10681 99.50 

Minimum 0.3044 0.0140 95.41 31.799
0 

29.213
2 

8.13 50708 356 99.30 

Average 0.4259 0.0219 94.85 41.548
2 

29.213
2 

29.69 71044 356 99.50 

Maximu
m 

0.6171 0.0599 90.30 49.355
3 

29.213
2 

40.81 91550 356 99.61 

S.D. 0.0785 0.0093 88.21 3.9520 0.0000 100.00 10540 0 100.00 
 

While that, for the shortest distance and the total distance used, the IQL had made an average improvement of 
26.86% and 88.38%, respectively. The improvement was in terms of the shortest distance that remained low compared 
to the time used and the total distance. However, the improvement in total distance used remained high, with the 
improvements of 84.81-90.41% attained. 
 
4.3 Map 3 

In map 3, multiple walls were used to form wall traps that divided the map into several parts although large gaps 
were provided for the robot to access from one part to another. The optimal paths generated by both algorithms for map 
3 are shown in Figure 9. The path planned by CQL was curvy, and had a few sharp 90° edges such as edge located at 
(15,10) and another edge located at (11,12), while the path planned by the IQL was mostly made up of straight lines such 
as straight line located at (5,16) and only one sharp 90° edge at (15,10). A curvy path indicates that the robot has to travel 
further in order to reach the destination. This can be observed in Table 4 that CQL used 43.4567 units in average in terms 
of the shortest distance used compared to IQL which used 35.5081 units in average. 
 

(a) (b) 
Fig. 8 - Optimal path planned by (a) CQL and (b) IQL for map 2 
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Table 5 - Comparison of both algorithms for map 2 
Evaluatio
n 

Time used Shortest distance used Total distance used 

Algorith
m 

CQL IQL Improv
e-ment 

(%) 

CQL IQL Improv
e-ment 

(%) 

CQL IQL Improv
e-ment 

(%) 
Total (30) 23.874

8 
8.423

0 
64.72 1485.363

7 
1086.364

6 
26.86 356036

1 
41387

3 
88.38 

Minimum 0.5844 0.201
7 

65.49 40.3848 33.8995 16.06 88409 8481 90.41 

Average 0.7958 0.280
8 

64.72 49.5121 36.2122 26.86 118679 13796 88.38 

Maximum 1.0547 0.393
0 

62.73 59.3553 39.5563 33.36 157402 19586 87.56 

S.D. 0.1217 0.053
0 

56.48 4.5299 1.1121 75.45 18228 2768 84.81 

 
Table 6 presents the comparison between CQL and IQL in terms of time used, shortest distance used and total 

distance used for map 3 in 30 runs. The average improvement made by IQL in terms of time used for map 3 was 
considered low, which is 29.34%. The drop in performance of IQL was due to the dead end located at (20,5). This dead 
end was different from map 2 as the dead ends in map 2 did not have a border that prevented the robot from escaping 
from the dead end. The border located at (14,6) in map 3 heightened the difficulty for the robot to escape from the dead 
end. The robot had to travel in the opposite direction (downward) in order to bypass the border. As a result, the average 
improvement made by IQL compared to CQL in map 3 was the lowest among all maps in all evaluations. In spite of 
that, no improvement (-40.40%) was made in standard deviation by IQL in map 3. The poor performance of IQL in map 
3 for standard deviation may be due to more than one available path towards the target. The IQL may select the path 
above the ‘T’ shaped wall or below the ‘T’ shaped wall. The existence of two available paths produced two different 
paths with different time used for the robot to complete. The divergence in path occurred when the virtual target was 
moving. When the path diverged, different dead ends were met by robot at different locations. Although IQL triggered 
the stuck mode wherever it met a dead end, the next state was selected randomly for a new dead end as stated in Section 
3.2. This is because the surrounding Q-values were zero for new dead end. This randomized motion might take longer 
time to escape from the dead end. 

Aside from average improvement of time used, the average improvement in terms of the shortest distance was 
merely 18.29%, and the average total distance used was 75.76%. Through observation for trend of improvement in terms 
of the shortest distance in map 1 and map 2, it was not surprising that the improvement remained low. While for the 
improvements made by the IQL for the total distance used in map 3, even though the improvement was not as significant 
as in other maps, it was still acceptable, with improvement of 75.76% attained for all 30 runs. 
 

(a) (b) 

Fig. 9 - Optimal path planned by (a) CQL and (b) IQL for map 3 
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Table 6 - Comparison of both algorithms for map 3 
Evaluatio
n 

Time used Shortest distance used Total distance used 

Algorith
m 

CQL IQL Improv
e-ment 

(%) 

CQL IQL Improv
e-ment 

(%) 

CQL IQL Improv
e-ment 

(%) 
Total (30) 22.584

1 
15.958

5 
29.34 1303.699

7 
1065.241

8 
18.29 333733

6 
80913

4 
75.76 

Minimum 0.4518 0.2255 50.08 38.6274 33.2132 14.02 67110 11309 83.15 
Average 0.7528 0.5320 29.34 43.4567 35.5081 18.29 111245 26971 75.76 
Maximu
m 

1.0424 0.9925 4.78 50.2843 39.2132 22.02 156567 50742 67.59 

S.D. 0.1417 0.1990 -40.40 3.1936 1.5855 50.35 21030 10330 50.88 
 
4.4 Map 4 

Map 4 has a few similar wall traps as in map 3 with addition of several different obstacles. As the maps were alike, 
same problems were encountered by the CQL. The paths generated by the CQL were curvy, and had a few sharp 90° 
edges such as in edge located at (12,12), while the paths planned by IQL were mostly made up of straight line. In fact, 
there was no sharp 90° edge for the IQL in map 4. However, as opposed to map 3, the IQL was able to achieve better 
average improvement in map 4. Even though the existence of the same dead end located at (14,6) remained, the IQL took 
the upper path when avoiding obstacles in map 4. By maneuvering the robot to the upper path, the dead end can be 
avoided and bypassed easily, thus, saving time and travelled distance in order to escape from the dead end. 

Table 7 presents the comparison between CQL and IQL in terms of time used, shortest distance used and total 
distance used for map 4 in 30 runs. Although the improvement in time used was attained with the average improvements 
of 75.81%, the same problem was faced by IQL for map 4 with -9.76% of improvement in standard deviation. For map 
4, the robot can move towards the target point by taking the path above the triangle obstacle located at (11,9) or taking 
the path below the triangle obstacle. Diverging in path taken produced a huge difference in time taken. The differences 
can be observed in Table 7 when IQL was able to complete the run with minimum time of 0.0284 (without diverging 
path), but with maximum of 0.4578 (with diverging path). 

Aside from that, the improvement in terms of the shortest distance by IQL was 25.64% in map 4. The low 
improvement was within expectation. In spite of that, zero standard deviation in finding the shortest distance used was 
also experienced by IQL in map 4, similar to map 1. Even though there was a dead end in map 4 located at (15,5), the 
final path (upper path) selected in each run by IQL did not go through the dead end. Thus, the shortest path for each run 
did not fluctuate. As for the total distance used, 92.17% improvement was made by IQL in map 4. The improvement was 
more than 90% 
 

(a) (b) 
Fig. 10 - Optimal path planned by (a) CQL and (b) IQL for map 4 
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Table 7 - Comparison of both algorithms for map 4 
Evaluatio
n 

Time used Shortest distance used Total distance used 

Algorith
m 

CQL IQL Improv
e-ment 

(%) 

CQL IQL Improv
e-ment 

(%) 

CQL IQL Improv
e-ment 

(%) 
Total (30) 19.373

4 
4.687

2 
75.81 1225.817

5 
911.543

3 
25.64 281191

9 
22004

9 
92.17 

Minimum 0.4427 0.028
4 

93.57 34.6274 30.3848 12.25 64626 1064 98.35 

Average 0.6458 0.156
2 

75.81 40.8606 30.3848 25.64 93731 7335 92.17 

Maximum 0.9453 0.457
8 

51.57 48.5269 30.3848 37.39 120041 22478 81.27 

S.D. 0.1064 0.116
8 

-9.76 3.6700 0.0000 100.00 14402 5692 60.48 

 

5. Conclusion 
To alleviate the slow convergence of CQL, distance of metric and moving target concept are proposed in the IQL. 

Both algorithms are simulated and compared in four different environments full of obstacles with various shapes. The 
results indicate that IQL outperforms the CQL. The average improvements of time used and shortest distance used 
ranging from 29.34% to 94.85% and from 18.29% to 29.69% are made by IQL, respectively. Besides that, the outstanding 
average improvements are achieved by IQL for total distance used ranging from 75.76% to 99.50%. 

Other than that, future research will attempt to verify the simulation results in real-world mobile robot path planning. 
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