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1.   Introduction 

The fuel cell is an alternative energy generation device that converts chemical energy into electrical energy with 

low or zero-emission, high efficiency and quiet operation. Solid oxide fuel cell (SOFC) is a category of fuel cell that 

has been fabricated by oxide-type materials. SOFC comprises a dense layer (electrolyte) sandwiched between two 

porous layers (an anode and a cathode). The conventional SOFC is operable at high temperatures (700 – 1,000 °C) 

which promotes the internal reforming mechanism to utilize a wide range of fuels including hydrogen, hydrogen-rich 

fuel, hydrocarbons, natural gas or biogas. The biomass gasification process is a source that produces methane (CH4), 

hydrogen (H2), etc. as syngas products that could be utilized as fuels in SOFC [1],[2]. The integration of biomass 

gasification and SOFC has been widely studied for electricity generation [3],[4]. The syngas-fuelled SOFC has got an 

interest in the use of alternative fuels apart from only pure H2. 

 

Anode reactions: 

H2 + O2- → H2O + 2e-  (1) 

CH4 + 3O2- → CO + 2H2O + 6e- (2) 

CH4 + 4O2- → CO2 +2H2O + 8e- (3) 

Abstract: Solid oxide fuel cell (SOFC) is an alternative energy generation device that converts chemical energy 

into electrical energy from the use of hydrogen or hydrogen-rich fuel. A light hydrocarbon, e.g. methane (CH4), is 

a hydrogen-rich fuel that can be used as an alternative fuel to hydrogen in SOFC application. Carbon-containing 

fuel is accessible from natural gas, biogas, biomass gasification, etc. Biomass gasification produces methane, 

hydrogen (H2), etc. as syngas products which could be integrated with SOFC. As anode is an outer layer of SOFC 

which exposes to fuel, the development of anode for carbon-containing fuel application is essential. Conventional 

Ni-containing anode is found to create carbon deposition which degrades the cell. The replacement of copper (Cu) 

to Ni has been studied to enhance the direct electrochemical oxidation of dry hydrocarbons which is free from 

carbon deposition. With the interest of Cu doping, a La-based anode has been doped with 10 % Cu at B-site of 

perovskite structure as La0.67Ca0.33Cr0.9Cu0.1O3-δ and studied the X-ray diffraction (XRD), scanning electron 

microscope (SEM) and energy dispersive X-ray (EDX) for future application in syngas-fuelled SOFC. 
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CH4 → C + 2H2   (4) 

C + O2- → CO + 2e-  (5) 

C + 2O2- → CO2 + 4e-  (6) 

 

Cathode reaction: 

O2 + 4e- → 2O2-   (7) 
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Fig. 1 - Diagram of oxygen ion conduction and overall process in H2/CH4-fuelled SOFC  

 

The typical SOFC can be seen in Fig. 1 when H2 and CH4 are used as fuels. The possible chemical reactions in H2 

or CH4-fuelled SOFC are as equations (1) – (7) [5]. When carbon-containing fuel is fed to SOFC, there exists carbon 

deposition at the anode. However, material development especially anode is the crucial approach to prevent coke 

formation [6]. 

1.1 The Development of Anode Material 

The anode is generally categorized into two main classes: Ni-based anode and Ni-free anode. The Ni-based anode 

consists of nickel in compound with superior properties in catalytic activity, electrical conductivity, gas diffusivity and 

structural integrity such as Ni/YSZ, Ni/ScSZ, Ni/rare earth, Ni/Yttrium doped Ceria. YSZ has been fabricated into 

Ni/YSZ as a favoured anode by its high electrochemical mechanism in H2 oxidation with the high stability under SOFC 

operation [7] but Ni/YSZ suffers from coke formation when carbon-containing fuel is used. The carbon formation can 

occur more probably on Ni-based materials compared to other anode materials (Ni-free anode).  

 The Ni-free anode is the cermet that is free of nickel in the compound. It is an alternative anode for SOFC 

application with carbon-containing fuel. There existed the Ni-free anode development of SrMoO4 [8], 

Sr2Mg1−xMnxMoO6−δ [9], Sr2CoMoO6 [10], RuOx–ZrO2 [11] and Gd2Ti1.4Mo0.6O7−δ [12] tested in H2, CH4 and H2S. The 

reported studies have been successfully carried out on Cu-ceria [13], Cu–YSZ [13] and Cu–CeO2–ScSZ [14] in a 

carbon-containing atmosphere. A Cu/CeO2/YSZ anode shows better performance with CO and syngas fuels compared 

with Ni/YSZ. A copper (Cu) doping in Cu/CeO2/YSZ composite anode can be a solution to prevent carbon deposition 

by its direct electrochemical oxidation of dry hydrocarbons [15]. When Ni is replaced by impregnating ceria with Cu, 

the reaction (8) does not take place on Cu and the availability of O2− on the surface of the ceria assists the reactions (9) 

and (10) over the reaction (11). This overcomes the coke formation [15]. 

 

CH4 +2O2− = C + 2H2O + 4e−    (8) 

CO + O2− = CO2 +2e−     (9) 

CO + H2O = CO2 +H2   (10) 

2CO = C + CO2    (11) 

 

A number of studies on La-based anodes, such as LaFe0.5Cr0.5O3 [16] and La0.83(Ba,Ca)0.17Fe0.5Cr0.5O3−δ [17] have 

been carried out especially La1−xSrxCr1−yRuyO3 [18], La0.8Sr0.2CrO3 based Ru catalysts [19], (La0.75Sr0.25)Cr0.5Mn0.5O3−δ 

[20], La0.8Sr0.2Cr0.8Mn0.2O3−δ [21] and  La1−xCaxCr0.5Ti0.5O3−δ [22] were tested in carbon-containing atmospheres. With 

the interest in Cu doping La-based anode, we synthesized a Cu-dopping in La0.67Ca0.33Cr0.9Cu0.1 (LCCC) as a novel 

anode for application in syngas-fuelled SOFC. 
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2.   Experimental 

A composite anode of La0.67Ca0.33Cr0.9Cu0.1 (LCCC) was synthesized by the glycine nitrate process (GNP) method. 

The stoichiometric ratio of La(NO3)3·6H2O, CaN2O6·4H2O, CrN3O9 ·9H2O, Cu(NO3)2·2.5H2O and glycine (fuel) were 

placed in a beaker in the ratio of 1:2 (nitrates: fuel). The mixture was dissolved in an amount of deionized (DI) water in 

a beaker and stirred with a magnet stick on a magnetic heater at 280 °C. The mixing was monitored until the auto-

combustion took place and the mixture becomes ash. The obtained ash was used to calcine at 600 °C for 4 hours. The 

powder was ground with acetone until it dried and calcined for the second time at 1,000 °C for 4 hours. X-ray 

diffractometer of Empyrean Alpha 1 of Malvern Panalytical (CuKα1 = 1.5406 Å) was used at Sejong University to 

examine the crystalline phase in the air and performed Rietveld analysis by FullProf software [23]. The morphology of 

the material was studied by scanning electron microscope (SEM) of JEOL JSM-7610F at Universiti Brunei Darussalam 

to observe the micro-scale feature of the material. The solid materials were placed on the sample holder and conducted 

carefully to analyzing the chamber that was controlled the pressure in JEOL. The device employed electron dispersion 

to perform an SEM image on a computer screen connected. A device to identify the elemental distribution is an energy 

dispersive X-ray (EDX) analyzer. EDX displays the content of the elements in percentage. The EDX utilizes an 

effective X-ray to detect the chemical compositions of the sample. 

 

3.   Results and Discussion 

Fig. 2a) shows the XRD profile of LCCC and Fig. 2b) displays the Rietveld refinement by using FullProf. The 

indexing of the XRD was carried out using the software TREOR90. The Rietveld refinement reveals that LCCC is an 

orthorhombic symmetry (space group of Pbnm). The diagram of the 3D atomic structure is shown in Fig. 3. In 

perovskite LCCC, La and Ca (purple atoms) reside at A-site surrounded with octahedral (BO6) and oxygen atoms (red 

atoms) at the corners. The atoms of Cr and Cu (green atoms) reside at the B-site at the centre of each octahedral. LCCC 

has parameters as shown in Table 1.  
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Fig. 2 - (a) XRD profile of LCCC; (b) Rietveld refinement profile of LCCC where the observed data is in red dot 

and calculated data is in the continuous black line. The short blue vertical lines represent the position of the 

Bragg reflections. The bottom green line shows the difference between plots (Jobs-Icalc) 

 

The cell parameters of La0.67Ca0.33Cr0.9Cu0.1O3-δ (a = 5.5043 Å, b = 5.4914 Å and c = 7.7728 Å) are comparable to 

values of orthorhombic La0.75Sr0.25Cr0.5Mn0.5O3−δ (a = 5.5028(4) Å, b = 5.4823(5) Å and c = 7.7686(1) Å). In a report, 

(La0.75Sr0.25)1-xCr0.5Mn0.5O3−δ (0 ≤ x ≤ 0.1) was synthesized in different firing conditions (dwelling time, gas condition) 

which affect the lattice setting in different space groups (hexagonal, orthorhombic, tetragonal, cubic) [20]. The obtained 

cell parameters of LCCC in this study are also comparable with a very similar composition of La0.8Ca0.2Cr0.5Ti0.5O3-δ (a 

= 5.4887(2) Å, b = 5.4777(2) Å and c = 7.7433(3) Å) as the same orthorhombic phase (Pbnm). The obtained unit cell 

volume of LCCC is 234.9(0.046) Å3 which is in agreement with 232.81(3) Å3 of La0.8Ca0.2Cr0.5Ti0.5O3-δ. In La1-

xCaxCr0.5Ti0.5O3-δ, the atoms crystallized in rhombohedral when the Ca ratio is 0 and 0.1 while it is two perovskite-like 

phases when the Ca portion is 0.2. The La0.8Ca0.2Cr0.5Ti0.5O3-δ is rather rhombohedral than orthorhombic or the amount 

of the rhombohedral phase is larger compared with the orthorhombic phase [22]. A-site of perovskite can be doped with 

the large ionic radius element and B-site can be doped with the small ionic radius element [24]. It is reasonable to infer 

that a small percentage of Cu in La0.67Ca0.33Cr0.9Cu0.1  resides at B-site with Cr due to the similar ionic radius of Cr 

(0.615 Å) and Cu (0.73 Å) in 6-octahedron coordination while larger ionic radius elements, La (1.36 Å) and Ca (1.34 

Å) in 12-cuboctahedral coordination, reside at A-site [25]. 



Nikdalila Radenahmad et al., International Journal of Integrated Engineering Vol. 13 No. 7 (2021) p. 68-73 

71 

 

Microstructure plays a very important role in the properties of the material. Fig. 4 shows the SEM image of the 

LCCC. The sample displays a porous feature as a requirement of the anode. In addition, the surface exhibited no visible 

crack which suggests the stability of the anode at the final sintering temperature of 1,000 °C.  In a complete fuel cell, 

the porosity in the electrode allows the fuel to transport through the hole and exchange electrons and ions at the surface 

of the material as equations (1)-(7). Electron transportation results in electricity generation. Therefore, anode or cathode 

is necessary to be porous while electrolyte is a dense layer. LCCC exhibits the well-connecting grains in the size of 1-3 

μm. EDX analysis of the sample reveals the presence of La, Ca, Cr, Cu and O. The elemental compositions of LCCC 

are shown in Table 2 with the comparison between EDX source and formula source. The results from the EDX source 

are reasonably comparable to formula source values because X-ray is an effective medium to detect the elements of 

compounds accurately. The uses of X-Ray exist in XRD and EDX, this confirms that X-ray is the efficient media to 

identify the elements of the material. La, Cr and O are the main elements in perovskite (ABO3) hence the weight 

percentages are larger than Ca and Cu. 

La/Ca

Cr/Cu

O

a)

b)

c)
 

Fig. 3 - Schematic 3D diagram of perovskite (ABO3) structure of LCCC which was drawn by Vesta software in 

(a) overall view; (b) top view; (c) front view 

 

Table 1 - Summary of the Rietveld refinement results for La0.67Ca0.33Cr0.9Cu0.1O3-δ using the space group Pbnm 

Parameters Detail 

Space group Pbnm 

Cell parameters 

a 

b 

c 

 

5.504 Å 

5.491 Å 

7.773 Å 

alpha = beta = gamma 90 ° 

Volume 234.945(6) Å3 

Density 6.049 g/cm3 

Atomic position (x y z)  

La 0.00051   0.01809   0.25000 

Ca 0.00051   0.01809   0.25000 

Cr 0.50000   0.00000   0.00000 

Cu 0.50000   0.00000   0.00000 

O1 0.04517   0.49563   0.25000 

O2 0.73652   0.31600   0.04523 

R-factors  

Rp 17.0 

Rwp 12.1 

Chi2 2.05 
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4.   Conclusion 

A novel perovskite-type anode, La0.67Ca0.33Cr0.9Cu0.1O3-δ (LCCC), has been successfully synthesized with glycine 

nitrate process (GNP) with a low calcination temperature of 1,000 °C. The XRD analysis and Rietveld refinement 

displayed that LCCC crystallized in orthorhombic, Pbnm space group. The cell parameters, volume and phase are 

similar to that of reported LaCaCr-based materials. This shows the promise of material to utilize as a Ni-free anode in 

solid oxide fuel cells especially when methane is used as fuel. Cu-doping in LCCC is expected to enhance the direct 

electrochemical oxidation which can prevent coke formation. SEM revealed that LCCC is a porous material with the 

grain size 1-3 μm which shows promise as an anode for SOFC application. The LCCC can be fabricated with 

electrolyte and cathode into a complete fuel cell and test the cell performance to examine the power density. The 

microstructure of the fuel cell can also be carried out to observe the cell before and after testing with carbon-containing 

fuel in case of coke formation investigation. The study of SOFC material with methane is interesting in terms of the use 

of alternative fuel to hydrogen since methane and other hydrogen-rich fuel can be accessed in biomass gasification or 

biogas. Therefore, the material development in SOFC is crucial in the future application of LCCC in syngas-fuelled 

SOFC. 

 

 

Fig. 4 - SEM image of La0.67Ca0.33Cr0.9Cu0.1O3-δ at magnification of 3,000 

 

Table 2 - Compositional distribution of La0.67Ca0.33Cr0.9Cu0.1O3-δ from EDX 
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