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1. Introduction 

Organizations nowadays are heavily impacted by rapid technological change, proliferation of knowledge-based 

economies, and globalization. As a result, customers have become more educated yet demanding. In order to thrive with 

these challenges, organizations are compelled to establish Quality Management Systems (QMS) in order to leverage their 

strategic performance and to consistently meet the demands of their customers [1]. One of the major requirements of a 

QMS is customer focus, which requires organizations to promote and ensure customer satisfaction (CS) [2]. CS is defined 

as the perceived degree of fulfillment of customers’ expectations [3]. Shown on Fig. 1 is a conceptual model of CS as 
elaborated in ISO 10004:2018 [4]. 

 

 
Fig. 1 - CS Model [4] 

Abstract: Analyzing natural language-based Customer Satisfaction (CS) is a tedious process. This issue is practically 

true if one is to manually categorize large datasets. Fortunately, the advent of supervised machine learning techniques 

has paved the way toward the design of efficient categorization systems used for CS. This paper presents the 

feasibility of designing a text categorization model using two popular and robust algorithms – the Support Vector 

Machine (SVM) and Long Short-Term Memory (LSTM) Neural Network, in order to automatically categorize 

complaints, suggestions, feedbacks, and commendations. The study found that, in terms of training accuracy, SVM 

has best rating of 98.63% while LSTM has best rating of 99.32%. Such results mean that both SVM and LSTM 

algorithms are at par with each other in terms of training accuracy, but SVM is significantly faster than LSTM by 

approximately 35.47s. The training performance results of both algorithms are attributed on the limitations of the 

dataset size, high-dimensionality of both English and Tagalog languages, and applicability of the feature engineering 
techniques used. Interestingly, based on the results of actual implementation, both algorithms are found to be 100% 

effective in accurately predicting the correct CS categories. Hence, the extent of preference between the two 

algorithms boils down on the available dataset and the skill in optimizing these algorithms through feature 

engineering techniques and in implementing them toward actual text categorization applications. 
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CS is an equilibrium between customer’s expectations and perception of “quality” products or services, and 

organization’s ability to plan and deliver these “quality” products or services. For this purpose, it is important that an 

organization should determine the degree of CS and at the same time, ensure the effective implementation of a QMS in 

conformance with international standards, such as the ISO 9001:2015. CS has a significant impact into organization’s 

social branding. High CS equates good reputation, while low CS causes loss of customer trust. To manage these 

challenges, organizations are required to determine the methods in monitoring and evaluating CS [1], [4]. Likert scaled-
surveys are considered to be the most popular CS method, however, there is a recent unprecedented shift in obtaining CS 

data using a wide-range of internet-based platforms, such as social networking sites, emails, group chats, fora, etc., where 

customers can freely express their thoughts and feelings written in natural languages. These text-based data are considered 

significant because they provide insights about customers’ emotions, preferences, and the extent of satisfaction or 

dissatisfaction on organizational performance. Ultimately, these results are used as basis toward the implementation of 

improvement initiatives, such as introduction of breakthrough processes, products or services that further enhance 

organizational performance and ensure CS [5], [6]. 

Unfortunately, text-based CS data are highly dimensional, unstructured and complicated, particularly those with 

massive datasets. Hence, artificial intelligence (AI) approaches are explored to facilitate automatic extraction and analysis 

[6] [7]. Text categorization is an area of natural language processing (NLP), a subset of AI, that deals with computational 

process of labelling texts according to pre-defined features and thematic categories [8]. Each text is represented by a 

vector and is manipulated through the use of feature engineering techniques. Afterwards, machine learning or deep 
learning algorithms are utilized in order to fine-tune certain parameters toward the design of text categorization models. 

The resulting model then automatically finds categories from enormous datasets, wherein such feature essentially makes 

text categorization a popular NLP application used in a wide-range of domains [9], [10]. Among the most popular 

algorithms employed for text categorization purposes are the Support Vector Machine (SVM) and Long Short-Term 

Memory (LSTM) Neural Network. 

SVM is a popular categorization algorithm introduced by Vapnik [11]. It is considered popular because of its solid 

mathematical foundation, which is based in the principle of risk minimization. Likewise, SVM has been proven to have 

excellent generalization performance, particularly in highly dimensional applications, such as text categorization [5], 

[12], [13]. Illustrated on Fig. 2 is a representation of a SVM used for binary categorization. In its basic context, SVM 

determines the best hyperplane that separates the data points between categories. The separating hyperplane is considered 

to be the best decision boundary for an SVM if it has the largest margin between categories. The data points that are 
closest to the hyperplane are called support vectors, which are found near the margin boundary. Support vectors can be 

further categorized as type 1 or type -1, labeled as “+” or “-”, respectively [14], [15].  

 

 
Fig. 2 - SVM Model for Binary Categorization 

 

The SVM decision function, which determines the maximum distance of the margin, is computed using the following 

formula [16]: 

 

𝑓ℎ  (𝑥) = 𝑠𝑔𝑛 [∑ 𝛼𝑝𝑦𝑝𝑝 𝑘𝑓(𝑥𝑝, 𝑥) + 𝑏]                                                                    (1)   

 

where “x” is universal test data point; “kf” is the kernel function, “, “xp” and “yp” are x and y data points, respectively; 

“𝛼” is a Lagrange multiplier; and “b” is the bias. Relatively, SVM is widely-studied in text categorization particularly 

for customer satisfaction applications, such as those applied to hotel reviews [7], customer relationship management 

(CRM) [5], [12], website service quality [17], Software-as-a-Service (SaaS) [18], product reviews [19], short text 

messages [20], among others. Results on these studies generally revealed that SVM has remarkable performance in cases 
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where datasets have noisy, imbalance or mislabeled categories [7], [20]. SVM has also been found to have better 

categorization accuracy than recurrent neural network (RNN) [7], random forest, logistic regression [12], artificial neural 

network (ANN), k-nearest neighbors [17], [20], and other traditional algorithms. 

Meanwhile, LSTM is arguably the most popular type of RNN that is capable of learning long-term dependencies 

between time steps of sequence data. What makes LSTM special is that it can address dissipating gradients, which is a 

common problem among neural networks, including RNN. Depicted on Fig. 3 is a sample memory cell that represents a 
unit of an LSTM neural network. The cell remembers the information “ct-1, ot-1” and use these as its current, memory cell 

state in random time step “t”. Afterwards, it determines the next sequence by updating its memory cell state “ct” and 

computing the output “ot” also known as the output state. The status of the cell is updated through the use of gates that 

regulate the flow of information into and out of the memory cell. It has input gate “ig” that controls the updates; forget 

gate “fg” that forgets the information; cell candidate “cc” that adds information; and output gate “og” that controls the 

output. The arrows in the cell indicate the directional flow of information [21]: 

 
Fig. 3 - LSTM memory cell and gates 

 

The inputs “it” are composed of three types of concatenated learning weights called input weights “iw”, recurrent 

weights “rw” and bias “b”, which have the following matrices [21]: 

 

𝐼𝑤 = 

(

 
 

𝐼𝑤𝑖𝑔
𝐼𝑤𝑓𝑔
𝐼𝑤𝑐𝑐
𝐼𝑤𝑜𝑔)

 
 
, 𝑅𝑤 = 

(

 
 

𝑅𝑤𝑖𝑔
𝑅𝑤𝑓𝑔
𝑅𝑤𝑐𝑐
𝑅𝑤𝑜𝑔)

 
 
,𝑏 

(

 
 

𝑏𝑖𝑔
𝑏𝑓𝑔
𝑏𝑐𝑐
𝑏𝑜𝑔)

 
 
,                                                                 (2) 

 

The memory cell state at arbitrary time step “t” is expressed in the following formula: 

 

𝑐𝑡 = 𝑓𝑔𝑡⊙ 𝑐𝑡−1 + 𝑖𝑔𝑡  ⊙ 𝑐𝑐𝑡                                                                                 (3) 
 

where “⊙” is the Hadamard product or result of elementwise multiplication of vectors. Meanwhile, the output state at 

time step “t” is determined by the following formula: 

 

𝑜𝑡 = 𝑜𝑔𝑡⊙𝜎𝑐  (𝑐𝑡)                                                                                        (4) 
 

where “σc” denotes the “tanh” function used to compute the gate activation function:  

 

𝜎 (𝑧) = (1 + 𝑒−𝑧)−1                                                                            (5) 
 

The following formulas further describe the components of the time step “t” for the input gate, forget gate, cell 

candidate, and the output gate, respectively: 
 

𝑖𝑔𝑡 = 𝜎𝑐𝑐(𝐼𝑤𝑖𝑔 𝑖𝑡 +𝑅𝑤𝑖𝑔 𝑜𝑡−1 + 𝑏𝑖𝑔 )                                                                    (6) 

𝑓𝑔𝑡 = 𝜎𝑐𝑐(𝐼𝑤𝑓𝑔 𝑖𝑡 +𝑅𝑤𝑓𝑔 𝑜𝑡−1 + 𝑏𝑓𝑔 )                                                                   (7) 

𝑐𝑐𝑡 = 𝜎𝑐𝑐(𝐼𝑤𝑐𝑐 𝑖𝑡 +𝑅𝑤𝑐𝑐 𝑜𝑡−1 + 𝑏𝑐𝑐 )                                                                 (8) 

𝑜𝑔𝑡 = 𝜎𝑐𝑐(𝐼𝑤𝑜𝑔 𝑖𝑡 +𝑅𝑤𝑜𝑔 𝑜𝑡−1 + 𝑏𝑜𝑔 )                                                                (9) 
 

Similarly, LSTM has been used for wide range of text categorization applications, such as those applied in healthcare 

[22], settlement tweets [23], patents [24], hotel sentiment analysis [25], among others. LSTM has also been found to have 

better accuracy as compared to convolutional neural network (CNN), k-nearest neighbors (KNN), naïve bayes, among 
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others [24], [26], [27], [28]. Specifically, in one study, LSTM was found to performed better in small sample size if the 

number of hidden units and word embedding dimensions are set at both 50 [29]. 

SVM and LSTM are both popular due to their robust categorization performance, however, there seems to be limited 

studies that compared the performance of these two algorithms, particularly in categorizing text-based CS data written in 

natural languages. The closest studies available are found to be relatively of mix findings, wherein one is found to be 

better than the other and vice-versa. For instance, SVM has been proven to be more accurate than LSTM in categorizing 
type of music [30]. On the other hand, another study found that LSTM performed better than SVM in categorizing CS 

tweets of an Arabic telco [31]. Such mix findings are dependent on the complexity of textual data analyzed especially 

those with imbalanced distribution or overlap categories. Other variables that constitute on these issues include the size 

of datasets, feature engineering techniques used [18], and other factors. Nonetheless, the extent of evaluating the 

effectiveness of text categorization models in the context of CS still remain underexplored. Hence, in this paper, the 

author investigated the feasibility of designing text categorization models using SVM and LSTM algorithms in order to 

automatically categorize feedbacks, complaints, suggestions and recommendations. Specifically, the author analyzed the 

factors that affect the performance of these algorithms during training and implemented these algorithms in actual text 

categorization. 

 

2. Methodology 

In order to realize the main objectives of the study, the author utilized the following conceptual model, as shown on 

Fig. 4. The process started with the reading of the text data, followed by pre-processing, then the design of the text 

categorization models using SVM and LSTM algorithms, and the training and validation procedures. The final output of 

the study resulted to the actual implementation of the text categorization models during testing, with emphasis on the 
determination of machine learning performance of both algorithms. Each phase of the conceptual model is further detailed 

in the succeeding parts of the Methodology section. 

 

 
Fig. 4 - Conceptual Model 

 

In the context of this study, the author utilized the text-based CS data, written in both English and Tagalog languages, 

from the Technological University of the Philippines in Manila, Philippines, as of August 30, 2020. Shown on Fig. 5 is 

a screenshot of the sample CS dataset maintained through online spreadsheets. The author set the “findings” (i.e. textual 

statements of CS) as input data, while the “categorization” (i.e. feedback, complaint, suggestion and commendation) as 

output data. In order to facilitate the preprocessing and modelling tasks, the author utilized MATLAB R2020a application 

in a computer workstation with specifications of 2.5 GHz CPU, 8GB 1600 MHz DDR3 RAM. 
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Fig. 5 - Sample CS dataset 

 
Eventually, the dataset has been divided into 4 trials wherein out of 1752 total datasets, 100%, 75%, 50% and 25% 

of it were randomly-selected in each trial. This was done to determine the effect of dataset size with accuracy and elapsed 

time during training. For each trial, the holdout percentage was set at 50% cross-validation threshold, and the MATLAB 

was reset during intervals. Likewise, the author pre-processed the input data in each trial in order to extract the most 

useful features intended for the subsequent text categorization models.  

Shown on Fig. 6a is a screenshot of the function used to preprocess the input data. At this phase, the author converted 

each input data into tokenized words called tokens. The author then removed the stop words; normalized the words into 

their root-forms; converted them into lower cases; removed punctuation marks, words with less than 2 and/or more than 

15 characters, HTML, XML and special characters. Meanwhile, Fig. 6b shows a sample result of preprocessing. In this 

particular example, a text originally-written as “Thank you for the courtesy of your office” has been trimmed down to 

“thank courtesy office” with a total of 3 tokens. Another one written as “The staffs are approachable and nice” has been 
reduced to “staff approachable nice” with also a total of 3 tokens.  

 

 

 
                  Fig. 6a - Pre-processing function                                    Fig. 6b -Pre-processing sample results 

 

Furthermore, shown on Fig. 7 are the word clouds of both raw and cleaned words as the graphical representation of 

the results of pre-processing. Evidently, the cleaned data is more polished than the raw data since the unnecessary words 

and characters have been removed. The bigger words in the word clouds indicate that such words appear more frequently 

in the text analysis. 
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Fig. 7 - Word clouds 

 

After the pre-processing, the author utilized feature engineering techniques to define the features needed for the 

subsequent text categorization models. In consideration on the compatibility constraints of the MATLAB software, the 

author initially used Bag-of-Words Model (BoWM), this time intended for the SVM categorization model. BoWM is a 

method of scoring the frequency on how many times a specific word has appeared in each text.  

The following Fig. 8a, 8b and 8c show the BoWM function, its results, and most common tokens in the text analysis 

model, respectively. In this particular example, the BoWM generated a total of 1192 vocabularies or unique tokens out 

of total of 1752 datasets. The top 10 most commonly-known words generated are “student”, “office”, “good”, “ang” 

(Tagalog of “the”), “staff”, “yung” (Tagalog of “that”), “time”, “request”, “need” and “work”. As noted, there are few 

Tagalog stop-words left unfiltered, wherein such issue seems attributable to the lack of multiple-language compatibility 
of the built-in functions of the simulation software. 
 

  
                   (a) BoWM Function                                     (b) BoWM Results               (c) 10 Top Most Popular Words 

 
Fig. 8 - Bag-of-Words Text analysis model 

 

 Afterwards, the author then designed a SVM text categorization model using a compact, multi-category, Error 

Correcting Output Codes (ECOC) for SVM binary learners [32]. In this technique, the model utilizes a marginal binary 

learning algorithm using a coding matrix: 𝑀 ∈ {+1, 0, −1}cb where “c” are the categories and “b” are the binary learners 

[33]. 

 Shown on the following Fig. 9a is the function used to design and train the SVM text categorization model. For this 

purpose, the author utilized the tokenized documents of “findings”, generated through the BoWM, as predictors and 

“categorization” as linear response. Meanwhile, Fig. 9b shows the 4x6 coding matrix used to map out how the binary 

learners, which in this case made of 6 best soft-margins, train in the 4 categories, which are composed of 

1=commendation; 2=complaint; 3=feedback; 4=suggestion. The elements in the coding matrix correspond to the 

prediction results of the 6 binary learners and 4 categories. Each element in the matrix is expressed as either “-1” which 

means that “b” allocates the predictions into a negative category; “0” which means that “b” removes predictions from the 

dataset before training; and “+1” which means that “b” allocates predictions to a positive category. 
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                      (a) Compact Multi-Category Function                                      (b) 4x6 Coding Matrix 

 

Fig. 9 - SVM Text categorization model design 

 

Moreover, the following Table 1 shows the specifications of the binary learners used in the design of the SVM 

categorization model composed of prior probability, cost, beta, bias, lambda, regularization and learning weights. On the 

other hand, Table 2 details out the equivalent scores of binary learners in categorizing sample tokenized documents. 

 

Table 1 - SVM Binary Learners Specifications 

Property B1 B2 B3 B4 B5 B6 

Category Name [-1, 1] [-1, 1] [-1, 1] [-1, 1] [-1, 1] [-1, 1] 

Prior Probability 
[0.1556, 
0.8444] 

[0.2762, 
0.7238] 

[0.2597, 
0.7403] 

[0.6744, 
0.3256] 

[0.6557, 
0.3443] 

[0.4790, 
0.5210] 

Cost [0,1;1,0] [0,1;1,0] [0,1;1,0] [0,1;1,0] [0,1;1,0] [0,1;1,0] 

Beta 1192 B1 1192 B2 1192 B3 1192 B4 1192 B5 1192 B6 

Bias 0.8624 0.6407 0.4019 -0.4115 -0.6283 -0.2685 

Lambda 0.0019 0.0016 .0016 0.0039 0.0041 0.0030 

Regularization ‘ridge (L2)’ ‘ridge (L2)’ ‘ridge (L2)’ ‘ridge (L2)’ ‘ridge (L2)’ ‘ridge (L2)’ 

Learner Weights 0.6178 0.7208 0.7048 0.2952 0.2792 0.3822 

 

Table 2 - SVM Binary Learners’ Token-Scores 

Token B1 B2 B3 B4 B5 B6 

nbc -0.200443084 -0.152848724 0 0.078796828 0.16039847 0.119696682 

cycle 0 -0.152848724 0 -0.076535546 0 0.119696682 

evaluation 0 -0.152848724 0 -0.076535546 0 0.119696682 

verify 0 -0.152848724 0 -0.076535546 0 0.119696682 

letter 0 -0.152848724 0 -0.076535546 0 0.119696682 

appeal 0 -0.685123312 0 -0.22288367 0 0.434609923 

promotion 0.025470719 -0.05125248 0.071357193 -0.076535546 0 0.119696682 

additional 0 -0.4178241 -0.331097529 -0.144222098 -0.148941087 0.091687468 

licensure 0 -0.315560091 0 -0.110199807 0 0.293513934 

exam 0 -0.315560091 0 -0.110199807 0 0.293513934 

university -0.023976476 -0.158732993 0.099206511 -0.089929039 0.033844765 0.267281832 

extension -0.040194664 0 -0.023560592 0.043799086 0.000198724 -0.006663604 

services -0.040194664 0 0 0.043799086 0.033844765 0 

file -0.040194664 0.024948214 0.296829349 0.001094384 0.021676626 0.012090331 

complaint -0.438951387 -0.03948172 -0.228991836 0.326753534 0.51250204 -0.000616271 

against -0.040194664 0 0 0.043799086 0.033844765 0 
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recognize -0.040194664 0 0 0.043799086 0.033844765 0 

excess -0.040194664 0 0 0.043799086 0.033844765 0 

baggage -0.040194664 0 0 0.043799086 0.033844765 0 

 

 The performance of the binary learners is measured in terms of categorization function, expressed as [34], [35]: 

 

�̂� =       𝑐
𝑎𝑟𝑔𝑚𝑖𝑛

 
∑ |𝑚𝑐𝑏
𝐵
𝑏=1 | 𝑙 (𝑚𝑐𝑏 , 𝑠𝑏)

∑ |𝑚𝑐𝑏|
𝐵
𝑏=1

                                                                          (10) 

 

where “ĉ” is the predicted category of the observation used to minimize the total losses of binary learners “B”; “mcb” is 

an element of coding matrix “M” or the code equivalent to category “c” of the binary learner “b”; “sb” is the predicted 

score of “b”; and “l” is the binary loss function. 

 Meanwhile, another feature engineering technique, called the word encoding (WE), was implemented, this time, for 

the LSTM. WE is a word representation model which translates tokenized documents into sequences of numeric indices 

and back. Shown on Fig. 9a is a screenshot of the actual WE function, which generated a total of 1192 vocabularies or 

unique tokens. Fig. 9b, on the other hand, elaborates a sample representation of how sample tokens were encoded 

sequentially. The first example shows that using WE model, the equivalent encoded words of 1, 2, 3, 4, and 5 indices are 

“nbc, 461, cycle, evaluation and verify”, respectively. The second example, on the other hand, shows the equivalent 

indices of the previous tokenized documents sampled in Fig. 5b, read as “staff friendly approachable” with indices of 

“71, 77, 60”, respectively.  

 

 
                                          (a) WE Function                                                    (b) Sample Encoding Results 

 

Fig. 10 - Word encoding text analysis model 

 The extent of converting tokenized words into indices using WE model is to ensure that the input data are 

sequentially arranged first prior to LSTM modelling. This technique is required in an LSTM in order to address the 

vanishing gradients caused by sparse and highly dimensionality of text data. These sequences of numeric indices were 

then further optimized in the subsequent word embedding (W-E) layer of the LSTM text categorization model. The author 

set the sequence length of the vocabularies into “30” since majority of them have 30 tokens. The author then left-padded 

the words with lesser than 30 and truncated those greater than it. This technique was employed for both training and 

validation data, wherein the held-out was also set at 50% cross validation threshold. 

 Illustrated on Fig. 11a and 11b are the architecture and actual function used to design the LSTM text categorization 

model, respectively. Specifically, the author set a 1 sequence input layer composed of 1192 +1 indices of vocabularies 

or features; 1 W-E layer, which maps out the input vocabulary words into real output vectors and captures their meanings 

and relationships with other words. Each of these 1193 indices has 50 embedding dimensions or vocabulary size, 30 

sequence length and 16 mini batch size set during training. Moreover, the author designed a LSTM layer with 80 hidden 

units; then 4 fully connected layers; 1 softmax layer based on softmax function; and 1 categorization (or classification) 

based on cross-entropy function. Afterwards, the author trained the network at max of 30 epochs, using adaptive moment 

estimation (Adam) solver [36] with 2 gradient thresholds and 0.01 initial learning rate. 
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(a) Architecture          (b) Function 

 

Fig. 11 - LSTM Text categorization model design 

 

 Fig. 12 depicts the sample weights of the inputs, recurrent, and bias, used by the LSTM layers. These data are crucial 

toward the effective functioning of the subsequent fully connected, softmax and output layers.  

 

 

 Fig. 12 – Input, Recurrent and Bias Weights of 50 Dimensions x 1193 Tokens 

 

 The categorization performance of the LSTM output layer was computed using the following cross entropy loss 

formula [37]: 

 

𝐶𝐸 = −∑ ∑ 𝑥𝑎𝑏 ln 𝑧𝑎𝑏
𝐶
𝑏=1

𝐷
𝑎=1 ,                                                                       (2)                                                                       

 

where “D” is the no. of datasets; “C” is the no. of categories; “xab” signifies that “ath” dataset is part of the “bth” category; 
“zab” is the output of dataset “a” for category “b” which is equivalent to the probability where the networks correlates 

“ath” with “bth”, also known as the softmax function. 

 

 Afterwards, the author evaluated the performance of both SVM and LSTM algorithms during training, wherein 

initially, the categorization accuracy of each model was determined by the following formula [14]: 

 

𝐶𝐴 = 
(𝑃𝑡+𝑁𝑡) 

(𝑃𝑡+𝑃𝑓+𝑁𝑓+𝑁𝑡)
                                                                                     (3)                                                                      

 

where “CA” is the categorization accuracy; “Pt” is no. of true positives; “Nt” is no. of true negatives; “Pf” is no. of false 

positives; and “Nf” is no. of false negatives. Likewise, the confusion error rating of both models was determined using 

the following formula [38]: 

 

𝐶𝑒 =  
∑ 𝑤𝑜𝑘𝑜
𝑛
𝑜=1

∑ 𝑤𝑜
𝑛
𝑜=1

                                                                                      (4) 

 



Corpuz, International Journal of Integrated Engineering Vol. 13 No. 4 (2021) p. 77-91 

 

 

 86 

where “wo” is the weight of observation “o”; “ko=1” if the predicted category of “o” differs from its true class, otherwise 

it is “0”. Aside from the training accuracy performance, the elapsed time of both models were also recorded based on the 

results of MATLAB simulation. Subsequently, the author compared the overall training performance in terms of accuracy 

and elapsed time of both SVM and LSTM models using the following independent T-test formula [39]: 

 

𝑡 =  
�̅� − 𝑙 ̅

√(
𝑠𝑑
2

𝑛1+
𝑙𝑑
2

𝑛2 
)

                                                                                     (5) 

 

where “s̅” is SVM total dataset average; “l”̅ is the LSTM total dataset average; “s” is SVM sample dataset size; “l” is 
LSTM sample dataset size; “sd” is SVM standard deviation (SD); and “ld” LSTM SD. The calculated “t” value was 

compared with the critical t-value distribution table, in which the degrees of freedom “f” was computed as follows: 
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 )
2

1
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                                                                                    (6) 

 

3. Results and Discussion 

 The performance of both SVM and LSTM text categorization models during training were evaluated in terms of 

accuracy, confusion error and elapsed time. As reflected on Table 3, the results of performance evaluation for both SVM 
and LSTM models affirm that while the number of dataset size is increased, the learning accuracy is likewise improved. 

Inevitably, the confusion rating decreases and the training elapsed time slows down. 

 

Table 3 – SVM and LSTM Training Performance 

Dataset Size 

SVM LSTM 

Accuracy (%) 
Confusion 

error (%) 

Elapsed 

Time (s) 
Accuracy (%) 

Confusion 

error (%) 

Elapsed Time 

(s) 

1752 98.63 1.4 3.78 99.32 0.70 84 

876 92.01 8.0 2.53 96.18 3.80 35 

438 82.65 17.4 2.25 87.69 12.30 18 

219 56.88 43.10 1.56 62.50 37.50 15 

x̅ 82.54 17.48 2.53 86.42 13.58 38 

SD 18.32 18.30 0.93 16.69 16.69 31.91 
Notes: x̅ = average; SD = standard deviation 

 

 Fig. 13 shows the confusion matrix of SVM categorization model according to its best performance during training. 

As shown, SVM model was able to generate 98.6% accuracy, 1.4% confusion error rating, and completed the training at 

3.78s. Overall, the model categorized the training data correctly except for some commendations that were 

miscategorized as either complaints (0.7%) or suggestions (0.7%). 
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Fig. 13 - SVM Model Confusion Matrix 

 

 On the other hand, the following Fig. 14 shows the confusion matrix of LSTM categorization model. As shown, its 

best performance was recorded at 99.32% accuracy with 0.70% confusion error rating, and elapsed time of 84s. While 

the model performed well overall, there were 6 instances when the commendations were miscategorized as feedbacks 

(0.7%). 

  

 
Fig. 14 – LSTM Model Confusion Matrix 
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 Meanwhile, Table 4 elaborates the results of independent t-test conducted to inferentially compare the performance 

of the two algorithms in terms of accuracy and elapsed time during training. 

 

Table 4 - Independent Samples T-Test Results 

  

Levene’s Test of 

Equality of Variances 

t-test for Equality of 

Means 

Sig. (2-

tailed) 
Mean Diff 

Std. Error 

Diff. 

95% Confidence Interval 

of the Difference 

F Sig t df    Lower Upper 

Accuracy Equal 
Variances 
Assumed 

0.015 0.907 

0.313 6 0.765 3.88 2.391 -26.44 34.2 

Accuracy Equal 
Variances Not 

Assumed 

0.313 5.948 0.765 0.88 2.391 -25.504 34.264 

Elapsed Time 
Equal Variances 
Assumed 

0.398 0.045 

2.222 6 0.068 35.47 15.96 -3.582 74.522 

Elapsed Time  
Equal Variances 

Not Assumed 

2.222 3.005 0.113 35.47 15.96 -15.273 86.213 

 

 In terms of accuracy, although the LSTM has recorded a higher average rating of 86.42% or best rating of 99.32%, 

such results are not statistically significantly different with that of the SVM, which has an average rating of 82.54% or 
best rating of 98.63%. This finding is corroborated by the statistical values of t (5.948) =.313 and p=.907. Conversely, in 

terms of training elapsed time, the study found that SVM is statistically significantly faster (2.53 ± .93s) than LSTM 

(38.00 ± 31.91s), with t (3.005) = 2.222 and p= 0.045. Hence, these results mean that both SVM and LSTM algorithms 

are at par with each other in terms of training accuracy, but SVM is found to be significantly faster than LSTM by 

approximately 35.47s. 

 After training, the author deployed the best SVM and LSTM categorization models in order to validate their 

respective training performances. Specifically, the author utilized 20 randomly-selected test dataset composed of 5 

feedbacks, 5 commendations, 5 suggestions and 5 complaints. The results of testing are shown on Figure 15 and 16 for 

SVM and LSTM categorization models, respectively. Interestingly, both models have predicted 100% of all the test data. 

This means that the design process conducted was effective in implementing SVM and LSTM algorithms toward actual 

text-based CS categorization application. 

   
                                                 (a) SVM Test Input Data                                          (b) SVM Test Output Data 

 

Fig. 15 - SVM Actual test categorization Results 
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                                               (a) LSTM Input Test Data                             b) LSTM Output Test Data 

 

Fig. 16 - LSTM Actual test categorization results 
 

4. Conclusions 

Although LSTM has higher training accuracy than SVM in most trials conducted, their difference was not 
statistically significant. Conversely, SVM was found to be statistically significantly faster than LSTM. Such findings 

could be attributed on several factors such as the limitations of the dataset size, high-dimensionality of both English and 

Tagalog languages analyzed, and the applicability of the feature engineering techniques used.  Interestingly, both models 

were found to be 100% accurate in predicting the test data during actual implementation. This means that the modelling 

approach conducted was effective and feasible in establishing the categorization capabilities of both SVM and LSTM 

algorithms as applied to text-based CS data. Hence, the choice of using between the two algorithms boils down on the 

extent of available dataset and the technical skills in using appropriate feature engineering techniques and in deploying 

these algorithms toward actual text categorization applications.  

Future studies should consider standardizing a common feature engineering technique applicable for both algorithms. 

Likewise, when using multiple languages, consider translating non-English text, such as Tagalog, into pure English texts 

prior to modelling. This is to ensure that certain stop words written in the local language are accurately lemmatized and 

pre-processed. Likewise, the effect of modifying the holdout percentage, embedding dimension (for the case for LSTM) 
and adding more CS input data, particularly thousands of samples to essentially establish deep learning, should also be 

explored further. 

 

Acknowledgement 

The author would like to thank the continued support of the top management of the Technological University of the 

Philippines - Manila, particularly in upholding customer satisfaction, which is an essential component of the University 

QMS. Likewise, gratitude is given to the staff of the quality assurance office – namely, Deseree Joy D. Lingal, Mark 

Joseph O. Indelible, Aileen T. Dollisen, RJ P. Icatar, and Ronnie F. Ladores Sr. –  in facilitating various QMS activities, 

particularly, in gathering, analyzing and reporting CS data, timely and efficiently. 

 

References 

[1] International Organization for Standardization. 2015. ISO 9001:2015 - Quality management systems – 

Requirements. Retrieved from https://www.iso.org/standard/62085.html 

[2] Corpuz, R.S.A. (2019). Implementation of artificial neural network using scaled conjugate gradient in ISO 

9001:2015 audit findings classification. International Journal of Recent Technology and Engineering, 8 (2), 420-425 

[3] International Organization for Standardization. 2015. ISO 9000:2015 - Quality management systems - Fundamentals 

and vocabulary. Retrieved from https://www.iso.org/standard/45481.html 
[4] International Organization for Standardization. 2018. ISO 10004:2018 - Quality management – Customer 

Satisfaction – Guidelines for monitoring and measuring. Retrieved from https://www.iso.org/standard/71582.html 

[5] Lessman, S.  & Vob, S. (2009). A reference model for customer-centric data mining with support vector machines. 

European Journal of Operational Research, 199, 520-530. 

https://www.iso.org/standard/62085.html
https://www.iso.org/standard/45481.html
https://www.iso.org/standard/71582.html


Corpuz, International Journal of Integrated Engineering Vol. 13 No. 4 (2021) p. 77-91 

 

 

 90 

[6] Zablith, F. & Osman, I. (2019). ReviewModus: Text classification and sentiment prediction of unstructured reviews 

using a hybrid combination of machine learning and evaluation models. Applied Mathematical Modelling, 71, 569-

5. 

[7] Al-Smadi, M., Qawasmeh, O., Al-Ayoyoub, M., Jararweh, Y. & Gupta, B. (2018). Deep recurrent neural network 

vs. support vector machine for aspect-based sentiment analysis of Arabic hotel’s reviews. Journal of Computational 

Science 27, 386-393. 
[8] Sebastiani, F. (2002). Machine learning in automated text categorization. ACM Computing Surveys, 34, 1, 1-47. 

[9] Qing, L., Linhong, W. and Xuehai, D. (2019). A novel neural network-based method for medical text classification. 

Future Internet, 11 (255), 1-13. 

[10] Gopalakrishnan, V. & Ramaswamy, C. (2017). Patient opinion mining to analyze drugs satisfaction using supervised 

learning. Journal of Applied Research and Technology, 15 (4), 311-319. 

[11] Vapnik, V. (1999). The Nature of Statistical Learning Theory. Second edition. Springer: Berlin, Germany.  

[12] Coussement, K. & Van den Poel, D. (2008). Churn prediction in subscription services: An application of support 

vector machines while comparing two parameter-selection techniques. Expert Systems with Applications, 34 (1), 

313-327. 

[13] Yin, C., Xiang, J., Zhang, H., Wang, J., Yin, Z. & Kim, J-U. (2015). A new SVM method for short text classification 

based on semi-supervised learning. Pages 100-103 in IEEE, editors, 4th International Conference on Advanced 

Information Technology and Sensor Application (AITS), 21-23 August 2015, Harbin, China. 
[14] Corpuz, R.S.A. (2020). ISO 9001:2015 risk-based thinking. Makara Journal of Technology, 24 (3), 149-159. 

[15] Christianini, N. & Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines and Other Kernel-Based 

Learning Methods. Cambridge University Press: Cambridge, UK. 

[16] Christianini, N. & Schölkopf, B. (2002). Support Vector Machines and Kernel Methods: The New Generation of 

Learning Machines. AI Magazine, 23 (3), 31-41. 

[17] Lo, S. (2008). Web service quality control based on text mining using support vector machine. Expert Systems with 

Applications, 34, 603-610. 

[18] Raza, M., Hussain, F. K., Hussain, O. K., Zhao, M. & Rehman, Z. (2019). A comparative analysis of machine 

learning models for quality pillar assessment of SaaS services by multi-class text classification of users’ reviews. 

Future Generation Computer Systems, 101, 341-371. 

[19] Cheung, K.-W., Kwok, J.T., Law, M.H., & Tsui, K.-C. 2003. Mining customer product ratings for personalized 
marketing. Decision Support Systems, 35, 231-243. 

[20] Lee, C-H. & Yang, H-C. (2005). A classifier-based text mining approach for evaluating semantic relatedness using 

support vector machines, DOI: 10.1109/ITCC.2005.2 in IEEE, editors. Proceedings, International Conference on 

Information Technology: Coding and Computing (ITCC'05) - Volume II, 4-6 April 2005, Las Vegas, NV, USA. 

[21] Hochreiter, S. & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9 (8), 1735-1780. 

[22] Hu, Y., Wen, G., Ma, J., Wang, C., Lu, H. & Huan, E. (2018). Label-indicator morpheme growth on LSTM for 

Chinese healthcare question department classification. Journal of Biomedical Informatics 82: 154-168. 

[23] Huang, R., Taubenbock, H., Mou, L. & Zhu, X.X. (2008). Classification of settlement types from tweets using LDA 

and LSTM. Pages 6408-6411 in IEEE, editors. Proceedings, 2018 IEEE International Geoscience and Remote 

Sensing Symposium (IGARSS), 22-27 July 2018, Valencia, Spain. 

[24] Xiao, L., Wang, G. & Zuo, Y. (2018). Research on patent text classification based on word2vec and LSTM. Pages 

71-74 in IEEE, editors. Proceedings, 11th International Symposium on Computational Intelligence and Design 
(ISCID), 8-9 December 2018, Hangzhou, China. 

[25] Khotimah, D.A.K. & Sarno, R. (2019). Sentiment analysis of hotel aspect using probabilistic latent semantic analysis, 

word embedding and LSTM. International Journal of Intelligent Engineering and Systems, 12 (4), 275-290. 

[26] Luan, Y. & Lin, S. (2019). Research on Text Classification Based on CNN and LSTM. Pages, 352-354 in IEEE, 

editors. Proceedings, 2019 IEEE International Conference on Artificial Intelligence and Computer Applications 

(ICAICA), 29-31 March 2019, Dalian, China. 

[27] Wang, J., Liu, T-W., Luo, X. & Wang, L. (2018). An LSTM approach to short text sentiment classification with 

word embeddings. Pages 214-223 in IEEE, editors. Proceedings, 30th Conference on Computational Linguistics and 

Speech Processing (ROCLING 2018), October 2018, Hsinchu, Taiwan. 

[28] Gharibshah, Z., Zhu, X., Hainline, A. & Conway, M. (2020). Deep learning for user interest and response prediction 

in online display advertising. Data Science and Engineering, 5 (26), 12-26 
[29] Corpuz, R.S.A. (2021). An application method of long short-term memory neural network in classifying english and 

tagalog-based customer complaints, feedbacks, and commendations. International Journal on Information 

Technologies and Security, 13 (1), 2021, pp.  89-100. 

[30] Fulzele, P., Singh, R., Kaushik, N. & Pandey, K. (2018). A hybrid model for music genre classification using LSTM 

and SVM. DOI: 10.1109/IC3.2018.8530557 in IEEE, editors. Proceedings, Eleventh International Conference on 

Contemporary Computing (IC3), 2-4 August 2018, Noida, India. 



Corpuz, International Journal of Integrated Engineering Vol. 13 No. 4 (2021) p. 77-91 

 91 

[31] Almuqren, L.A.R., Qasem, M.M. & Cristea, A.I. (2019). Using deep learning networks to predict telecom company 

customer satisfaction based on Arabic tweets. Paper presentation, 28th International Conference on Information 

Systems Development (ISD), August 28-30, 2019, Toulon, France. 

[32] Dietterich, T. G. and G. Bakiri (1995). Solving multiclass learning problems via error-correcting output codes. 

Journal of Artificial Intelligence Research, 2, 263–286.  

[33] Allwein, E. L., R. E. Schapire, and Y. Singer (2000). Reducing multiclass to binary: a unifying approach for margin 
classifiers. Journal of Machine Learning Research, 1, 113–141.  

[34] Fürnkranz, J. (2002). Round Robin Classification. Journal of Machine Learning Research, 2, 721–747. 

[35] Escalera, S., Pujol, O. & Radeva, P. (2010). On the decoding process in ternary error-correcting output codes. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 32 (7), 120–134. 

[36] Kingma, D. & Ba, J. (2015). Adam: A method for stochastic optimization. Retrieved from 

https://arxiv.org/abs/1412.6980  

[37] Bishop, C. M. (2006). Pattern Recognition and Machine Learning. Springer: New York, NY, USA. 

[38] MathWorks Inc. (2019). Classification ECOC Loss. Retrieved from 

https://www.mathworks.com/help/stats/classificationecoc.html.  

[39] Villanueva, A.B. & Corpuz, R.S.A. (2020). Design and development of fire evacuation system using fuzzy logic 
control. International Journal of Scientific and Technology Research, 9(4), 2096-2103.  

 


