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1. Introduction 

The application of proportional-integral (PI) controller in low-power microcontroller is getting attentions from the 

control community because of their capability to provide a satisfactory performance for many processes with a 

relatively easy design [1].  Low-power microcontroller gives an advantage in term of their small size, low cost, and 

simple programming. Discrete control system is based on the sampling time, where the system output is sampled and 

control signal is updated periodically [2]. This time-triggered strategy unfortunately is not efficient in energy usage 

because it will remain consuming energy and computation resources, by updating the control signal even the system 

has reached a steady state. 

An event-based PI controller can be an alternative to have more resources-aware system. In the event-based 

strategy, the controller only computes control signals changes when certain conditions are satisfied [3-5]. Such strategy 

gives an advantage on energy saving in the computation load of all the digital electronics involved in the control loop. 
In context of real-time system, event-based technique can reduce the CPU utilization which will make the processor to 

be available to do more tasks.  

The first event-based control was introduced by Årzén [6]. The event-based PI controller was designed with two 

logical conditions which were absolute relative error and time-triggered safety maximal sampling period condition, to 

reduce the control update while maintaining good output performance. This technique is also known as level crossing 

sampling [7], send-on-delta (SOD) sampling [8], or deadband sampling [9]. In [10] Durant and Marchand managed to 

reduce more control update by removing the safety maximal period and improved the integral discretization algorithm. 

On parallel work, Beschi et. al [11] extended the event-based SOD sampling strategy to symmetry send-on-delta 
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(SSOD) where the error signal was quantized first before computed the control signal. However, SSOD technique 

introduced new computation for error quantization and required new tuning rule, consequently, increasing the 

computational complexity [12-14]. The latest and simplest algorithm can be found in [15] where simple modification 

was made on integral discretization algorithm to produce event-based response close to time-triggered response.  

Although even-based PI controller offers a good strategy in saving the computational resources, this strategy has a 

tendency to produce a limit cycles response, especially when the control parameters are taken directly from continuous 
tuning rules [14,16-17]. Limit cycles is an oscillatory response at the steady-state region which can create problems 

such as quick wear out of actuators. Existing simple event-based PI controller [6,10,15] cannot be used arbitrarily with 

the aggressive tuning rule to have the good response with free limit cycles. Therefore, the aim of this work is to 

introduce new simple event-based algorithm that can avoid the limit cycles even by using control parameters from the 

continuous tuning rule. 

The paper is structured as follows. Section 2 explains the event-based PI controller setup. Section 3 outlines how 

the proposed method is developed. In section 4 the simulation setup and comparison results of proposed method with 

other simple event-based PI controllers on various event-based control parameters and tuning rules are presented. 

Finally, in Section 5, the conclusion is provided. 

 

2. Event-based PI Controller 

Generally, feedback control system has three main components: 1) controller; 2) process/system/plant with 

actuators; 3) sensors. Once the controller is a type of digital controller, an additional component of analog-to-digital 

converter and digital-to-analog converter are compulsory. Basically, event-based PI controller is a digital controller 

which receives and computes a control signal based on the presence of event, instead of triggering periodically. Fig. 1 
shows the setup for event-based PI controller. 
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Fig. 1 – Block diagram of event-based PI controller 

 

Event-based PI controller uses an event detector to decide control signal update. The event detector checks the 

event periodically which is equal to the sampling period (hnom) of the sensor. Event detector has a logical rule to 

determine the event. In the Årzén’s setup [6] the event triggering condition is given by 

 

|e(k) – e(j)| > ē or hact ≥ hmax (1) 

 

where the event is detected based on two rules: a relative measurement between current error e(k) and the previous used 

error e(j) by controller crosses a predefined limit level ē; and an interval time (hact) without a control update crosses 

maximal sampling period limit hmax. This setup resulted in the controller will be updating control signal at hnom during 
transient (i.e., set point changes and load disturbances) and reducing controller execution to hmax when the system 

reaches steady state.  

 

3. Proposed Method 

The PI controller in Laplace domain is formulated as 

 

U(s) = K.E(s) +K/Tis.E(s) (2) 

  

 

Where, U and E are control and error signals respectively, K and Ti are proportional and integral terms of PI controller. 

The discrete PI control with backward difference algorithm is calculated as  

 

up(k) = K(e(k)) (3) 

ui(k) = ui(k-1) + (K/Ti). h(k). e(k) (4) 

u(k) = up(k) + ui(k) (5) 
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Where, u(k), up(k) and ui(k) are control signal, proportional control and integral control at k-th step respectively, while 

e(k) is error at k-th step and h is an interval time between step. In event-based technique the interval time is sporadic 

and every event-based approach has different h(k) used in their PI algorithm. Consequently, due to the aperiodic control 

update in event-based PI controller, forward approximation discretization as suggested in [2] for time-triggered 

controller is not accurate for event-based controller because the value of h(k+1) cannot be predetermined [10]. 
Another significant effect of event-based controller is that the system will experience two states of condition; 1) 

event triggered during transient state; 2) no-event during steady state. If the event is triggered, which indicate the 

system is in transient state, the system will act as a closed-loop system, while it will be an open-loop system if there is 

no event, i.e., steady state. Note that, during the transition from the event state (closed-loop system) to no-event state 

(open-loop system), the last control signal which is generated by closed-loop system will be inherited. This is crucial in 

open-loop system, due to that control signal will determine the direction of the output response. As open-loop system is 

a condition at the steady state, the control signal should drive the output response within the boundary limit. If the 
response crosses the limit, the system will return to close-loop system which will drive back to open-loop system and 

this bouncing condition will result in oscillatory response which is called limit cycles. 

 

 
Fig. 2 – Step response with limit cycles due to event-based control 

 

Fig. 2 shows the example of the limit cycles occurrences due to the event-based control. Circle mark indicate the 

event is triggered and the control is updated while cross mark shows no control update due to it is in no-event region. 

Noted after the response reaches near the set point, the response keeps moving to the limit of event-condition resulting 

in new event and control update. This phenomenon repeated and caused the limit cycles happened. As explained 

before, this limit cycles can be avoided if the proper control signal is achieved before the response enter the no-event 

region. 

Typically, event conditions that are used for simple event-based PI controller to determine the event, are absolute 

error level crossing |e(k)| > ē and absolute relative error level crossing |∆| > ē, where ∆ is a value of the difference 
between the current error and the error where the last event is triggered (e(k)-e(j)), and ē is the triggering level limit. In 

velocity form PI control signal can be calculated as  

 

u(k) = u(k-1) + K. (e(k)-e(k-1)) + (K/Ti). h(k). e(k) (6) 

 

 

 

In event-based PI controller, the control signal u(k-1) and error e(k-1) are the last control signal and error where the 

event is triggered written as u(j) and e(j). This is due to the control signal is updated based on the event rather on the 

sequence of k-th step. The resulting control signal can be expressed as  

 

u(k) = u(j) + K. (e(k)-e(j)) + (K/Ti). h(k). e(k) (7) 
 

By substituting ∆ = e(k)-e(j), equation (7) is given by 

 

u(k) = u(j) + K. ∆+ (K/Ti). h(k). e(k) (8) 

 

Undertake h(k), K, Ti as constant, hence, u(k) can be manipulated using the values of u(j), ∆, and e(k). It is important to 

remark that h(k), K, Ti are assumed as a constant to indicate these parameters are explicitly taken from continuous 

tuning rule. Fig. 3 depicts an example of step response for the plant output (Fig. 3(a)), with its error trajectory (Fig. 

3(b)) and control signal in Fig. 3(c). As shown in Fig. 3(c), first control signal u(1), reduces the error from e1 to e2 with 
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∆1 amount. The relation between control signal and error show that control signal plays a significant role in the 

direction of error and the value of relative error ∆. Thus, by examining the current relative error, a behavior of last 

control signal can be identified. This information is important to ensure the open-loop system (no-event state) receives 

an appropriate control signal. Next section will analyse the effect of conventional triggering condition to the open-loop 

control signal for response in Fig. 3, and propose the improved triggering condition. 

 

 
 

Fig. 3 - Output, error and control responses for step response 
 

3.1 Absolute Error Level-crossing Triggering 

Level crossing absolute error event condition will stop the control update when current error is equal or lower than 

the triggering-limit ē. Fig. 3(b) shows that first error that within the ē boundary limit is e2, however, the value of ∆1 is 

huge and as logical explanation this is because the control signal u(1) is in aggressive mode. Therefore, if control 

update starts to stop at e2, it will generate limit cycles where control signal will drive the output response toward the 
limit ē before reverse the direction toward another boundary limit. Fig. 4 illustrates the limit cycles response caused by 

absolute error triggering condition. This conclude that absolute error triggering condition cannot give an appropriate 

control signal when the system changes from closed-loop to open-loop system. Despite the oscillation, the output 

response is closed to the set point. 
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Fig. 4 - Output and error for event-based PI controller with absolute error level-crossing triggering 

 

3.2 Absolute Relative Error Level-crossing Triggering 

Event condition using absolute relative error most probably will give a control signal that contributes to the steady 
error to the system (small ∆). However, the steady error is not guarantying a small error, in this case sticking problem 

will be generated. Sticking problem is a phenomenon where the system stops updating the control updates even the 

response is far from reference point. As illustrated in Fig. 3(b), the earliest low relative error can be found at point e4, 

by assuming ∆3 value is lower than ē. At this point the system will start running using open-loop system and as shown 

in Fig. 5, the system is experienced a sticking problem when level-crossing absolute relative error is applied as event 

condition. The output responses were able to maintain its position but with the cost of huge steady state error.  

 

 

Fig. 5 - Output and error for event-based PI controller with absolute relative error level-crossing triggering 

 

3.3 Proposed Improvement for Event Triggering Condition 

Analysis of the conventional event triggering conditions in Section 3.1 and 3.2 indicates that, the absolute error rule 

can guaranty lower output response. On the other hand, absolute relative rule gives smooth output response with a 

steady error. Based on this evidence, a combination both triggering conditions is proposed as an improved triggering 

condition which is define as 
 

|e(k)| > ē or |e(k) - e(j)| > δ (9) 
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where δ is triggering limit for relative error. The first condition will force the system continuously update when the 

error is outside the ± ē region and the later will make sure the rate of error is small before the system stop updating. As 

illustrated in Fig. 3, assume error and relative error at point e5 are within the boundary limit ē and δ (assuming δ = ē) 

respectively. Despite a small steady state error as depicted in Figure 5, the output response is smooth and close to the 

set point. Based on Fig. 4, 5 and 6, the improved triggering condition is believed can deliver a good output response for 

event-based PI controller because the improved triggering condition start to stop the control update closest to the 
equilibrium point which is at e5 as shown in Fig. 3 and Fig. 5 whereas the absolute error and absolute relative error 

triggering conditions are stopped update at e2 at e4 respectively. It is suggested the δ is chosen at least 10 times smaller 

than ē to guarantee the system has reach the settling region before stop updating.  

 

 
 

Fig. 6 - Output and error responses for event-based PI with improved triggering condition 

In measuring the output response, it is hard for the sensor to avoid a measurement noise. This measurement noise 

can eventually generate an event if its value reaches the threshold triggering limit ē. Therefore, the selection of 

triggering limit ē is important to avoid/reduce the event triggered by measurement noise. This condition can be 

remedied by choosing triggering limit ē greater than measurement noise. The triggering limit is typically tuned 
according to a trade-off between the number of events per time unit and the control performance [16]. 

 

4. Simulation Examples 

In this section, performance of the proposed method (PM) will be compared with conventional time-triggered PI 

controller (TT) and two simple event-based PI controllers, the Durand and Marchand saturation (DMS) method [10], 

and Yusop and Mamat fixed period algorithm (FPA) [15]. The DMS and FPA methods were selected due to both 

methods have a less algorithm in their event-based PI computation load [15]. Table 1 shows the comparison of the 

integral discretization algorithm and triggering condition for all three methods. As described in Table 1, both DMS and 

FPA used similar triggering condition but different h(k) for integral discretization algorithm in (4). In DMS and FPA, 

second Årzén triggering condition rule in (1) was removed which led to huge integral impact when there was a large 

interval time without control update hact. Thus, DMS used saturation he as h(k), while FPA used hnom to ease the integral 
impact. PM algorithm was based on FPA integral discretization algorithm but the triggering condition used a 

combination of absolute error and absolute relative error (as proposed in Section 3.3). Although there is an additional 

subtraction and logic check at the triggering condition algorithm in PM, this addition does not give huge complexity to 

the controller computation. The coding for DMS, FPA and PM are illustrated in Fig. 7, 8 and 9 respectively. 
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Table 1 - Comparison of event-based PI controller methods 

Method Integral discretization Algorithm Triggering condition 

DMS [10] ui(k) = ui(j) + (K/Ti). he 

if hact > hmax 

he = (hact - hnom).(ē) + hnom. (e(k)) 

else he = hact 

|e(k)-e(j)| > ē 

FPA [15] ui(k) = ui(j) + (K/Ti). hnom. e(k) |e(k)| > ē 

PM ui(k) = ui(j) + (K/Ti). hnom. e(k) |e(k)| > ē or |(e(k)- e(j)| > δ 

 

% inputs

ysp = u(1);

y = u(2);

e = ysp - y;

% calculate control signal

hact = hact + hnom;

if abs(e - e_old)- > elim 

   if hact >= hmax

      he=(hact-hnom)*elim + K/Ti*hnom *e;

   else

      he = hact *e;

   end

 up = K*e

 ui = ui_old + K/Ti*he;

 u = up + ui

% update

hact = hnom;

e_old = e;

ui_old = u;

      

end
 

Fig. 7 - Codes for DMS event-based PI controller 

 

% inputs

ysp = u(1);

y = u(2);

e = ysp - y;

% calculate control signal

if abs(e) > elim 

up = K*e

 ui = ui_old +  K/Ti*hnom*e;

 u = up + ui

% update

ui_old = u;

      

end

 
Fig. 8 - Codes for FPA event-based PI controller 
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% inputs

ysp = u(1);

y = u(2);

e = ysp - y;

% calculate control signal

if (abs(e) > elim OR abs(e - e_old) > δ )

up = K*e

 ui = ui_old +  K/Ti*hnom*e;

 u = up + ui

% update

ui_old = u;

      

end

 
Fig. 9 - Codes for PM event-based PI controller 

 

A good event-based PI controller should be adaptable for any type of tuning rules. For this purpose, three tuning 

rules namely, AMIGO tuning rule [19], SIMC tuning rule [20], and One-third tuning rule [18] were tested on all three 

event-based PI controllers for three simulation setups. These three tuning rules are selected due to their difference 

behavior of tuning, where AMIGO gives moderate tuning gain, SIMC is aggressive tuning, and One-third is the slowest 

tuning among them.  

 

4.1 Simulation Setup 

The simulation was conducted on two processes/plants. The process control can be a good benchmark, where PI 

controllers are widely employed. The plants were approximated to first order plus deadtime (FOPDT) as 

 

P(s) = 
Kp 

e-sL (10) 
(1+sT) 

 

where Kp is the static gain, T the lag or time constant, and L the time delay. In process control the behaviour of the 

plants are categorised as lag-dominant, balanced and delay-dominant. This dominant behaviour is an important 

guideline in selecting an appropriate tuning rule [18]. The three categories are determined by the normalized time delay 

τ = L / (L+T). Commonly, the limits between the three categories are 0 ≤ τ ≤ 0.2 for lag dominated, 0.2 < τ < 0.6 for 

balanced, and 0.6 ≤ τ ≤ 1.0 for delay-dominated processes [14, 18]. In this work similar plants used in [14] specifically 

lag-dominant and delay-dominant plants were studied, given as 

 

P1(s) = 
1 

 (11) 
(1+s)(1+0.1s)(1+0.01s)(1+0.001s) 

and 

P2(s) = 
1 

e-5s (12) 
(s+1)4 

 

where Kp = 1, L = 0.075 and T = 1.04 and Kp = 1, L = 6.3 and T = 2.92 for processes P1(s) and P2(s) respectively. P1(s) 

is considered as lag-dominant process due to lag T is much longer than time delay L, while P2(s) is delay-dominant 

process since time delay L is longer.  

 

Simulation 1 
The first simulation used process P1(s) with the control parameters listed in Table 2. The control parameters were 

calculated from the three tuning rules based on FOPDT parameters. 

Table 2 - Controller parameters for process (9)  

Rule K Ti 

AMIGO 4.13 0.539 

SIMC 6.93 0.60 

One-Third 0.33 1.04 
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The simulation was established as in [14] where the set point was set to 0 to illustrate the system is in equilibrium 

before load disturbance with magnitude 1 was introduced at time 1s. The event-based parameters ē and δ were chosen 

equal to 0.1 and 0.01, respectively, and for DMS algorithm, hmax was equal to 1. The 0.01 sampling period hnom was 

used for the event-detector.  

 

Simulation 2.  
The second simulation used process P2(s) with the control parameters listed in Table 3. The set point, load disturbance, 

event-based parameters and sampling period were used similar as in Simulation 1. 

Table 3 - Controller parameters for process (10)  

Rule K Ti 

AMIGO 0.21 3.61 

SIMC 0.23 2.92 

One-Third 0.33 4.25 

 

 

Simulation 3 
The third simulation used process P1(s) and parameters similar as Simulation 1, however the step reference change with 

value 1 was given at time 1s and load disturbance with magnitude 1 was introduced at time 30s with 60s simulation 

time. The triggering limit and sampling period were tested for several values, i.e. 0.01 and 0.1. Similar performance 

index in [15] was used in this study; an integrated absolute difference between the time-triggered and event-based 
system response (IAEP). The IAEP was calculated as follows:  

 

 
|ytime-triggered (t) – yevent-based (t)| dt (11) 

 
Where small IAEP means the response is close to the time-triggered response and large IAEP implies poor response 

due to the response is far from the time-triggered response. Computational load for the response was calculated to 

measure the reduction of computational cost. The computational load was obtained as follows: 

 

number of updates 
x 100 (12) 

number of updates for time-triggered 

 

4.2 Simulation Results 

The objective for Simulation 1 and 2 was to verify the effectiveness of PM in limit cycles avoidance, while 

Simulation 3 was purposely to further investigate the performance and computation load for event-based PI controller 

using different sampling period hnom and triggering limit ē.  

Fig. 10 shows the responses for the Simulation 1 where the process P1(s) was simulated with three event-based PI 

control algorithms (DMS, FPA and PM) using tuning rules listed in Table 2. As seen in Fig. 10, PM algorithm managed 

to avoid limit cycles for all tuning rules. On the contrary, DMS and FPA produced inconsistence results, where limit 

cycles occurred to DMS response when using AMIGO, while FPA failed to avoid limit cycles for AMIGO and SIMC. 
This implies that, there is no guarantee to have a smooth response when directly applied a continuous tuning rule on 

DMS and FPA. In addition, slow tuning rule, i.e., One-Third which suggested lowest controller gains, provided a 

smooth steady-state response for all three even-based PI controllers. Such tuning offers slow response resulting in small 

rate of change for the error which is favorable for open-loop PI switching state in event-based controller. Thus, all three 

event-based PI control algorithms managed to reach open-loop state with appropriate control signal when using One-

Third tuning rule. 

Fig. 11 illustrates the response for Simulation 2 on process P2(s) with the same parameters’ setup as in Simulation 

1 and control parameters listed in Table 3. It was found that, all the tested event-based strategies able to produce a 

response without limit cycles as shown in Fig. 11. This is due to the delay-dominant process produced slow output 

response which contributed to small error-rate change. The small error-rate change resulting in smooth switch from 

close-loop system to open-loop system in event-triggering which offer high chance to avoid limit cycles. Another 

interesting finding from the results is the proposed method PM algorithm managed to maintain a good performance 
even for slow-response process where PM gave almost identical output response as DMS and FPA for AMIGO (Fig. 

11(a) and One-Third (Fig. 11c)) tuning rules, while for SIMC tuning rule, PM gave better output response which 

closest to the set point as shown in Fig. 11(b). 
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(a) AMIGO 

 
(b) SIMC 

 
(c) One-Third 

Fig. 10 - Step load disturbances obtained from the lag-dominant process in Simulation 1 
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limit cycles 
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(a) AMIGO 

 
(b) SIMC 

 
(c) One-Third 

Fig. 11 - Step load disturbances obtained from the delay-dominant process in Simulation 2 
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Fig. 12 demonstrates one of the responses for the Simulation 3 where the limit cycles are occurred. As shown in 

Fig. 12, DMS and FPA event-based method generated the limit cycles around the set point. Contrary result was showed 

for PM algorithm where smooth response without limit cycles was achieved. The rest of Simulation 3 results obtained 

for different event-based controllers with different parameters are listed in Table 4. As depicted in Table 4, PM 

algorithm produced a smooth response without limit cycles for all tested parameters, which is the reason for PM 

algorithm producing lowest IAEP and computational load compared to DMS and FPA with limit cycles responses. This 
supports the fact that limit cycles will deteriorates the system performance and increases the control updates. It is 

important to emphasize that DMS and FPA required proper selection of parameters i.e., tuning rule method, sampling 

period and triggering limit to guarantee good performance without limit cycles. For instance, at lower sampling time 

and triggering limit i.e., 0.01, AMIGO tuning rule seems to be acceptable employed with FPA, but as the triggering 

limit was increased, the limit cycles started to appear and constituted poor performance with more control update. In 

addition, aggressive tuning rule like SIMC is unfeasible with DMS and FPA, where even at lower triggering limit, 

SIMC still produced limit cycles for DMS and FPA responses.  

 

 
 

Fig. 12 - Output response for Simulation 3 using AMIGO tuning with triggering limit ē = 0.01 and sampling 

period 0.1 
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Table 4 - Performance index of event -based PI controller for Simulation 3 

 

 
Overall finding suggests that the proposed event condition combination in PM algorithm is able to be directly 

employed with the continuous tuning rule and avoid limit cycles occurrences. Although with a simple algorithm PM 

manages to reduce the computational load more than 70% from the time-triggered approach. 

 

5. Conclusion 

In this paper, an improved triggering rule of event-based PI controller has been presented and tested using three 

tuning rules, namely AMIGO, SIMC and One-Third rules against a load disturbance response. By considering the 

limitations in directly applying continuous tuning rules to event-based PI controller, a good event condition rule has 

been proposed to significantly avoid the unwanted limit cycles oscillations around the set point. The simulation results 

and the comparative analysis of the proposed algorithm with its counterparts proved the advantages of the proposed 

Tuning rule 
Sampling 

period 

Triggering 

limit ē 

Control 

Scheme 

Number 

of 

updates 

Limit 

Cycles 

Computa

-tional 

load (%) 

IAEP 

AMIGO 

0.01 

- TT  6000 - 100  

0.01 

DMS 1201 Yes 20.02 0.64 

FPA 297 No 4.95 0.32 

PM 313 No 5.22 0.34 

0.1 

DM 2044 Yes 34.07 4.47 

FPA 1630 Yes 27.17 3.93 

PM 281 No 4.68 0.54 

0.1 

- TT 600 - 100  

0.01 

DMS 457 Yes 76.17 0.97 

FPA 441 Yes 73.50 0.90 

PM 154 No 25.67 0.02 

0.1 

DMS 427 Yes 71.17 10.32 

FPA 425 Yes 70.83 9.52 

PM 129 No 21.50 0.04 

SIMC 0.01 

- TT 6000 - 100  

0.01 

DMS 1463 Yes 24.38 0.45 

FPA 1356 Yes 22.60 0.43 

PM 342 No 5.70 0.32 

0.1 

DM 1282 Yes 21.37 3.34 

IA 2369 Yes 39.48 4.65 

PM 220 No 3.67 1.09 

One-Third 

0.01 

- TT 6000 - 100  

0.01 

DMS 2988 No 49.80 0.26 

FPA 2974 No 49.57 0.17 

PM 2983 No 49.72 0.18 

0.1 

DM 1681 No 28.02 4.23 

FPA 1507 No 25.12 2.56 

PM 1594 No 26.57 2.55 

0.1 

- TT 600 - 100  

0.01 

DMS 294 No 49.00 0.27 

FPA 292 No 48.67 0.16 

PM 298 No 49.67 0.17 

0.1 

DMS 167 No 27.83 4.14 

FPA 148 No 24.67 2.51 

PM 158 No 26.33 0.49 
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method in terms of: the ability to imitate time-triggered performance without a limit cycles no matter what tuning rules 

is used and the reduction in the computational load. 
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