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1. Introduction 

The production of quality products at high production rate are the main challenges for manufacturing industries 

specially those involved in machining of heat resistive super alloys (HRSAs) used in aerospace and nuclear 

applications. HRSA such as Inconel 601, Inconel 718, Inconel 750 and Inconel 825are termed as hard-to-machine 

materials as it possesses high yield strength, high ultimate strength and maintain the ultimate tensile strength even at 

elevated temperatures. The poor machinability of these materials poses a challenge for manufacturing engineers in 

selecting appropriate process parameters. The challenges faced are mainly shorter tool life, severe abuse of machined 

surface and development of higher cutting force [1]. The research studies on turning of Inconel focus mostly on flank 

wear mechanism and to increase the life of the tool. Hao et al., [2] and  Li et al., [3] investigated the flank wear 

mechanism and obtained optimal cutting temperature during Inconel 718 machining using coated carbide tool. They 

established a predictive model which gives the optimal cutting temperature and tool flank wear. Jindal et al., [4] studied 

tool wear of PVD, TiN, TiCN, and TiAlN coated cemented carbide tools in turning of Inconel 718. They found that 
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optimum solutions that produce components with maximum MRR at desired value of Ra is another new 

contribution of this research. The Pareto optimal solution yields a minimum surface roughness of 1.42µm at 
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TiAlN and TiCN outperform providing superior tool life as compared to TiN. Rahman et al., [5] carried out 

machinability analysis on turning Inconel 718 considering three performance measures viz.,  tool wear, Ra and Fz. They 

found that machinability of Inconel 718 is depends on tool feed rate (f) and cutting speed (v) during machining. 

Arunachalam et al., [6] investigated on work piece surface roughness produced in machining Inconel 718 and 

concluded that the use of coated carbide with application of coolant generates compressive residual stress, which helps 

to reduce surface roughness and improves the machinability. Kamata and Obikawa [7] investigated tool life while 

machinng Inconel 718 with minimal quantity lubrication (MQL) with coated carbide tools. They found that better tool 

life achieved by TiCN/Al2O3/TiN while machining with 1.0 m/min; it also produce good surface quality.  

Thakur et al., [8] performed the machining investigation considering the surface quality of Incoloy 825 during 

plain turning in dry condition using carbide coated and uncoated cutting tool. They have seen good performance of 

uncoated carbide insert and produce better surface finish and tool wear. Thakur et al., [9] has established a fuzzy based 

predictive model for predicting the sub surface micro hardness of Inconel 825 in dry turning using CVD tools. The 

developed model predicts micro hardness with an average error of 1.07 and 1.18 % respectively for the two different 

tools. They also studied tool wear and chip characteristics while machining of Inconel 825 using uncoated PVD tool 

and cemented carbide inserts [10]. The authors noticed that PVD tool show improved tool wear and it is obtained at 

high cutting speed using coated carbide inserts.Thakur et al., [11] evaluated and compared the frictional & wear 

properties and machinability study during turning on Inconel 825 using CVD  and PVD tools. The analysis establish 

that, considerable reduction in main cutting force is shown by PVD coated tool. Santhanakumar et al., [12] studied on 

work piece surface finish and tool flank wear in turning of nickel based maraging steel. The found that at higher cutting 

speed and lower feed & depth of cut surface roughness and tool wear are 0.434 µm 0.0234 mm respectively. Various 

studies have been performed by using MQL approach to improve the machinability performance index by number of 

researchers. Pandey et al., [13] investigated the performance of Trihexyltetradecylphosphonium Chloride mixed with 

organic coconut oil applied by MQL approach during turning of hardened D2 steel. They found improvement in 

performance characteristics such as tool wear, surface roughness, material removal rate, and chip morphology. 

Choudhury et al., [14] studied machinability of 330 Super Alloy using Coconut Oil Based SiO2 Nano fluid in turning.  

They investigated the effects of input process variables on flank wear, surface roughness, MRR, and chip morphology 

using MQL technique. The study reported that the machinability has been improved significantly with the use of Nano 

fluid during the machining process. Kumar et al., [15] have developed spray cooling technique using TiO2 Nano fluid 

to dissipate the heat from cutting zone during turning which enhanced the life of tool and also give better surface finish. 

Further they optimize the process parameters such as cutting speed, feed, and depth of cut, air pressure and water 

pressure using Grey relational analysis and developed a predictive model using artificial neural network (ANN). 

Comparative study has been performed to instigate the machining performances and wear characteristics of coated 

carbide and ceramic inserts for AISI D2 steel (55 ± 1 HRC) during turning. It is found that ceramic insert outperform 

the carbide in terms of better surface roughness and tool wear [16]. Roy et al., [17] [18] investigated the machining 

performance viz., tool wear and surface finish during machining of AISI 4340 steel by hard turning process in Pulsating 

mode using MQL-Assisted lubrication technique. They concluded that the technique reduces tool failure rate as well as 

shows the improvement in surface finish. 

The optimization of machining process is an important task to produce the components economically. For proper 

optimization, the prediction of various machining performance measures such as surface roughness obtained, tool wear, 

cutting force, and material removal rate are necessary and it is a challenging task [19]. The conventional modeling and 

optimization approaches such as (i.e., Taguchi approach, regression model, and response surface methodology) have 

been used by a number of researchers. Ramanujam et al., [20] have also performed machining investigation of Inconel 

718 using PVD coated carbide tool. They established a non-linear relationship model to predict surface roughness and 

cutting force; found that the deviation in the developed model is very less when it compared to experimental results. 

Selvakumar and Ravikumar [21] studied the effect of machining parameters (v: 2500–3500 rpm; f: 4−12 mm/rev; and 

d: 5−15 µm) in turning of titanium alloy using micro tool made up of cermet insert. Cutting speed and feed rate are 

found as most inducing parameters on flank wear and surface roughness. The developed RSM models show better 

prediction with residuals lie closer to straight line. Gupta and Sood [22] studied the parametric influences in machining 

AISI 4340 steel with uncoated tungsten carbide tool. Taguchi based grey relational analysis (GRA) is implemented to 

optimizing multiple performance measures in different machining environment (dry, wet and cryogenic). The results 

found that for instantaneously optimize Fz, vb and Ra,the optimal parameters as cutting speed as 51 m/min, feed rate 

0.179 mm/rev machined with cryogenic cooling as optimum parameters.  Kacal and Gulesin [23] employed Taguchi 

approach to optimize the Ra and Fz during turning of austempered ductile iron with CBN tool.  Cutting speed, tool type, 

feed rate and austempering temperature was used as process variables. Feed rate and austempered temperature was 

found to be significant parameters. Genetic algorithm (GA) is commonly used by researchers for obtaining optimal 

solution for multiple objectives. Baraskar et al., [24] also used GA to optimize multiple objectives (minimize Ra and 

maximize MRR) in EDM. Senthilkumaar et al., [25] also used GA for optimizing finish turning and facing processes of 

Inconel 718 for minimizing surface roughness and tool wear. Fuzzy and PSO is used for prediction and optimizing the 

output characteristics. The methodology obtains Pareto’s fronts at a reasonably low computational cost, assigning 

random weights. This again does not guarantee the optimal solution. 
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In reviewing the existing literatures, it is very obvious that most literatures focus on the machinability analysis 

of nickel and titanium-based alloys [26]. The selection of best machining conditions for production of quality 

components economically is an important area of research. Machining of Inconel 825, which has superior corrosive and 

oxidization resistance than Inconel 718 has not received much attention. Applications of these materials are found in 

producing marine, nuclear power, aerospace, chemical, petro-chemical and space shuttle components. The objectives of 

the present work are drawn as: 

  

1. Experimental study on dry turning of Inconel 825 uisng PCD cutting insert was carried out. 

2. The optimizing of process parameters for multiple performance characteristics viz., surface roughness, main 

cutting force and metal removal rate was studied using GA -AHP.  

3. Using the Pareto optimality approach, was used to developed an optimized process parameter table which also 

provides and facilitate easy selection of process parameters in order to achieve the desired surface roughness 

and MRR. 

 

2. Materials and Methods 

In the present work, machining of Inconel 825 was conducted on Inconel 825 using poly crystalline diamond 

(PCD) inserts (Designation of the insert: CNMG 120404−PD 103 (Make: Alumina) having side rake angle of 7º, 

rake angle of −6º clearance angle of 0º, end cutting edge angle of 5º, approach angle of 95º and nose radius of 0.8 

mm). The mechanical property of the Inconel 825 is given in Table 1. 

 

Table 1 - Mechanical Properties of Inconel 825 (wt%) 

Material Yield strength Ultimate tensile strength Elongation percent in 

2'' (50 mm) 

Hardness 

Rockwell B 
psi MPa psi MPa 

Inconel 825 49,000 338 96,000 662 45 135−165 

 

The cylindrical specimen of size 40 mm diameter and length of 140 mm was used, poly crystalline diamond inserts 

tool were used during machining the work material. The experimental work is performed in HMT lathe (Model 

NH-26) having 11 kW power. The experimental combinations and number of runs are planned based on central 

composite design (CCD). The design contains 20 runs of experiment which was performed in dry turning. Based 

on the preliminary experiments and earlier investigations, three influencing factors (N, f and d) selected and set at 

three levels as shown in Table 2. Fig 1(a) shows the inputs levels and responses used and Fig. 1 (b) shows 

machining setup employed. 

  

 
(a) Input levels and response diagram  (b) Machining setup 

Fig. 1 - Inconel 825 turning process (a) Input levels and response diagram; (b) Machining setup 

 

The machining performance is evaluated with process characteristics i.e., surface roughness (Ra), main cutting force 

(Fz) and metal removal rate (MRR). The value of Ra is measured with Pocket Surf (Mahr, GMBH). The measurement of 

surface roughness was taken with scanning length of 2.4 mm. The measurement was performed at three places such 

that the entire machining length is divided into three parts and one measurement was taken from each part and average 

was considered. The obtained Ra measurements are closer and outliers are very small. There is no influence on specific 

location of job in the measurement of Ra. Piezo electric type (Kistler make, type 9272) having threshold measurement 

of 0.02 N in z-direction dynamometer was used to measured Fz. Once the dynamometer detected cutting signals for the 

x, y and z axles, the charge amplifier (Kistler make) amplified the signals, which was then transmitted through an 

interface card into the computer to calculate the three axial cutting forces, Fx, Fy and Fz. The MRR is evaluated using an 

empirical relation given in Eq.1.  

 

     
 D ,MRR Nfd      (1) 
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Where D is diameter of the work piece in mm, N is spindle speed of the machine in rpm,  f is feed rate in mm/rev and d 

is depth of cut in mm. Table 1 shows the designated data sets with actual parameters and the corresponding 

experimental responses.  

Table 2 - Experimental result based CCD experimental design 

Trial 

No. 

Actual factors Experimental responses 

N(rpm) f (mm/rev) d (mm) Ra (µm) Fz(N) MRR (mm3/min) 

1 715 0.16 0.75 2.50 382 10237.7 

2 715 0.16 0.50 2.26 273 6825.1 

3 420 0.16 0.75 3.51 347 6013.7 

4 1210 0.16 0.75 2.03 416 17325.3 

5 715 0.10 0.75 2.80 280 6398.5 

6 715 0.20 0.75 3.47 470 12797.1 

7 715 0.16 0.75 2.50 382 10237.7 

8 715 0.16 0.75 2.50 382 10237.7 

9 420 0.20 1.00 4.01 520 10022.9 

10 420 0.20 0.50 3.57 300 5011.4 

11 420 0.10 0.50 2.65 148 2505.7 

12 715 0.16 0.75 2.50 382 10237.7 

13 1210 0.10 0.50 1.60 180 7218.9 

14 1210 0.10 1.00 1.85 367 14437.7 

15 715 0.16 0.75 2.50 382 10237.7 

16 1210 0.20 0.50 2.19 381 14437.7 

17 420 0.10 1.00 2.98 308 5011.4 

18 715 0.16 1.00 2.63 497 13650.2 

19 1210 0.20 1.00 2.55 594 28875.4 

20 715 0.16 0.75 2.50 382 10237.7 

 

3.  Development of Multiple Regression Model 

A mathematical model based on multiple regression analysis (MRA) has been developed to establish the predictive 

model equations of three process responses during Inconel 825 machining. The developed quadratic model is in the 

following form.  

2

0

1 1

,
k k

i i ii i i ij i j

i i i j

y x x x x x    
 

           (2) 

where y is the performance output terms,β0,βi,βii,βij is the regression coefficients and ɛ is the machining error. Based on 

the experimental performance outputs the model coefficients are evaluated by using MINITAB16® software. The 

following are the relations obtained for Ra, Fz and MRR. 
2 2 24.1576 0.00301 49.3066 7.77 0.0000013 195.63 4.831aR N f d N f d        

0.00405 2.206 0.000203Nf fd Nd  
,

2 0.97R     (3) 

2 2 2246.171 0.21138 660.306 416.285 0.0001283 986.115 111.022zF N f d N f d       

   
0.4180 900.698 0.0187Nf fd Nd  

,
2 0.99R     (4) 

2 2 210955.9 13.4343 72862.2 14608 0.00000096 7.2796 0.3537MRR N f d N f d      

  
89.4892 97153.5 17.9128Nf fd Nd  

, 
2 0.99R     (5) 

Since coefficients of determination (R2) are quite close to 1 that confirms the effectiveness of the developed 

models. The model equations are validated with 12 unused datasets and the results are validated. The average error 

percentage is found to be within 10% and model adequacy is about 90%. Fig. 2 shows the graphical plot of the model 

performance for different response characteristics (i.e., Ra, Fz, and MRR). This shows that the prediction error is highly 

accurate of the developed model as the maximum error is within 9.5%. 
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                        (a) For Ra                                                    (b) For Fz                                                        (c) For MRR  

Fig. 2 - Comparison of model prediction 

 

Fig.3 depicts the interaction effect of influencing factors on different process responses. The graphical analysis of 

parameters is performed using Design-expert® software, in which, feed and spindle speed are found to be the main 

dominating parameters. Fig. 3(a) shows the interaction effect of surface roughness (Ra) and spindle speed (N) with 

respect to tool feed (f).  From the plot, it is evident that with the increase in spindle speed from 420 to 1210 rpm, the 

surface roughness decreases. As the feed rises the Ra is detoriated and produce poor surface finish. The increased feed 

produces larger waviness on machined surface and hence produces poor surface finish. Fig. 3(b) shows the variation of 

cutting force with respect to spindle speed and feed. The increase in feed and spindle speed develop higher cutting 

force. The feed is found to be the main dominating factor and Fz is maximum at N= 750 rpm at all feeds. The higher 

feed rate is found responsible for increase thickness of chip produced resulting in increase in cutting force. For 

minimum cutting load lower feed and medium to lower speed is preferred. The variation of metal removal rate (MRR) 

with respect to f and N is plotted in Fig. 3(c). The plot shows that increase in feed and speed improve MRR. The speed 

and feed are responsible for increased chip length and chip thickness and hence the increased volume rate of metal 

removal. For maximum MRR, speed and feed are 1210 rpm and 0.2 mm/rev respectively.  

 

 
           (a) For Ra   (b) For Fz            (c) For MRR 

Fig. 3 - Surface plots (with f and N) for different performance measures 

 

The investigation shows the effect of various process parameters on different dependent output responses. Analysis has 

been carried out using design of expert (DoE®11) software. Table 3 shows ANOVA result for regression model 

equations (i.e., Eq. 3 to Eq. 5) developed for Ra, Fz, and MRR.  The results show Ra is highly influenced by 'N' 

contributing 60.69% and 45.50 % in deciding MRR, whereas 'f ' is utmost inducing factor contributing 46.52% in 

determining Fz.  

 

4. Optimization of Performance Characteristics  

4.1 Taguchi Optimization of Single Performance Characteristics 

The parametric optimization of machining process is important to produce the component at economic rate. Using 

Taguchi approach, the quality characteristics of the observed data are represented by the signal to noise (S/N) ratio (η) 

for normalizing the responses [27]. The characteristic implemented in the present work is represented as: 

 

The smaller the better (SB) S/N ratio (Eqn 6) is used for minimizing surface roughness and cutting force.  

     

2

10

1

1
10log ,

i

n

SB

i

y
n




 
   

 
      (6)                     
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Where yi is the observed data at ith trial and n is the total number of trails. For maximizing material removal rate larger 

the better (HB) S/N ratio given in Eq.7 is used. 

     

10 2
1

1 1
10log ,

i

n

HB

in y




 
   

 
 


     

(7) 

The higher spindle speed and the low values of feed and depth of cut produce better surface finish. The optimum 

condition is obtained at N=1210 rpm, f =0.1 mm/rev and d =0.5 mm, that producing Ra of 1.60 µm. The spindle speed is 

found as an important factor that directly affects Ra as higher speed produces better surface roughness as reported in 

[28].  The cutting tools with small nose radius/chamfer chip-away the work materials ahead of the tool easily and hence 

improve the surface roughness. The feed rate and depth of cut are second and least factors respectively that affect the 

surface roughness inversely. The obtained result agreed with the common finding that speed and feed are the main 

factors that influence the surface finish. 

Table 3 - Analysis of variance for Ra, Fz, and MRR 

Responses  Source 
Regression 

model 
N f d N2 f2 d2 Nf fd Nd 

Ra 

DF 9 1 1 1 1 1 1 1 1 1 

SS 6.65 4.18 1.49 0.30 0.12 0.60 0.25 0.06 0.01 0.01 

F-ratio 32.22 182.17 65.12 12.97 4.29 26.2 10.9 2.28 0.27 0.14 

P-value 0.00 0.00 0.00 0.005 0.05 0.00 0.00 0.046 0.042 0.03 

Contribution (%) 60.69 21.68 4.32 1.43 8.72 3.63 0.76 0.081 0.05 

Fz 

DF 9 1 1 1 1 1 1 1 1 1 

SS 213296 9697 96951 99580 950 15 132 557 1022 28 

F-ratio 316.81 129.62 1296 1331.1 12.7 0.20 1.77 7.44 13.66 0.37 

P-value 0.00 0.00 0.00 0.00 0.01 0.04 0.03 0.02 0.004 0.03 

Contribution (%) 4.53 46.52 45.29 0.44 0.40 0.30 0.56 0.477 0.012 

MRR 

DF 9 1 1 1 1 1 1 1 1 1 

SS 613500267 2.8×e8 1.33×e8 1.3×e8 0 0 0 2.55×e8 1.18×e8 2.53×e8 

F-ratio 245.38 1010 477.20 474.74 0 0 0 91.84 42.81 91.25 

P-value 0.00 0.00 0.00 0.00 1.00 1.00 1.00 0.00 0.00 0.00 

Contribution (%) 45.50 21.51 21.40 0 0 0 4.13 1.92 4.11 

 

The average S/N ratio for cutting force shows that all the factors directly affect the cutting force; while feed and depth 

of cut are the most significant factors and speed has the least influence. The optimum parametric combination for 

minimum Fz is N= 420rpm, f= 0.1 mm/rev and d= 0.50 mm which obtains Fz =148 N. The minimum chip area at lower 

feed is responsible for producing lower cutting force and thus requires minimum power to shear off the metal. The 

MRR increases as spindle speed increase; feed rate as well as depth of cut is also responsible for maximum MRR. The 

values of f and d decide the size of the chip while spindle speed is responsible for the volume rate of chip removal from 

the work piece. The optimal factors for producing 28875.4 mm3/min is N=1210 rpm, f=0.2 mm/rev and d=1.00 mm.  

The S/N ratio of different responses can be determined using the relation given in the Eq. (8).  

( ) ( ) ( ),
m m m my y i y i y i yN f d    



      
    

  (8) 

where 
my is overall experimental mean of corresponding response and , ,i i iN f d  (i=1,2 and 3) are mean response for 

optimal levels and factors. The comparison of the results between predicted value and the Taguchi optimization of three 

performance measures i.e., Ra, Fz and MRR are 5.11%, 1.69% and 0.10% respectively. The predicted values are closer 

to the experimental value. The estimated S/N ratio (maximum) at optimal cutting condition for Ra, Fz and MRR found 

as
aR



=−4.08db, 
zF



=−43.41db and MRR


= 89.21 db respectively.  

 The optimal setting of control factor obtained for single objective case was different for each response (i.e., Ra, 

Fz and MRR). Machining of particular combination of optimal factors will not provide optimum result for other 

response characteristics. Hence for machining quality job economically it is essential for simultaneously optimizing all 

the responses. 

 

4.2 Simultaneous optimization using AHP- GA based approach 

The simultaneous optimization of three responses viz., Ra, Fz and MRR in machining Inconel 825 is performed 

using a global search non-evolutionary optimization method called genetic algorithm (GA). GA follows the philosophy 

of natural selection process in evolution to create better and better solutions within a population of random solutions 

over a number of iterations using its operator i.e., reproduction, crossover and mutation. Initially, a huge set of 
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populations are produced within the search boundary. Each solution in the search boundary (i.e., string or chromosome) 

is given to objective function and the objective value assesses how close the string is near to the desired objective. The 

method is repetitive till the objective value reaches to the desired precision. The past works confirms that GA is 

superior optimization method for finding global minima [29]. 

For simultaneous optimization of all the performance characteristics, a weighting method is used in this study.  

The outputs of three different objectives (i.e., Ra, Fz, and MRR) provide large differences in numerical values. 

Therefore, the function corresponding to each machining output is normalized first. The combined weighted objective 

function employed by Mahapatra and Patnaik [30] is used in this study. The obtained weighted objective function is to 

be maximized as shown in Eq.9. 

                Maximize Z = 1 2 3 3

1 2

1 1
,w w w f

f f

 
     

                   

(9) 

Wheref1 is normalized function for Ra,   

f2 is normalized function for Fz,  

f3 is normalized function for MRR,   

w1, w2, w3 are weight function for Ra, Fz and MRR respectively,  

The function is optimized subject to following constraints. 

420 1210N   

0.10 0.20f          (10) 

0.5 1.0d   

In multi objective optimization, the problem is optimized considering all objectives simultaneously. Researchers mostly 

used equal importance (i.e., w1=w2=w3=0.333, for optimizing three objectives). However, the importance of objective 

is not same and it varies from problem to problem. This work proposes an analytical hierarchy process (AHP) for 

obtaining the weights of different objectives considering their relative importance. AHP was first introduced by Saaty 

in the year 1990 [31] that uses Eigen vector approach for decision making problems. The information is decomposed 

into a hierarchy of alternatives and then synthesized to determine relative ranking. This work applies this approach for 

deriving weights of individual objectives. The priorities based on both qualitative and quantitative information among 

the objectives (Ra, Fz and MRR) are evaluated in arriving weightage instead of considering equal weightage in a multi 

objective optimization problem. 

A pairwise comparison matrix considering relative importance of the different objective is obtained initially. The 

scales of relative importance are as: 1−for equal; 3−for moderate; 5−for strong; 7−for very strong and 9−for extremely 

strong [24]. For producing quality job economically, Ra and MRR are considered as prime importance. The three 

different objectives (Ra, Fz and MRR) are related to each other in the following manner: 

 Ra is 1.75 times as important as MRR 

 Ra is 2.5 times as important as Fz 

 MRR is 1.5 times as important as Fz 

Now the pairwise matrix is obtained. The matrix is squared and Eigen vectors are obtained. The Eigen vectors are 

normalized for obtaining the weights of the iteration. Eq.11 shows the system of weights obtained for optimization. 

R
a

R
a

F
z MRR

F
z

MRR

1 2.5 1.75

1/1.75 1.5 1

1/2.5 1 1/1.5

R
a

R
a

F
z MRR

F
z

MRR

3 7.63 5.15

1.74 4.43 3

1.18 3 2.02

R
a

F
z

MRR

15.78

9.17

6.20

R
a

F
z

MRR

0.50

0.30

0.20

Pairwise matrix Squared matrix Eigen Vector Weights

 (11) 

 

The procedure is repeated till there is no significant variation in the weightage is obtained. The obtained 

weightages are 0.50, 0.2 and 0.3 for Ra, Fz and MRR respectively. The single objective optimization results in diverse 

best possible solutions. The implementation of one of the optimal condition will provide optimum result for only one 

response characteristic while other process may deteriorate. For economic benefits of machining process, multiple 

objective optimization of all the process responses are carried out using GA. The formulated optimization function 

given in Eq. 8 having weights w1 is 0.5, w2 is 0.3 and w3 is 0.2, is maximized using non-sorting genetic algorithm 

(NSGA-II) of MATLAB 7.10®. NSGA-II is a multi-objective evolutionary algorithm that uses non-dominated sorting 

approach, crowded distance estimation procedure, and simple crowded-comparison operator to find a set of evenly 

distributed solutions to a multi-objective optimization problem. The GA parameters used are: (i) number of 

population=20, (ii) number of iterations=100, (iii) cross over probability=0.95 and (iv) mutation probability=0.05.The 

optimum parameter was obtained in 135 iterations. The optimum cutting condition is N=1200 rpm, f=0.113 mm/rev and 

d=0.825 mm. The minimum Ra and Fz obtained are 2.48 µm and 330.38 N. The minimum and maximum experimental 
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value of Ra varies between 1.6 µm and 3.57 µm while Fz, between 148N and 594 N. The maximum MRR at optimum 

cutting parameters is 13499.59 mm3/min while experimental MRR varies between 2505.7 and 28875.4 mm3/min. The 

results show a compromise among the responses based on importance. Table 4 shows the comparison of results of 

single and multi-objective cases. Taguchi approach is used for optimizing parameters to minimize/maximize the 

process responses individually. It identifies the best cutting conditions among in different possible levels of 

combination. The multi objective optimization of process characteristics obtained by GA show a compromise among 

the responses based on importance.  

Table 4 Comparison of results 
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5.  POTENIAL INDUSTRIAL APPLICATION OF PARETO OPTIMALITY APPROACH 
Manufacturing industry mainly aims for producing quality jobs economically and hence the process parameters are 

optimized for maximizing MRR and minimizing Ra. It is assumed that the machine could sustain the developed cutting 

force (Fz). The multi optimization problem is optimized with NSGA-II using MATLAB 7.10® software optimization 

tool box. Pareto-optimality approach [32] is employed to generate Pareto-optimal fronts for simultaneously optimizing 

Ra and MRR. Pareto optimality is a condition where there is no way to make some response better off without making 

the other worse off is often referred to as “Pareto optimal” defined by an Italian economist Vilfredo Pareto, who 

developed the underlying concept. By means of these concepts of optimality multi-objective problems were optimized 

simultaneously to find out the optimal cutting conditions. It proposes a fitness assignment to each individual in a 

current population during an evolutionary search based upon the concepts of dominance and non-dominance of Pareto 

optimality. 

Optimum combination of

parameters (Min. R
a
 & Max. MRR)

 
 

Fig. 4 Pareto optimal solutions 

 

The optimizing functions for surface roughness and MRR are presented in Eq. 3 and Eq. 5 respectively. The lower 

and upper limits of process parameters define the search boundary for optimization solution. After 161 number of 



Tamang et al., International Journal of Integrated Engineering Vol. 13 No. 6 (2021) p. 126-136 

 134 

iterations, 16 Pareto optimal solutions were generated.  Fig.4 shows optimal solutions plotted from GA optimization 

and the obtained result is presented in Table 5. Referring to Pareto optimal solutions (Table 5), the minimum surface 

roughness of 1.42µm is obtained at N= 1204.5 rpm, f=0.124 mm/rev, and d=0.503. It is quite lower than the 

experimental minimum of 1.6µm. The GA result is verified through experimentation and the actual surface roughness 

obtained is 1.46µm, and the error percentage is 2.8.    

Table 5 Optimum process parameter selection for desired responses 

Job 

No. 

Optimum parameters Responses obtained 

N 

(rpm) 

f 

(mm/rev) 

D 

(mm) 

MRR 

(mm3/min) 

Ra 

(µm) 

1 1204.94 0.124 0.503 8688.00 1.42 

2 1204.64 0.121 0.502 8407.56 1.43 

3 1203.86 0.118 0.502 8192.64 1.45 

4 1101.25 0.118 0.502 7593.20 1.51 

5 1033.25 0.122 0.502 7372.97 1.55 

6 1046.04 0.115 0.501 6953.14 1.57 

7 989.30 0.102 0.501 5782.51 1.75 

8 950.76 0.100 0.502 5507.20 1.82 

9 752.87 0.114 0.502 5218.23 1.94 

10 756.21 0.101 0.502 4914.13 1.20 

11 726.53 0.105 0.501 4710.88 2.05 

12 630.47 0.117 0.502 4595.87 2.14 

13 618.96 0.112 0.501 4377.35 2.19 

14 603.86 0.108 0.503 4170.20 2.26 

15 571.46 0.105 0.501 3915.90 2.35 

16 420.00 0.100 0.500 3101.01 2.73 

 

The ascending order of Pareto solutions based on surface roughness obtained identifies the cutting conditions with 

minimum Ra  and maximum MRR. Table 5 may be used by manufacturing industries as a guideline for optimizing 

Inconel 825 turning process. For instance, if  a component to be produced with Ra ≤ 1.60μm (i.e., desired surface 

roughness=1.6 μm), table 5 gives appropriate combination of machining conditions providing maximum MRR 

satisfying surface finish requirement.. Referring to table 4, there are six jobs (job no 1 to 6)/ combinations of cutting 

conditions that satisfy desired surface roughness. However, the cutting conditions of job no 1 is optimum, which leads 

to maximum MRR of 8688.0 mm3/min. The optimal cutting parameters is N= 1204.94 rpm, f=0.124 mm/rev, and 

d=0.503 mm. The Ra obtained is 1.42 µm which is well below the desired surface roughness (i.e., 1.6 μm).Similarly 

table 5 can be used for obtaining optimum process parameters for different values of Ra ranging from 1.42 to 2.73 µm. 

This approach found to be an effective tool for optimizing multiple objectives 

 

6.  CONCLUSIONS 

In this research, experimental study and parametric optimization Inconel 825 turning was performed with 

simultaneous optimization of surface roughness (Ra), cutting force (Fz) and material removal rate (MRR). Taguchi 

analysis is used for optimizing all the performance measures individually. By simultaneously optimizing all the 

objectives, a weighted combination of objective function is formulated and then optimized using genetic algorithm 

(GA). AHP has been used for estimation of weights for each objective, based on their relative importance. The Pareto 

optimality approach can be easily applied by manufacturing industries for selecting optimal process parameters that 

would result in producing quality components economically. The same approach could be easily extended for 

simultaneously optimizing other machining process. The results obtained in this study are summarized below: 

 

1. The experimental investigations show that feed is found to be the highest influencing factor in deciding Ra and 

Fz while MRR is decided by all the three parameters. Better surface roughness is obtained at high speed and 

lower tool feed rate.  

2. Multiple regression model has been developed for predicting Ra, Fz and MRR exhibiting higher R2 (above 

0.90) confirming the suitability of the model. The models were validated with 12 unused datasets and result 

show model accuracy of 90% and above. 

3. Single objective optimization all performance measures is performed using Taguchi technique through mean 

effects plots. The predicted results were verified and maximum percentage of error was found to be5.11%. 

4. For simultaneous optimization of Ra, Fz and MRR, a weighted combination of objective function was obtained. 

The weights were optimized through AHP (weights for Ra, Fz and MRR being 0.5, 0.3 and 0.2) considering 
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relative importance of various objectives. The (NSGA) provides compromised process parameters for all 

objectives. 

5. The Pareto optimal solution yields a minimum surface roughness of 1.42µm at N=1204.5 rpm, f=0.124 

mm/rev and d=0.503 mm. This is quite lower than the minimum value of 1.6µm obtained experimentally. The 

NSGA-II result was verified experimentally and the actual surface roughness obtained was1.46µm resulting in 

an error percentage of 2.8%.    

6. The optimum process parameter table obtained facilitates machinist in selection of optimum cutting 

parameters for machining Inconel 825 that would yield values of Ra that ranges from 1.42 to 

2.73µmatmaximum MRR. The approach is found to be an effective tool for optimizing multiple characteristics 

with less effort 

 

Future scope of the present work:  

1. The present investigation work can be extended with the inclusion of other characteristics such as tool 

geometry, acceleration of vibration, machining environment, etc during machining.  

2. The work may be extended for evaluation ‘tool life’ during dry and MQL machining approaches. In 

addition, the experimental investigation under the cryogenic environment and machinability study and 

parametric optimization for different performance measures can be investigated. 
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