
 
INTERNATIONAL JOURNAL OF INTEGRATED ENGINEERING VOL. 13 NO. 5 (2021) 276-287 

 

   

 

© Universiti Tun Hussein Onn Malaysia Publisher’s Office 

 

IJIE 

 

Journal homepage: http://penerbit.uthm.edu.my/ojs/index.php/ijie 

The International 

Journal of 

Integrated 

Engineering 

 ISSN : 2229-838X     e-ISSN : 2600-7916  

 
 

*Corresponding author: Rajab.Yahyazadeh@iaukhoy.ac.ir 
2021 UTHM Publisher. All rights reserved. 

penerbit.uthm.edu.my/ojs/index.php/ijie 

276 

Effect of Hydrostatic Pressure on the Revers Gate-Current of 

AlGaN/GaN HEMTs 
 
Rajab Yahyazadeh1*, Zahra Hashempour1 
 
1Department of Physics, Khoy Branch, 

 Islamic Azad University, Khoy, IRAN 

 

*Corresponding Author 

 

DOI: https://doi.org/10.30880/ijie.2021.13.05.028 

Received 09 July 2020; Accepted 07 June 2021; Available online 24 November 2021 

 

1. Introduction 

AlGaN/GaN high electron mobility transistor (HEMT) devices are considered to be very promising candidates for 

high-speed and high-power applications [1, 2]. These devices offer advantages such as high breakdown voltage, high 

charge density, and good electron mobility [3-5]. Tunneling of electrons across barriers offers very fast-state switching 

capability, which enhances the high-frequency switching performance of electronic devices. There are several tunneling 

phenomena, such as Fowler-Nordheim (FN) direct tunneling, trap-assisted tunneling (TAT), thermionic field-emission 

(TFE), and trap-assisted Frenkel-Poole (FP) emission, in nitride heterojunctions [6, 7]. The pressure was not analyzed 

in the calculation of gate leakage current components and its physical parameters by Mojaver et al. [8] and Turuvekere 

et al. [9]. The density of the well-electron, surface density, and electric field are required to calculate the dependence of 

the hydrostatic pressure gate leakage current. The formation of the 2-D electron gas (2DEG) in these devices is the 

heart of the device operation and has been studied in great detail in the literature. Considering the high degree of 

application of transistors in electronic components, the effect of hydrostatic pressure is important on its performance. 

The external mechanical stress test on these transistors was carried out by [10]. In this paper, the effect of hydrostatic 

pressure is accurately investigated on the electric field in AlGaN barrier ( )bE , bound charge at the heterointerface 

( )b , Schottky barrier-height ( )B , threshold voltage ( )TV , electron density in quantum well, and gate leakage 

current components. Therefore, the dependence on the hydrostatic pressure of the parameters, such as the threshold 

voltage, the bond charge at hetrointerface ( )b , the band gaps, the dielectric constants, the Schottky barrier height, and 

the thickness of the barrier, are separately evaluated here. In the one‐dimensional numerical simulations, the 

Abstract: In this paper, we present an Analytical-Numerical model for reverse gate leakage current in AlGaN/GaN 

high electron mobility transistors (HEMTs), which investigate the influence of the hydrostatic pressure (HP) on 

gate-current. Salient features of the model are incorporated of occupied sub-bands in the interface quantum well, 

combined with a self-consistent solution of the Schrödinger and Poisson equations. Finite difference techniques 

have been used to acquire energy eigenvalues and their corresponding eigenfunctions of AlGaN/GaN (HEMTs). It 

has been found that the bound charge at the heterointerface has the most impact on the threshold voltage. The 

increases in hydrostatic pressure cause an increase in threshold voltage. With increasing HP, the Schottky barrier 

height decreases, AlGaN electric field and reverse gate leakage current are increased. The increase in HP acts as a 

positive virtual gate. The dependence on the HP of Poole- Frenkel emission (FP) and Fowler-Nordheim (FN) direct 

tunneling is more than trap-assisted-tunneling (TAT). Increasing the pressure of 2GPa, the intersection point of PF 

and TAT varies by 1 volt, the reverse gate current increases by an average of 35%, and the threshold voltage 

increases to 1.15 V in absolute terms.  
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experimental results, material and device details, and all other material parameters have been taken from Refs. 9 and 

11-13 for HEMTs. The most important advantage of this Analytical- numerical method and the aspect of innovation in 

this work is the use of five important parameters, including effective mass, energy gap, lattice constants, dielectric 

constant and quantum barrier, and well thickness, all of which are simultaneously dependent on hydrostatic pressure 

and temperature. In this model, the conduction band energy, wave functions, and energy subbands are obtained from 

the self-consistent solution of the Schrodinger and Poisson equations. It should be noted that in this work atmospheric 

pressure is associated with hydrostatic pressure ( hydro atmP P P  ). That is, at zero hydrostatic pressure is the only 

atmospheric pressure applied and the fringing-field effect can be ignored. In fact, to solve the Schrödinger-Poisson 

equation at low temperatures, the electric fields resulting from the piezoelectric ( PZP ) and spontaneous polarization 

( SPP ) charges (which are temperature-independent) are greater than the thermionic field-emission (temperature-

dependent). In this model, therefore, thermionic field-emission plays a smaller role at a low temperature range, hence it 

is neglected here. 

 

2. Device Structure  

One‐dimensional numerical simulations of the AlxGa1−xN/GaN HEMT were performed using the structure 

illustrated in Figure 1, where the x-direction is along the 2DEG channel, the z-direction is along the growth direction, 

and the regions I and III represent the ungated channel portions of the HEMT. The structure consists of an undoped 

GaN layer to form the 2DEG channel, an undoped AlGaN spacer layer ( sd ), an n-doped AlGaN layer of the thickness 

( ad ), and an undoped Schottky cap layer of the thickness. In general, the thickness of the AlGaN layer is equal 

to . To compare with experimental data, it should be notified that the structure parameters may 

vary with the existing experimental data, that is, the ( sd ) and ( )id  may be neglected. The conduction band diagram on 

the left side shows the position of the quantum well (z=0) formation. The gate is a Ni/Pt alloy deposited on a thin 

AlGaN layer of the typical thickness (24 nm) and an AlN spacer layer of 1 μm while the thickness of the underlying 

GaN layer is about 2 μm [9]. This causes the AlGaN layer to be completely depleted of mobile charge carriers due to 

the overlap of the depletion regions at the metal/AlGaN interface (Schottky contact) and the AlGaN/GaN 

heterostructure interface. The gate length, source-to-gate spacing, and source-to-drain spacing are 4, 10, and 30 μm, 

respectively. Source and drain lengths  ( ), S DL L  are taken to be 2 m  each, and Al mole fraction (m) is 26%. 

 

 

                       Fig. 1 - Schematic diagram of AlxGa1xN/GaN HEMT 

 

 

3. Modeling HEMT 

3.1 Self‐consistent Solution of Schrödinger‐Poisson Equations 

In order to obtain accurate values for the Fermi energy, the energies of quantized levels within the 2DEG, potential 

profiles, wave function and the sheet carrier concentration for the 2DEG in AlGaN/GaN heterostructures; both the 

Schrödinger and Poisson equations must be solved self-consistently. This has been achieved by solving Schrödinger’s 

equation and simultaneously taking into account the electrostatic potential obtained from Poisson’s equation, as well as 

the image and exchange-correlation potentials using three-point finite difference method. The Schrodinger equation is 

introduced to solve the wave function of electrons in the quantum structures: 
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where  represents the reduced Planck constant, *
em  electron effective mass, V  the potential function, n the nth state 

wave function, with its associated nth state energy level    nE . The electron effective mass *m  can be written as [11]  
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where 0m  is the free electron mass, Γ
PE  is the energy linked to the momentum matrix element, 0S  is the spin-orbit 

splitting and  Γ , ,gE P T m  is the band gap variation as a function of the hydrostatic pressure and temperature. AlGaN
gE  , 

is given by [12-14] 
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where 
AlGaN

gE  is the band gap from  ,AlN

gE T P  and  ,GaN

gE T P  respectively, as follows [13] 

      
2

2, 0,0        4g g
e

T
E T P E P P

T T


    


 

 0,0gE , stands for the band gap energy of GaN or AlGaN in the absence of the hydrostatic pressure and at a 

temperature 0 K. The suggested parameters used in Eq. (4) in our calculations have been taken from Ref 11.  

The Poisson equation relates the electrostatic potential with spatial charge distribution and it is written as 

 2      5totP       

where   is the potential distribution and   is the net charge which is a nonlinear function of the potential: 

                            6D Ap n N N         
 

 

p  and n  denote the mobile carrier density of holes and electrons, DN   and AN   are the totally ionized donor and 

acceptor densities.  tot SP PZP P P  , denotes the total polarization vector that is composed of spontaneous polarization  

and strain-induced piezoelectric polarization. Using the correction between composition m, band gap, lattice constant  

and the strain (ò ), they are given as follow [15, 16] 
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The strain is expressed from the lattice of substrate sa and the epilayer    , ,ea T P m : 
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The lattice constants as function of temperature, alloy and the hydrostatic pressure is given by [17, 18] 
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where 0 239B GPa   is the bulk modulus of sapphire. 6 15.56 10GaN K     is the thermal expansion coefficient and  

300refT K .  0a m , is the equilibrium lattice constant as a function of composition is given by [19, 20] 

    0 0.13989 0.03862    10a m m   
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The piezoelectric polarization is defined by Vegard’s law as 

    1      11Pz PZ PZ
AlGaN AlN GaNP mP m P    

The total polarization at the interface AlGaN/GaN is expressed as: 
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3.2 Electron Concentration 

Using Self‐consistent solution of Schrödinger‐Poisson equations, the energy of each subband iE is obtained. 

Knowing the iE  , the two 2( )Dn  , three-dimensional 3( )Dn  and total density of electrons ( 2 3    S D Dn n n   ) can be 

calculated from these set of equations [21, 22, 23] 
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Here, 1/2F  is Fermi integral of order 1/2, TV  is the threshold voltage,  ,GaN T P  and       , ,AlGaN m T P   are the 

dielectric constant [24, 25],   AlGaNd   is the AlGaN barrier thickness and they are given by [12-25]:  
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where B is the Schottky barrier-height and CE  is the conduction band offset between AlGaN and GaN. Here, 

 ,  ,GaN T P  and  , ,InGaN m T P  are the dielectric constant of the GaN and AlGaN, and  
1

,
m mAl Ga N T Pd


 is the 

thickness of  AlGaN so that they are given by [12, 24, and 25]:  
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Here,   0AlGaNd  is the AlGaN layer thickness without hydrostatic pressure and temperature. 11 S , 12S   are the 

elastic compliance constants of  1  m mAl Ga N  and they are given by [11, 25]: 
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 CHV x , is the channel potential and    2 2 21/DEG D Dd n zn z dz     represents the effective width of the 2DEG 

channel [20]. It should be mentioned that to calculate the conduction band offset in AlGaN/GaN interface, the 

temperature and hydrostatic pressure dependence of energy band gap has been taken into account as [13]:  
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3.3 Electric field in the AGaN Layer   

The electric field in the AGaN layer near the heterointerface is given by [26, 27]: 
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In the calculations presented in this section determining bE  and Schottky barrier-height   B  follow an iterative 

approach, as bE  and B  are mutually dependent. The dependencies Schottky barrier-height to bE and T are as follows 

[28]: 
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In the first iteration b is calculated assuming zero electric-field, followed by the recalculation of   bE . This 

procedure continues until convergence. It should be mentioned that the discussed leakage components are those which 

are responsible for leakage from gate to the 2DEG, hence excluding surface leakage. This is in agreement with the 

choice of  0DSV V  and moderate values for GSV  . 

 

4. Gate-Current 

We regard gate leakage current ( )GI  to arise from four current components, i.e., Fowler-Nordheim (FN) direct 

tunneling, trap-assisted tunneling (TAT), thermionic field-emission (TFE), and trap-assisted Frenkel-Poole (FP) 

emission. Thus, we have the total gate current as [9]:  
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where S is the gate area. In the presence of an electric-field across the barrier, electrons can tunnel through the AlGaN 

layer (from the metal Fermi level to the conduction-band of GaN) via the FN tunneling process. According to this 

process, the current density is given by [28, 29]: 
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in which q is the fundamental electronic charge and h is the Planck constant. 

Tunneling may also occur via TFE when thermally energized electrons rise to higher energy levels, from where they 

tunnel through the thinner physical barrier. According to TFE, the current density is given by [28]: 
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in which 
*A  is the Richardson constant and k  is the Boltzmann constant. 

 

In the case of carrier transport via traps, two main mechanisms are usually considered, one of which is the PF 

electron emission from metal (or a trap level in the barrier very close to the metal Fermi level) into a continuum of 

states in the barrier associated with a conductive dislocation. It is through this continuum of states that electrons can 

directly transport to the GaN channel. The PF current density is accordingly explained by [27]: 
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in which t PFq   is the barrier height for electron emission from the trap state, and PFC  is a constant. 

Actually, PF emission means the electron emission from the trap by thermal activation but with a lowered trap depth 

induced by the Coulomb interaction, i.e., the emission rate enhanced by the electric field [30]. 

The other trap-assisted transport mechanism is TAT in which electrons first tunnel from the gate-metal to a band 

of localized traps in the barrier, followed by tunneling to the GaN channel. According to this process, the current 

density can be expressed by [28]: 
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in which 1R  and 2R  represent tunneling rates from metal to the lower edge of the localized trap band and from the 

higher edge of the trap band  2t  to 2DEG, respectively. According to Karmalkar et al., 1R  and 2R  are determined 

as functions of E, tN , and barrier heights for the trap states (PF and TAT) [28]. 

 

5. Results and Discussion 

In this paper, an Analytical-Numerical model is presented for reverse gate leakage current in AlGaN/GaN high 

electron mobility transistors to investigate the influence of the hydrostatic pressure. To obtain a self-consistent solution 

of basic equations, iteration between the Schrödinger−Poisson equation systems is conducted by a three-point finite 

difference method. During the self-consistent calculation, A grid spacing is as small as 101 10 m  along the z-axis and 

the convergent criteria for the electrostatic potential is set to be 0.1% to ensure the iteration convergence and stability 

of our calculation. Figure 1 shows the dependence of the threshold voltage on the pressure at different temperatures, 

indicating that the increases in pressure cause an increase of the absolute threshold voltage. In fact, the threshold 

voltage depends on the density of the bound charge at the heterointerface  ( )b . Increasing the hydrostatic pressure in 

the range of 0-5 GPa leads to the   b increase to 1.3 C/m2 (Fig. 2). According to Figure 2, the reason for the increase in 

  b with pressure is due to an increase in the piezoelectric and spontaneous polarization. Changes in the bound charge 

have the most impact on the threshold voltage. For hydrostatic pressure increase from 0 to 5 GPa, the threshold voltage 

varies from -3.8 to -6.26.  As shown in Figure 3, the absolute threshold voltage TV  (voltage required for the formation 

of two-dimensional quantum well in interface AlGaN/GaN) increases with the increase of hydrostatic pressure as a 

result of increasing the depth and Fermi level in the quantum well. An increase in the depth of the quantum well 

increases the discontinuity in band gaps and occupancy of the various sub-bands (sheet carrier concentrations). With 

increasing pressure up to 2GPa (Fig. 3), the electron density increases from 16 26 10 m  to 16 26.8 10 m  at the zero 

gate voltage. The threshold voltage also increases from -3.8V to -4.8V in absolute magnitude. One of the parameters 

needed to calculate the FN, TAT, TEF, and PF tunneling is the barrier electric field  bE  shown in Eqs. 25-28. As 

shown in Figure 5, up to the threshold voltage ( 3.8TV V in 0GPa, where the density is almost zero), the barrier 

electric field is constant and is equal to 82.68×10 V/m  in 0GPa. At GS TV V , the barrier electric field (as described in 

Eq. 22) decreases to 
81.2×10 V/m   with increasing electron density to 

16 26.1×10 m  
. In this area, the surface density is 

constant. As the pressure increases, the field increases (Fig. 4). In the region below the threshold voltage, the electric 

field is parallel to the horizontal axis and has its maximum value. As the pressure increases, the horizontal region 

decreases. This region plays an important role in the calculation of FN tunneling. Figure 5 shows the FN tunneling 

current  FNI  in terms of gate-source voltage at different pressures. As hydrostatic pressure increases to 2 GPa, the FN 

tunneling current increases to
-72.4×10 A  and the horizontal region (which is FN dominant) decreases to 1.15V. In fact, 

the process of changes in the FN tunneling current is the same as that of changes in the barrier electric field  bE  and is 

inversely proportional to Schottky barrier-height  B  as shown in Fig 5. These are verified by the FNI  relationship 

as described in Eq. 25. Figure 7 shows the TATI  and PFI  currents in terms of gate-source voltage at different pressures. 

In this Figure, the dominant current is PFI  up to the turning point ( 1.25GV V  ). As the pressure increases by 2 GPa, 

the turning point moves to +1 volts and the range PFI  increases 56% relative to TATI . In general, the effect of 

hydrostatic pressure on the PFI  is greater than that on TATI . The important contribution of these changes is related to 

the dependence of  PFI   on the Coulomb interaction, which in turn depends on the changes in the AlGaN electric field. 

As shown in Finger 8,   the larger the electric field, the stronger the interaction and the greater the PFI . In general, as 

hydrostatic pressure increases to 2 GPa (in 81.8 10 /bE mV  ), PFI and TATI increase to 
-80.9×10 A   and  

-80.1×10 A  , 
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respectively, thus PFI  is greater than TATI . In this figure, the dependence on the electric field of PFI and FNI  is more 

than TATI . A comparison of Figure 8 and its Insert reveals that all currents increase with increasing pressure, and 

currents that are more dependent on the AlGaN electric field (i.e., their polarization and density in Eq. 22) are more 

dependent on pressure. To compare the results with experimental data, the typical gate-current is as shown in Figure 9. 

The inserted figure shows the variations of the total gate current relative to the voltage at different pressures. As 

hydrostatic pressure increases to 2 GPa, the reverse gate current increases by an average of 35%, and the threshold 

voltage increases to 1.15 V in absolute terms. In other words, the increase in hydrostatic pressure acts as a positive 

virtual gate. As explained in the last part of the introduction, thermionic field-emission plays a smaller role, which is 

neglected in this model at a low temperature range. 
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Fig. 2 - The variation of AlGaN polarization (Piezoelectric and spontaneous) and bound charge at the 

hetrointerface  b  as a function of the hydrostatic pressure 
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Fig. 3 - The variations of the threshold voltage as a function of the hydrostatic pressure at different 

temperatures 
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Fig. 4 - Variations of the 2DEG sheet density as a function of Gate source voltage at different hydrostatic 

pressures. Insert: variations of the 2DEG sheet density as a function of Gate source voltage at different 

temperatures. The experimental data (symbols) and other needed parameters have been taken from Ref. [9] 
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Fig. 5 - Variations of the electric field in the AGaN layer as a function of Gate source voltage at different 

hydrostatic pressure 
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Fig.  6 - Variations of the FN tunneling current density as a function of Gate source voltage at different 

hydrostatic pressure 
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Fig. 7 - Variations of the TATI  and PFI  currents in terms of gate-source voltage at different hydrostatic pressure 
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Fig. 8 - PF, FN, and TAT current components in terms of bE  at 2 GPa, T=323K and 0DsV  . The Gate-current 

 GI  curve is the sum of three components. Insert: the variations revers gate-current relative to  bE   at 0GPa 
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Fig. 9 - PF, FN, and TAT current components in terms of GSV  at 0GPa, T=323K and 0DsV  . The Gate-

current  GI  curve is the sum of three components. Insert: the variations revers gate-current relative to  GSV   

at different pressures. The experimental data (symbols) and other needed parameters have been taken from Ref 

[9] 
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6.  Conclusion 

An analytical-numerical model for gate leakage current was investigated in AlGaN/GaN high electron mobility 

transistors. An increase in pressure causes an increase of the absolute threshold voltage. With increasing pressure, the 

gate leakage current increases and the sub-threshold region ( GS TV V that are NF and PF dominant) decreases. 

Increasing the hydrostatic pressure in the range of 0-2 GPa leads to (I)   b increases to 0.4 C/m2, (II) the electron 

density increases to 16 20.8 10 m , (III) FN tunneling current increases to -72.4×10 A  , (IV) in 81.8 10 /bE mV  , PFI  

increases to -80.9×10 A   and TATI  to -80.1×10 A  , and (V), the reverse gate current increases by an average of 35%. In 

other words, the increase in hydrostatic pressure acts as a positive virtual gate. With increasing pressure, PFI  is 

generally higher than   TATI and the dependence on the electric field of PFI  and FNI  is more than   TATI . By increasing 

the pressure of 2 GPa, the intersection point of PF and TAT currents (turning point) varies by 1 volt, and the PF range 

increases compared to TAT. The calculated results for electron density and gate-current are in good agreement with 

existing experimental data.   
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