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1. Introduction 

Landslide and particularly liquefaction have been responsible for extensive damages to infrastructures and 

residential lands in recent earthquakes around the world [1]-[4]. Liquefaction phenomenon is associated with the 

development of large pore-water pressures in soils due to cyclic loading effects of earthquakes. Consequently, effective 

stress reduces and soil loses its strength. The investigation of failure of soil masses during earthquakes requires 

sciences of geology and engineering [5], [6]. To confront destructive effects of liquefaction, the assessment of soil 

liquefaction potential and recognition of liquefiable regions are essential. There are several laboratory tests for 

evaluation of soil liquefaction potential such as cyclic triaxial and cyclic torsional shear tests. Since extracting high 

quality undisturbed specimens is relatively expensive and the simulation of actual field conditions in laboratory is 

difficult, approaches based on in-situ tests such as shear wave velocity (Vs) test, Cone Penetration Test (CPT) and 

Standard Penetration Test (SPT) are widely accepted for estimation of soil liquefaction.  

The SPT, due to its simplicity of execution, is one of the most popular in-situ testing techniques used to achieve 

idea about the stratigraphic profile at a site [7]-[9]. SPT-based approaches have been accepted for evaluation of soil 

liquefaction and Standard Penetration resistance has been utilized as an index of soil liquefaction resistance during 
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earthquakes in engineering practice. Development of SPT-based methods began in Japan by studies performed by some 

investigators such as Kishida [10] and Ohsaki [11]. Then, many researchers studied and recommended procedures for 

estimation of liquefaction using SPT [12]-[19]. 

The CPT is an advantageous test in identifying subsurface conditions and estimating different characteristics of 

soil. Moreover, it is able to provide a continuous record of the penetration resistance. In comparison with SPT, CPT is 

less vulnerable to operator error and can find thin liquefiable strata that are missed by SPT. However, by CPT, no 

sample can be obtained. Development of CPT-based methods for evaluation of liquefaction began with work by Zhou 

[20]. Then, various investigators assessed CPT-based liquefaction methods [21]-[28].   

Moreover, applying Vs measurements for assessing the liquefaction resistance of soil is an effective method 

because Vs and liquefaction resistance are impacted by similar factors (such as state of stress, void ratio and geologic 

age). Vs can be determined in situ using cross-hole, down-hole and Spectral Analysis of Surface Waves (SASW) tests 

[29]-[31]. Generally, the SPT and CPT are not useful in gravelly soils due to interference from large-size particles 

while the measurement of Vs is possible in such soils. In addition, the accuracy of various types of Vs tests is higher 

than that of penetration tests. However, Vs testing does not produce specimens for classification or may not be 

performed with adequate details to specify thin liquefiable layers for large measurement intervals. Numerous 

investigations have been carried out about the liquefaction resistance- Vs relationship [32]-[42]. Although some 

researchers conducted studies about soil liquefaction potential of Babol city [43]-[45], the obtained results were 

different because they applied only limited field database in their investigations. Considering that many factors such as 

soil type, fines content, type of test and its precision can affect liquefaction evaluation, it would be much safer to 

conduct different field tests for the same place and then compare the results. Therefore, to fill the aforementioned gap 

in the assessment of soil liquefaction potential of Babol city, three different analysis methods considering various data 

were selected in this paper: (i) Boulanger & Idriss [46] method (which is a SPT-based method), (ii) Andrus & Stokoe 

[47] method (which is a Vs-based method), and (iii) Moss et al. [48] method (which is a CPT-based method). In the 

present research, first, seismology and geology of Babol are introduced. Then, the utilized approaches for estimation of 

soil liquefaction potential in this city are briefly reviewed. Finally, soil liquefaction potential of Babol city is studied 

using the mentioned approaches and the obtained results are compared. 

 

2. Seismology and Geology of Babol 

The study area in this paper is Babol city, which is located in Mazandaran province in the north of Iran. This city is 

situated in front of Alborz mountain which is tectonically an active region. Due to the convergent motion between 

Eurasia and Arabia, which probably began in the Cretaceous period, the tectonic of Alborz Mountain is controlled by 

boundary conditions [49], [50]. The area around Babol has suffered various earthquakes over the years. The first 

historically reported great earthquake in this region was Amol earthquake that took place in 1809. This earthquake was 

felt in a very large district and damaged Babol city [5]. Chahar Dange earthquake destroyed many villages in 1935. 

Band Pey earthquake killed 1600 people and razed many structures to the ground with over 25 million dollars 

economical toll in 1957 [51]. Recently, Babol was influenced by the occurrence of the moderate shaking at Kojoor and 

Marzi Kola earthquakes. Table 1 shows the locations, sources, years of occurrence, intensities and magnitudes of great 

earthquakes occurred in and around Babol. Babol region consists of soft deposits and is situated in a high seismic zone. 

In addition, this city lies on the eastern side of Babolrood river and receives abundant rainfall annually. Therefore, the 

assessment of liquefaction potential in this area is very important. Figure 1 depicts the distribution of groundwater level 

in Babol city according to the underground water level data collection in the geotechnical boreholes. According to the 

geolithological variations, the subsurface soil column at Babol city can be categorized into five groups: (i) Extremely 

loose to medium sand deposits from the surface to 15 m depth with a groundwater table (G.W.T.) less than 1 m, (ii) 

Thin top layer of silt (3-5 m with SPT-N= 15-20) underlain by thick layer of loose fine sand with some gravel (10-15 m 

with SPT-N= 10-20) below the ground level. It should be remarked that SPT-N is Standard Penetration Test number, 

(iii) Thick top layer of clay (8-15 m with SPT-N = 10-15) underlain by thin layer of loose fine sand with some gravel 

(3-6 m with SPT-N = 15-20) below the ground level, (iv) Thick layer of clay (20-30 m with SPT-N = 20-25), and (v) 

Thick layer of sand (15-20 m with SPT-N = 15-25). Fig. 2 shows classification of the subsurface soil at Babol city.  

 

Table 1 - List of large earthquakes around and in Babol [5] 

Location Source Year Magnitude Intensity Liquefaction occurrence 

Amol 20 km west of Babol 1809 6.5 IX Yes (due to great magnitude) 

Talar Rood 35 km southeast of Babol 1935 5.7 VII No 

Chahar Dange 60 km southeast of Babol 1935 6.3 VIII Yes (due to site effect) 

Band Pey 10 km west of Babol 1957 6.8 IX Yes (due to great magnitude) 

Babol Babol 1971 5.2 VI No 

Kojoor 60 km northwest of Babol 2004 6.3 VIII 
Yes (due to near field 

earthquake) 

Marzi Kola Babol 2012 5 VI No 
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Fig. 1 - The distribution of groundwater level in Babol (typical and not to scale) 

 

 

  

Fig. 2 - Classification of the subsurface soil at Babol city 

 

3. Liquefaction Analysis Approaches 

Boulanger & Idriss [46] investigated the liquefaction potential of soil during various earthquakes using SPT and 

suggested some relations for engineering applications. Andrus & Stokoe [47] presented an approach for the estimation 

of liquefaction potential through measurement of Vs. Their method was focused on field performance data from 26 

earthquakes and measurements of the in-situ Vs at over 70 locations. Moss et al. [48] evaluated the probability of 

liquefaction using CPT and proposed a correlation for CPT-based estimation of seismically induced liquefaction.  
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3.1 Boulanger & Idriss Method 

Boulanger & Idriss [46] utilized the Seed and Idriss [52] simplified procedure to assess the cyclic stress ratio 

(CSR) caused by earthquake ground motions: 
 

vo

d max'

vo

CSR 0.65 r a
 

  
 

 (1) 

 

in which amax is the peak horizontal ground surface acceleration (as a fraction of gravity), rd is the shear stress reduction 

coefficient and 
vo  and  '

vo  are the total and effective vertical stress at depth z (m), respectively. The rd is expressed as: 
 

     dLn r = α z +β z M  (2) 
 

 
z

α z = -1.012 -1.126 Sin + 5.133
11.73

 
 
 

 (2a) 

 

 
z

β z = 0.106 + 0.118 Sin + 5.142
11.28

 
 
 

 (2b) 

 

where M is moment earthquake magnitude. These equations are regarded suitable for z ≤ 34 m. For z > 34 m, Eqn. (2c) 

is applicable: 
 

 dr = 0.12exp 0.22M  (2c) 
 

Magnitude scaling factor (MSF) is utilized to account for shaking duration or equivalent number of stress cycles: 
 

-M
MSF = 6.9 exp - 0.058 1.8

4

 
 

 
 (3) 

 

Overburden correction factor for cyclic stress ratio (Kσ) is determined by the following relation: 
 

vo

σ σ

a

σ
K = 1- C ln 1.0

P

 
 

 
 (4) 

 

in which Pa is the reference stress of 101 kPa or approximately atmospheric pressure. The coefficient Cσ is obtained by: 
 

 
σ

1 60

1
C = 0.3

18.9 - 2.55 N
  (4a) 

 

where (N1)60 is the modified SPT number and its maximum value is limited to 37. (N1)60 is adjusted to an equivalent 

clean sand value ((N1)60cs) as: 
 

     1 1 160cs 60 60
N = N + Δ N  (5) 

 

 
2

1 60

9.7 15.7
Δ N = exp 1.63+ -

FC + 0.01 FC + 0.01

  
     

 (5a) 

 

where FC is fines content. The cyclic resistance ratio (CRR) can be expressed as:  
 

       
2 3 4

1 1 1 160cs 60cs 60cs 60cs
N N N N

CRR = exp + - + - 2.8
14.1 126 23.6 25.4

       
           
       

 (6) 

 

The factor of safety (FS) in this method is found by: 
 

σ

CRR
FS = ×MSF×K

CSR
 (7) 

 

Liquefaction is predicted to take place for FS  1 (i.e., the loading exceeds the resistance). 

 

3.2 Andrus & Stokoe Method 

Andrus & Stokoe [46] used Eqn. (1) and Eqn. (2) for determination of CSR and parameter rd, respectively. They 

suggested the following relation for determination of CRR: 
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2

s1

* *

s1 s1 s1

V 1 1
CRR = a + b - MSF

100 V - V V

    
   
    

 (8) 

 

in which Vs1 and V*s1 are the overburden stress-corrected Vs and the limiting upper value of Vs1 for cyclic liquefaction 

occurrence, respectively. Parameters a and b are the parameters of curve fitting taken to be 0.022 and 2.8, respectively 

and MSF is calculated by Eqn. (3). Vs1 is obtained by: 
 

0.25

a

s1 s V s

v

P
V = V C = V

σ

 
 

 
 (8a) 

 

in which σ'v, Pa and CV are the initial effective overburden stress (kPa), atmospheric pressure and overburden stress 

correction factor, respectively. The maximum CV value is 1.4 which is usually applied to shear wave velocity data at 

shallow depths. They expressed the relationship between FC and V*s1 as: 
 

V*
s1=215 m/s for sands with FC ≤ 5%                                                     (8b) 

 

V*
s1=215-0.5(FC-5) m/s for sands with 5%<FC <35% (8c) 

 

V*
s1=200 m/s for sands with FC ≥ 35%                                                 (8d) 

 

It should be mentioned that if Vs1 > V*s1, no liquefaction is predicted to occur in this method. The FS in this 

approach can be found by: 
 

CRR
FS =

CSR
 (9) 

 

when FS  1, liquefaction happens. 

 

3.3 Moss et al. Method 

In Moss et al. [47] method, CSR is obtained using Eqn. (1). The rd in this method for d < 20 m (d = depth in 

meters) is defined as: 
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1
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1
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 (10a) 

 

and for d ≥ 20m, parameter of rd is defined as: 
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max w

0.089 3.28d 7.760a 78.567

d w max

max w

0.089 7.760a 78.567

9.147 4.173a 0.652M
1

10.567 0.089e
r d,M ,a 0.0014 3.28d 65

9.147 4.173a 0.652M
1

10.567 0.089e

  

 

   
 

 
  

   
 

 

 (10b) 

 

in which, Mw is moment magnitude. Magnitude correlated duration weighting factor (DWFM) is calculated using the 

following equation: 
 

1.43

M wDWF 17.84M  (11) 
 

In this method, qc1 is the normalized tip resistance (MPa): 
 

c1 q cq C q  (12) 
 

c

a

q

v

P
C 1.7

 
  

 
 (12a) 

 

in which qc is raw tip resistance (MPa) obtained by CPT, Cq is tip normalization factor, σ'v is effective overburden 

stress (kPa), Pa is atmospheric pressure and c is tip normalization exponent:  
 

2f

f

1

3

R
c f

f

 
  

 
 (12b) 
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2x

1 1 c 1 2f x .q ,x 0.78,x 0.33     (12c) 
 

 y2

2 1 c 3 1 2 3f y .q y ,y 0.32,y 0.35,y 0.49         (12d) 
 

 
1z

3 c 1f abs log 10 q , z 1.21      (12e) 

 

where Rf is friction ratio in CPT (the ratio of sleeve to tip resistance, in percent). The CRR is found by: 

 

     1.045 1

c1 c1 f f f w v Lq 0.11q R 0.001R c 1 0.85R 0.848ln M 0.002ln 20.923 1.632 (P )
CRR exp

7.177

          
  

 
 (13) 

 

in which PL and -1 are the liquefaction probability and the inverse cumulative normal distribution function, 

respectively. The FS is achieved by: 
 

M

CRR
FS = ×DWF

CSR
 (14) 

 

Similar to Boulanger & Idriss [46] and Andrus & Stokoe [47] methods, FS ≤ 1 shows soil liquefaction. 

 

4. Assessment of the Liquefaction Potential in the Study Area 

The reliable prediction of liquefaction in any study area is strongly dependent on the quality of the site 

characterization. Thus, to assess the liquefaction potential of Babol soil through three mentioned approaches, a total 

number of 60 borehole logs were collected for the present research. Fig. 3 shows the location map of Babol and the 

location of available geotechnical boreholes in this city. The average distance between the boreholes has been 500m. 

To determine the shear wave velocity, down-hole tests were performed in boreholes. Moreover, CPT tests were 

conducted at the nearest possible locations to boreholes. Based on site investigations, the most liquefiable layers were 

found in some boreholes such as B1 (Fig. 4) in which Vs and qc show shear wave velocity and cone tip resistance, 

respectively.  

 

 

Fig. 3 - (a) Location map of Babol, and (b) Location of geotechnical boreholes 

 

Since presenting complete results for all boreholes is not possible, one borehole (B23) is selected and the results 

obtained for this borehole are described completely. The obtained results for other boreholes are presented by 

liquefaction maps. Fig. 5 and Table 2 show stratigraphy and properties of soil recognized by borehole B23, 

respectively. In Table 2, w, γ, PI, PL, LL, FC, D50 , Dr, N, Rf, Vs and qc depict water content, unit weight of soil, 

plasticity index, plastic limit, liquid limit, fine content, mass-median diameter, relative density, SPT number, friction 

ratio, shear wave velocity and cone tip resistance, respectively. As observed in Fig. 5, the depth of borehole B23 is 20 

m and the G.W.T. is 4 m below the ground surface. In addition, PGA (peak ground acceleration) values were selected 

in each borehole position according to Standard 2800 [53]. At the location of borehole B23, PGA has been 0.35 g (g is 
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the gravity acceleration). In this research, the Mw is assumed 8. Hence, the calculated MSF and DWFM values required 

for liquefaction analysis are 0.87581 and 0.9119, respectively. Table 3 to Table 5 present evaluation of liquefaction 

potential for borehole B23 using Boulanger & Idriss [46] method, Andrus & Stokoe [47] and Moss et al. [48] methods, 

respectively. In the analysis of liquefaction, FS at various depths of boreholes are calculated. 

 

  
Fig. 4 - Exploratory boring log (borehole B1) 

 

Fig. 5 - Exploratory boring log (borehole B23) 

 

 

Table 2 - Soil properties (borehole B23) 

sV 

(m/s) 

 cq

(MPa) 
fR 

(%) 
N 

r D

(%) 
50D 

(mm) 

FC 

(%) 

PI 

(%) 

PL 

(%) 

LL 

(%) 

γ 

)3(kN/m 

w 

(%) 

Depth 

(m) 

210 5.1 1.60 17 52 0.015 90.5 6 27 33 17.1 12 2 

230 7.9 3.50 24 59 0.012 92.8 7 25 32 17.5 14 4 

207 7.1 3.40 19 49 0.0065 91.5 7 25 32 17.3 15 6 

198 9.8 2.80 25 45 1.6 22.6 3 20 23 17.2 17 8 

200 8.9 2.30 22 44 2.0 14.3 - - - 17.3 - 10 

190 10.2 2.60 27 42 2.2 10.1 6 21 27 17.3 20 12 

165 7.8 2.80 15 29 0.05 55.5 7 23 30 16.5 22 14 

180 9.2 2.90 21 35 0.11 60.4 - - - 16.8 - 16 

195 11.4 3.00 29 44 0.42 51.8 - - - 17.6 - 18 

200 14.3 2.90 34 45 0.42 54.6 - - - 18.1 23 20 
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Table 3 - Liquefaction analysis using Boulanger & Idriss [46] method for borehole B23 

FS CRR )1N( 60cs  Kσ Cσ CSR rd Depth (m) 

1.23 0.31 26.0 1.00 0.13 0.22 0.99 2 

1.79 0.45 29.3 1.00 0.15 0.22 0.98 4 

0.94 0.29 25.1 1.00 0.13 0.27 0.96 6 

1.22 0.42 28.8 1.00 0.15 0.30 0.95 8 

0.72 0.27 23.9 0.98 0.13 0.32 0.93 10 

0.78 0.31 25.7 0.96 0.15 0.33 0.91 12 

0.47 0.19 18.2 0.97 0.10 0.34 0.88 14 

0.58 0.24 22.7 0.95 0.12 0.34 0.86 16 

0.99 0.42 28.9 0.92 0.15 0.34 0.84 18 

1.55 0.68 32.3 0.89 0.17 0.34 0.81 20 

 

Table 4 - Liquefaction analysis using Andrus & Stokoe [47] method for borehole B23 

FS CRR 
 s1

*V

(m/s) 
s1V 

(m/s) 
CSR dr Depth (m) 

No Liquefaction - 200 275.29 0.22 0.99 2 

No Liquefaction - 200 252.80 0.22 0.98 4 

No Liquefaction - 171.75 216.63 0.27 0.96 6 

1.33 0.40 206.2 198.99 0.30 0.95 8 

0.65 0.21 210.35 194.03 0.32 0.93 10 

0.48 0.16 200 178.72 0.33 0.91 12 

0.26 0.09 189.75 151.42 0.34 0.88 14 

0.29 0.10 200 161.35 0.34 0.86 16 

0.35 0.12 200 170.69 0.34 0.84 18 

0.29 0.10 215 171.09 0.34 0.81 20 

 

Table 5 - Liquefaction analysis using Moss et al. [48] method for borehole B23 

FS CRR c CSR rd Depth (m) 

1.30 0.30 0.42 0.21 0.95 2 

1.86 0.43 0.28 0.20 0.89 4 

1.23 0.31 0.30 0.23 0.82 6 

1.78 0.45 0.29 0.23 0.74 8 

1.26 0.32 0.32 0.23 0.67 10 

1.61 0.39 0.29 0.22 0.61 12 

0.99 0.24 0.31 0.22 0.58 14 

1.24 0.30 0.29 0.22 0.55 16 

1.82 0.44 0.27 0.22 0.54 18 

2.95 0.68 0.25 0.21 0.52 20 

 

Fig. 6 shows the comparison between CRR values determined for borehole B23 using these methods. As seen, 

CRR values obtained using Boulanger & Idriss [46] and Moss et al. [48] methods show acceptable agreement with each 

other. However, the obtained CRR values using Andrus & Stokoe [47] method are different. It should be noted that 

case history data and suggested CRR-VS1 curves by Andrus & Stokoe [47] are restricted to relatively level ground sites 

with a mean depth of less than 10 m. Therefore, for depths more than 10 m, the obtained CRR values of Andrus & 

Stokoe [47] are different from the ones found using Boulanger & Idriss [46] and Moss et al. [48] approaches. 

Furthermore, since for depths < 8 m, Vs1 is higher than V*s1, no liquefaction is predicted to take place using Andrus & 

Stokoe [47] method. Fig. 7 shows the comparison between CSR values determined for borehole B23 using these 

methods. As seen, CSR values obtained using Boulanger & Idriss [46] and Andrus & Stokoe [47] methods are the 

same. However, CSR values obtained by Moss et al. [48] are less than CSR values obtained by two other methods 

because the obtained shear stress reduction coefficient (rd) values in Moss et al. [48] method are less than the values 

determined using Boulanger & Idriss [46] and Andrus & Stokoe [47] methods. Fig. 8 demonstrates the comparison 

between FS values for borehole B23 using these methods. 

Boulanger & Idriss [46] and Andrus & Stokoe [47] methods have predicted similar results. However, the results 

predicted by Moss et al. [48] are totally different. In other words, Moss et al. [48] method has predicted that all layers 
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will be non-liquefiable that can be related to the low CSR and high FS values obtained using this method. Moreover, 

the results indicate that Andrus & Stokoe-based factor of safety curve is more conservative than factor of safety curves 

found through Boulanger & Idriss [46] and Moss et al. [48] methods. 

 

  

Fig. 6 - Comparison of CRR values for borehole B23 Fig. 7 - Comparison of CSR values for borehole B23 

 

 

Fig. 8 - Comparison of FS values for borehole B23 

 

For other boreholes, the minimum value of factor of safety in each of them was considered. Figures 9-11 indicate 

liquefaction maps of Babol using Boulanger & Idriss [46], Andrus & Stokoe [47] and Moss et al. [48] methods, 

respectively. According to the results, liquefaction occurs in 36, 51 and 31% of boreholes using Boulanger & Idriss 

[46], Andrus & Stokoe [47] and Moss et al. [48] methods, respectively. Thus, application of Andrus & Stokoe [47] 

method is conservative. Moreover, using Moss et al. [48] method has high risk in evaluation of liquefaction potential in 

this city. One of the reasons for the similarity of the results using CPT- and SPT-based approaches is related to the key 
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role of relative density in estimation of liquefaction [54]. However, since Vs-based methods are less dependent on 

relative density, the obtained results using Andrus & Stokoe [47] method were different. Figure 12 shows the average 

of the results obtained by these three methods. The average results indicate that liquefaction (factor of safety of less 

than 1) occurs in 45% of the boreholes in Babol city. In addition, in 26, 8, 10 and 11% of the boreholes, factor of safety 

is between 1 and 1.25, 1.25 and 1.5, 1.5 and 2, 2 and 2.5, respectively. It should be noted that Figures 9-12 were drawn 

using ArcGIS software. Liquefaction map incorporates seismologic, geotechnical and geologic concerns into 

sociologically and economically land-use planning for earthquake effects and can present useful information to the 

engineers for the seismic structural design. In addition, engineers can decide about the types of new structures that are 

most appropriate to be constructed in a specific region using liquefaction map. 

 

  
Fig. 9 - Liquefaction map of Babol through Boulanger 

& Idriss [46] method 

Fig. 10 - Liquefaction map of Babol through Andrus & 

Stokoe [47] method 

 

  
Fig. 11 - Liquefaction map of Babol through Moss et 

al. [48] method 

Fig. 12 - The average results found for liquefaction 

map of Babol 

 

Fig. 13 depicts the liquefaction map of Babol suggested by Rezaei & Choobbasti [44]. In their study, Babol soil 

liquefaction potential was evaluated using artificial neural networks (ANN). The input–output data pairs utilized in 

their research consisted of four input variables, including corrected SPT blow count, total stress, effective stress and 

soil type and one output factor of safety. After training process, the capability of their proposed ANN model for the 

liquefaction prediction was assessed. Then, the network performance was tested through remaining data pairs. 

According to their findings, the trained network can successfully model and predict the outputs and can be employed in 

the prediction of liquefaction potential.  
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Fig. 13 - Liquefaction map of Babol using ANN [44] 

 

Liquefaction map of Babol through Andrus & Stokoe [47] method (Fig. 10) and the average results (Fig. 12) have 

good compatibility with Fig. 13. These results show that although the CPT and SPT are the two most widely utilized 

indices for estimating the liquefaction properties of soils [55], [56], the standard penetration number (N) and cone tip 

resistance (qc) are not evaluated precisely and the test apparatus may be in error. In addition, due to the variation of the 

recorded SPT N-value and CPT resistance, factor of safety against liquefaction may lead to an over or under estimation 

compare to each other. Some researchers such as Hoque et al. [57] recommended the employment of high-quality tests 

for an accurate and reliable estimation of liquefaction when both methods of SPT and CPT are utilized in combinations. 

Therefore, the measurement of shear wave velocity (Vs), as a significant soil characteristic in earthquake site response 

[58], is essential for evaluation of liquefaction potential. The Vs-based approaches are believed to be useful methods for 

estimation of liquefaction because Vs can represent the dynamic characteristics of soil acceptably and also soil 

liquefaction is ascribed to the soil dynamic properties.  

 

5. Conclusions   

The utilization of various liquefaction estimation procedures provides a useful tool for assessing soil liquefaction 

potential. The SPT, CPT and Vs are the tests that are most commonly utilized for this purpose. For liquefaction 

estimation, each of the mentioned tests (SPT, CPT and Vs) has its own benefits and disadvantages. In the present 

research, based on the geotechnical data of 60 boreholes, liquefaction potential of Babol soil was evaluated by three 

methods including Boulanger & Idriss [46], Andrus & Stokoe [47] and Moss et al. [48] methods. Then, the obtained 

liquefaction maps were compared. Finally, by averaging factor of safety values, a comprehensive liquefaction map was 

provided for Babol city. The results depicted that the factor of safety of less than one (liquefaction) takes place in 45% 

of the Babol city. 

The findings of the present study were in strong agreement with the results of previous investigations. Since many 

factors such as soil type, fines content, type of tests and their precision can affect liquefaction, it would be much safer 

to conduct different field tests for the same place and then compare the results to assess the potential of liquefaction. 

Therefore, it can be concluded that using only one method for liquefaction evaluation is not enough. The application of 

different approaches decreases error probability and leads to a more accurate evaluation of the liquefaction potential. 
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