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Abstract: Trabecular bone consists of complex webbing of plates and struts, in which the properties vary across 

anatomical sites. The substantial constraint is the reduction on discretization error will reduce time in computation. 

So it is significant to consider carefully the boundary condition effects when utilizing such a complex multiaxial 

loading mode. Additionally, multiaxial loading gives distinct effects towards boundary condition compare to 

uniaxial whereas percentage prediction of fatigue failure is lower and applying of periodic boundary reflect a more 

precise real loading condition. 3D models of trabecular samples were constructed for FE simulations. The response 

of the models towards simulated mechanical loading was investigated. Preparation of the models begins with 3D 

reconstruction of micro-CT stacked images, follows by segmentation, meshing and refurbishing process. The 

resistance of trabecular bone deformation to loading in both uniaxial and multiaxial modes improved the fatigue 

life and failure with application of periodic boundary conditions. 
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1. Introduction 

For over 30 years, biomechanics research has been widely explored with special interest is sending forth on the 

influence of trabecular bone towards weakening and failure of whole bone, and how the stimulating remodeling process 

helps in retaining the bone strength. Clear understanding of the biomechanics of bone is well related in diagnosis and 

treatment of medical issues such as osteoporosis, bone fracture, bone remodeling, and implant system. 

Fracture in bone [1,2], age-related fragility fractures [3] and implants loosening [4] have been found to be 

originated by fatigue damage. However, fatigue behavior of trabecular bone has received only few attentions [5–8]. 

Even so, these studies are conducted under uniaxial compressive loading, in which may badly aligned with in vivo 

physiological off-axis loading directions [7]. This off-axis loading is influenced by trabecular micro architectural 

properties, which are also attributed to osteoporosis. Thus, understanding the fatigue properties of bone may provide 

information on osteoporotic bone behavior toward normal physiological loading and its associated diagnosis and 

treatment, as well as improve implant systems in terms of material selection, placement and interface mechanism. 

http://penerbit.uthm.edu.my/ojs/index.php/ijie
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Trabecular bone consists of complex webbing of plates and struts, in which the properties varies across anatomical 

sites. Reconstruction of the whole trabecular model for computational analysis can benefit the research in bone 

pathology and clinical applications. However, due to limitation in equipment and the complexity of the trabecular 

structure itself, the reconstruction process for the whole model is highly unfeasible. Thus, this study aims to extract 

only a small sub volume region of interest to predict the uniaxial and multiaxial stress response and behavior of the 

whole trabecular structure which is never been done before. Several models are presented in current study with 

different morphological parameters to see these effects. The mechanical properties and fatigue response of these models 

are evaluated and compared. The validation of FEA with experimental results was also included to ensure the 

simulation accuracy of the developed model. Further, the effect of the applied periodic boundary on the assessed 

models was investigated. 

 

2. Methodology 

2.1 Experimental Setup 

For mechanical testing, the extremities of each sample were fixed to stainless steel end caps with adhesives [9,10]. 

The end caps were then placed inside a jig (Fig. 1) to achieve perfect alignment to the vertical axis of the universal 

testing machine and thus removed end artefacts [11]. Once placed inside the jig, a spring is used to ensure that the 

extremities of the sample filled the opening of the end caps completely. The extent of the hot-melt adhesives (DGHL, 

model HL-E, China) covered approximately 5 - 7 mm from both extremities of the samples for compression testing, 

reducing the effective length of the samples from 25 mm to 15 mm. 

Additionally, fitting of the samples for torsion testing was further assured by mounting the samples extremities 

with polymer mixture of resin and hardener of 5000 MPa in strength (UNI-LAB & CO, GmbH). The sample was cold 

mounted properly in hardened mixture and cured for 24 hours. The alignment between polymer and samples was 

secured using a custom rig (Fig. 1 (a)) to reduce error and artefacts during testing [12]. The mounted polymer covered 

approximately 7 - 10 mm of the sample length from its extremities, reducing the effective length of 40 - 35 mm to 15 - 

20 mm. The average sample diameter was 9.86 – 10 mm. The polymeric extremities were cut (Allied precision 

diamond cutter, USA) to be fitted and secured inside the jig which was clamped into the hydraulic wedge grips (Fig. 1 

(b)). The lower grip was fixed while the upper grip was fluctuated and rotated. 
 

Fig. 1 - Mechanical testing setup for (a) samples alignment; (b) universal testing machine with a sample 

attached 

 
A total of 73 samples were used for uniaxial compression and combined loading compression-torsion fatigue 

testing. Tests were conducted in the same condition as per monotonic test with separated load cell (Biaxial DynacellTM). 

This dynamic load cell has load capacity of 25 kN, torque capacity of 100 Nm and 0.5% precision from 1% of the full 
scale. 

 

2.2 Computational Analysis 

3D models of trabecular samples were constructed for FE simulations. The response of the models towards 

simulated mechanical loading was investigated. Preparation of the models begins with 3D reconstruction of micro-CT 

stacked images, follows by segmentation, meshing and refurbishing process. 

In the simulation part, COMSOL 4.3 (COMSOL Inc., Burlington, USA) was used to run the FE analysis which 

coupled with Matlab pre-processing and post processing. Integration of COMSOL with MATLAB thereby extending 

COMSOL's simulation tools with scripting capabilities. This allows for saving COMSOL models as M-files. COMSOL 

generated M-files can be combined with any MATLAB M-files for advanced post-processing, statistical and 

probabilistic analysis, for-loops, optimization, and combination with other MATLAB add-on tools. After mesh surface 



F. Januddi et al., International Journal of Integrated Engineering Vol. 12 No. 5 (2020) p. 70-80  

72  

editing, the reconstructed models were converted to FE mesh. Due to computational limitation for high-resolution 

models, only the small size of sub volume in region of interest (ROI) in trabecular model was selected for FE 

simulation. 

The model was assigned to be homogeneous and isotropic with linear elastic properties. The Young’s modulus 

value was set to 1000 MPa. The Poisson’s ratio of 0.3 was specified with regard to the trabecular apparent density of 1 

g/cm3 [13,14]. As the models were small in size, periodic boundary conditions were implemented thus a model was 

assumed as repeated unit cells arranged in period of infinite number [14]. This repetitive symmetry condition was 

achieved by multiple point constraint with similar x-displacement nodes on the surface of the model as shown in Fig. 2. 

This modelling technique requires macroscopic displacements parallel to the x- and y-axes in order to fulfil reflective 

symmetry of the loads [13,14]. 
 

 
Fig. 2 - Reconstructed 3D trabecular bone model being excised to sub-volume ROI which high in resolution but 

small in size 

 

3. Results 

Morphological analyses on trabecular bone samples give measurement on the morphological indices. Bone volume 

fraction ranged from 33.50 to 47.00 % (42.12 ± 5.26 %). Trabecular thickness (Tb.Th) mean value was 0.243 mm, 

within the range of 0.214 mm to 0.29 mm. The range for the distance between the trabeculae, trabecular separation 

(Tb.Sp) was measured to be in between 0.356 mm and 0.565 mm. Bone volume fraction (BS/TV) and bone surface 

fraction (BS/BV) both were recorded with average values of 0.194 and 0.198, respectively. The rod- versus plate-like 

type of structure which was indexed by the value of SMI averaged at 0.651. The connectivity density of the trabecular 

samples denoted as Conn.D was 5.03/mm3 in average, best suited to the ranged reported in previous work [13,15]. The 

convergence study was included and the chosen mesh density was chosen consistent to that of previous section Fig. 3. 

The convergence is considered successful with less than 10% difference. The number of elements in FE models range 

from 408,571 to 1,004,996 elements. 
 

 

Fig. 3 - Convergence behavior of trabecular bone model relationship between normalized Young’s modulus with 

number of elements 
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Correlation with the experimental data and prediction of fatigue life under the applied stress are shown in Fig. 4. 

Good agreement is observed in between the computational predictions with periodic boundary and the experimental 

analyses with less than 10% differences for modulus. 

 
 

 

Fig. 4 - Comparison between FE simulation and experimental modulus with periodic boundary condition 

 

The effect of periodic boundary on fatigue life prediction of trabecular bone model is shown in Fig. 5. The 

effective von-Mises stress was measured through minimum surface reached the predefined critical value. Similar trend 

is observed in the stress-cycle fatigue for models analyzed both with and without periodic boundary. Fatigue life is 

shown decreases with increase stress. However, fatigue cycles for models without periodic boundary were lower than 

that of models with periodic boundary. Good correlation was found in between the models both with and without 

periodic boundary and can be easily depicted from the stress-life curve. High errors of 92% in average denoted 

significant difference between both conditions (p < 0.05). In overall, 54% average in fatigue strength coefficient 

between the two conditions were found, where the models without periodic boundary underestimate the fatigue life at 

1.2 times in comparison to the models with periodic boundary. 
 

 

Fig. 5 – Effect of periodic and non-periodic boundary on the fatigue life evaluation of trabecular bone models 

 

Comparison on the effect of periodic boundary in between models under uniaxial loading and multiaxial loading 

shows smaller value of cycles to failure in models without periodic boundary for both loading conditions (Fig. 6). 

Further, lower effective plastic strain is observed for models under uniaxial loading in both with and without boundary 

conditions, as depicted in (Fig. 7). On the other hand, the strain is observed to be slightly higher for the models under 

multiaxial loading in all cases. 
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Fig. 6 - The S-N relationship of simulation models subjected to uniaxial and multiaxial loading with and without 

periodic boundary condition 

 

Fig. 8 shows the percentage difference of the calculated mechanical parameters from FE simulation from models 

with and without boundary condition under both uniaxial and multiaxial loading. This percentage difference is in 

between models with periodic boundary conditions and models without periodic boundary condition. Distinctive trend 

in percentage difference of von-Mises stress and volumetric strain is noticed, with higher von-Mises stress mean value 

for models under uniaxial loading without boundary condition in comparison to those under multiaxial loading (Fig. 8 

(a)). The percentage difference of von-Mises stress for models under uniaxial and multiaxial loading were 110 ± 

42.26% and 68.35 ± 51.34%, respectively. However, the percentage difference of volumetric strain was found to be 

slightly higher in models under uniaxial loading than that of multiaxial loading (Fig. 8 (b)). 
 

Fig. 7 - Strain to cycles to failure relationship of simulation models subjected to both uniaxial and multiaxial 

loading based on normal walking with and without periodic boundary condition 

 

Stress concentration is observed only in sample without periodic boundary under multiaxial loading (Fig. 9 (a)). 

More deformation can be seen in the model without application of periodic boundary. Compared to model with 

imposed of periodic boundary, different maximum stress distribution on the trabecular surfaces due to different 

boundary conditions. 

Fig. 10 shows the percentage difference of the calculated cycles to failure, Nf from FE simulation from models  

with and without boundary condition under both uniaxial and multiaxial loading. This percentage difference is in 

between models with periodic boundary conditions and models without periodic boundary condition. Same trend in 

percentage difference is noticed, with another different value for models under uniaxial loading without boundary 

condition in comparison to those under multiaxial loading. The percentage difference of for models under uniaxial and 

multiaxial loading were 97% and 67%, respectively. Overall, the average of cycles to failure in all boundary condition 

is shown in Fig. 11. The uniaxial loading with periodic boundary was found to be higher in all models where lowest for 

multiaxial loading without periodic boundary condition. 
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Fig. 8 – The difference in (a) von-Mises stress; (b) volumetric strain for with and without periodic boundary 

condition models subjected to both uniaxial and multiaxial loading 

 

4. Discussion 

Experimental results show good qualitative low cycle fatigue (LCF) and high cycle fatigue (HCF) separation  

which was explained previously in the literature[13,16]. LCF and HCF profile can be combined generally and be 

assumed as the effective strain under general strain-life curve. The results can be affected by inclusive tissue 

heterogeneity based on the mineralization level [17]. However, consideration on the model homogeneity properties is 

only appropriate in the analyses of human bone. The model reconstructed from bovine trabecular bone in present study 

is relatively a plate-like structure [18], thus can be assumed to be isotropic. Stress-strain field of the trabecular is 

determined by FE analyses, in which the prediction of mechanical parameters and fatigue life is investigated. Further, 

this study contributes to the evaluation of bone fracture risks under physiological loading conditions, in which the 

loading is not restricted to uniaxial loading. 

Trabecular bone fracture has been recognized to be initiated at the trabecular scale with high stress or strain [19]. 

Besides, it is known that during habitual loading, the biological response is triggered by the mechanical stress [20,21]. 

This study shows the higher value of elastic modulus and yield strength in models from femoral ball than those from 

condyle which can depend on the high volume fraction and bone surface density. This is due to high composition of 

plate like trabecular. Increase of strength across medial-lateral condyle to femoral ball is observed due to the  

differences in trabecular structure across different anatomic sites [22] as well as regional variations [23]. Differences of 

elastic modulus across anatomic sites are especially higher in proximal femur owing to its density which gives it the 

higher strength than in other anatomic sites [24,25]. Furthermore, in vivo loading condition bear during habitual 

activities varied across different anatomic sites, thus generate diverge local density and microarchitecture changes. 
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Fig. 9 - Microstructural model deformations with: (a) without periodic boundary; (b) when periodic 

boundary conditions are imposed on the trabecular structure 

 
 

Medial compartment of the condyle sustained greater load during normal walking than the lateral compartment 

[26,27], thus may influence the morphological structure properties and subsequently affect its elastic properties and 

yield behavior. Buckling during compression and necking during tensile give obvious variation on yield stress 

distribution between rod- and plate-like trabecular. Buckling has also been reported to affect rod-like trabecular in 

experimental investigation [28]. Orientation of strut following principle loading axes results in the worst case in 

comparison to the horizontal struts. This shows that the initiation of yielding in trabecular does not only depend on the 

type of trabecular yet influenced by struts orientation. This is supported by previous finding which shows the plate-like 

trabecular dominated the elastic modulus in trabecular bone than that of rod-like trabecular [29]. The combined effect 

of trabecular separation with struts breakage in a small fragment could result in lower elastic and strength even plates 

are more pronounce in specific site than rod-like trabecular. 
 

Fig. 10 - Difference in cycles to failure prediction of trabecular FE model under uniaxial and multiaxial loading 

conditions with respect to periodic boundary 

 

In this study, the uniaxial and multiaxial with specific micro architectural parameters difference were used to 

predict the failure and effective plastic strain. Traditionally, to diagnose vertebral osteoporosis, BMD is measured. 

However, this method fails to account the changes in the trabecular bone and quantify how this changes affect the 

quality of the trabecular [30,31]. Age-related changes of the trabecular bone included a decrease in BV/TV and 

Conn.D, an increase in Tb.Sp, a shift from plate-like trabecula to a rod-like structure [27,30,32]. An estimation of plate 

or rod characteristic of trabeculae can be explained with measuring SMI. SMI is highly dependent on trabecular type 

(plate- to rod-like structure) thus the mechanical behavior can be predicted under both uniaxial and multiaxial loading. 

Change in the type of trabecular structure is well related to age [23,33]. 
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Fig. 11 - Mean values of cycles to failure with different type of boundary condition and loading mode 

 

This study shows a significant effect of this parameter to fatigue life which contributes to the strength of the 

trabecular structure. In both loading conditions, low-SMI demonstrated high endurance towards fatigue loading. On the 

contrary, fatigue life cycles decreased significantly in samples with high-SMI. However, increase in effective plastic 

strain is also observed in some cases with low cycle fatigue. As the sample’s structure is dominated by rod-like 

trabeculae, the ability of the sample to sustain prolonged loading is reduced. BV/TV and Conn.D values affect the 

fatigue life of the trabecular bone under multiaxial loading significantly. Severe shear effect could be associated to the 

reduction of fatigue life in which alteration on trabecular orientation can be seen. In comparison to the samples under 

uniaxial loading, the horizontal trabecular struts are less affected in which most of the load was bore on vertical struts. 

Thus, the sample failed by bending. This condition is closely associated with the thinning of the trabecular and an 

increase in anisotropy with increasing age in osteoporotic bone. However, under multiaxial loading, the trabecular 

structure was loaded in multiple directions in which resulting in failure of the struts irrespective to its orientation. High 

bone volume fraction demonstrated low effective plastic strain corresponding to strain at failure. The effective plastic 

strain is not dependent on bone volume fraction due variations on the degree of anisotropy, thus other relevant factors 

in micro architectural changes should be accounted. Off-axis angle orientation reduces the capability of the trabecular 

structure to put up with stress during fatigue, thus reduction in fatigue life can be observed during experimental analysis 

[7,10]. In particular, present work simulated the same behavior of trabecular structure by comparing three different 

trabecular models orientation. While increment in plastic strain of models in vertical and 45º orientation is found 

negligible, higher prominent strain is demonstrated by model in horizontal orientation. This is due to the structure of  

the model in which dominated by thin struts that are susceptible to bending and buckling. The results yielded in present 

work are in conjunction with previous studies which reported weaker trabecular in transverse orientation with higher 

shear stress concentration and shorter fatigue life [10,11]. Similar behavior has also been observed in anisotropic 

reinforced composites, in which demonstrates strength reduction at different fibers orientation [34]. The same 

observation was also found previously in which demonstrated whole bone sustainability towards higher loading in the 

main axis, thus different orientation reduced the ability to withstand the load [35,36]. Differences in strains at failure 

have also been reported to be influenced by geometry [7,15]. Here, direct essentialities are true of providing detailed 

information on bone properties for improvement in fixation system. 

High-resolution FE models can be used to accurately predict the trabecular failure [37,38] and simulate bone 

fracture [39,40]. However, none of the reported literatures for bone fatigue analysis had involved bulk structure of the 

trabecular despite the clinical evidences of fatigue failure in the trabecular region. In this section, the presence of 

periodic boundary on a small unit of bulk trabecular model was analyzed to predict the fatigue life the model with 

different morphological parameters. The boundary condition was set on the free surface of the model in order to reflect 

the macroscopic mechanical properties of the trabecular at actual size as in experimental tests. The presence of the 

boundary reduced the uncertainty in the evaluation of midpoint in trabeculae element to derived tissue properties by 

von-Mises stress or surface value critical location. The mechanical properties may have been underestimated due to the 

loss of connectivity and dissimilarity in structure of the model in comparison to the sample used for experimental 

analyses. Mesh convergence analysis were also carried out. The optimum number of element obtained was about 

1,000,000 number of element. The number of elements influenced the prediction accuracy and estimate the duration for 

system solver. Young’s modulus was underestimated by 63.86% for the analyses with exclusive boundary condition. 

Several models of trabecular bone with different microarchitecture parameters were inspected in order to compare the 

effects of periodic boundary in stress-strain distribution under uniaxial and multiaxial loading. The models were first 

imposed with uniform distribution of periodic boundary. 
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To calculate the initial modulus of the models, seven units of sub-volume trabecular cell were reconstructed from 

different samples and computationally analyzed. The Young’s modulus obtained were within the range of microscopic 

trabecular value and comparable to the experimental reports [10,41,42]. The implementation of periodic boundary in 

FE analyses done in this section has led to infinite domain of trabecular microarchitecture. With implemented periodic 

boundary, such limitation in developing whole trabecular model as in experimental analyses could be overcome. The 

process should require advanced imaging technology in order to develop high resolution image for such purpose. 

Moreover, the computational analyses would be longer in duration, as opposed to the computational method 

preferences; cost-effective, non-destructive and timesaving. Most FE analyses of trabecular bone accounted only the 

apparent properties [15,40,43] and only a few have implemented the periodic boundary on the models tested [44–47]. 

However, no comparison has ever been made in between uniaxial and multiaxial trabecular fatigue. Back calculated has 

been the method of choice to predict the elastic modulus in studies involving trabecular bone, thus the internal 

boundary in domain is considered in fatigue evaluation. Here, calibration is needed for the analysis to be in 

proportioned to the material fatigue properties. 

Uniaxial analysis of material without periodic boundary condition results in shear effects due to bending by high 

compressive magnitude [48,49]. This in turn demonstrates higher stress and strain difference in comparison to the 

uniaxial analysis with periodic boundary condition. However, in the analysis under multiaxial loading, the trabecular 

structure was restricted by shear locking between the interface of periodic boundary condition and the deformed body. 

Although higher magnitude in analyses without periodic boundary condition is observed in comparison to that of under 

uniaxial loading, the percentage difference between von-Mises stress with and without periodic boundary condition are 

significantly lower than that of uniaxial loading. Furthermore, the average difference of volumetric strain evaluation 

was about 20% in between load cases. 

Under multiaxial loading, the trabecular were constrained to tolerate with shear thus restricted the structure from 

deformation. The contribution of the local von-Mises stress distribution was less in analysis of sample with periodic 

boundary condition than the sample without periodic boundary condition. In real behavior, this may underestimate the 

displacement and minimize shear stresses due to the constrained interface. Furthermore, the interfacial surface at some 

locations was constrained under compression and therefore no further increment in strain was noticed. This behavior 

was also observed in previous study [36,44]. As the trabecular structure in vivo is confined by cortical bone, net 

deformations supposed to bear by the trabecular is axial compressive load. However, shear stress has induced bending 

of the trabecular and severely attacked the structure in oblique and horizontal direction which has introduced high stress 

distribution to the structure. This phenomenon is rarely seen in vitro as previous assessment accounted for only 

compressive axial loading [6]. 

Lesser effect of the trabeculae off-axis orientation is demonstrated under uniaxial loading compared to multiaxial 

loading in which resulted in lower cycles to failure. Higher load or stress levels resulted in higher stress concentration 

distribution on the same region. In real trabecular behavior, those may be view as the propagation of micro crack and 

off-axis orientation of trabeculae normally failed due to micro buckling [10]. Therefore, induce a spurious softening of 

trabecular structure led to higher displace of global stress of the model and can significantly overestimate the value of 

apparent strain. 

The effect of periodic boundary condition mapping in prediction of the mechanical parameters and fatigue life of 

trabecular bone were assessed by the means of FE computation. The presence of periodic boundary condition has given 

significant impact on the results and reduced the time taken for the analysis to be completed due to the large number of 

elements that were defined to be constraint. The incorporation of multiaxial loading was based on the physiological 

environment, while imposing periodic boundary localized the trabecular structure as such the trabecular being confined 

by cortical bone. Localization of stress and strain in FE computational analyses may contribute to the development of 

biomechanical evaluation. Future work may involve mimicry of in vivo condition with mechanobiological model which 

include fluid effect on the structural mechanics. 

 

5. Conclusion 

The resistance of trabecular bone deformation to loading in both uniaxial and multiaxial modes improved the 

fatigue life and failure with application of periodic boundary condition. The substantial constraint is the reduction on 

discretization error will reduce time in computation. So it is significant to consider carefully the boundary condition 

effects when utilizing such a complex multiaxial loading mode. Additionally, multiaxial loading gives distinct effects 

towards boundary condition compare to uniaxial whereas percentage prediction of fatigue failure is lower and applying 

of periodic boundary reflect a more precise real loading condition. 

Fatigue failure of trabecular bone appears to be dominated by low shear properties and regardless of loading type; 

trabecular bone still can be failed by shear. Weaker trabecular struts in off-axis to loading orientation is governed by 

twisting and bending deformation under multiaxial stress condition. The trabecular bone fatigue damage behavior was 

successfully observed during the increase of strain accumulation. Modulus reduction can be viewed as driving the 

structural deformation under cyclic loads and incorporate with energy dissipations. 



F. Januddi et al., International Journal of Integrated Engineering Vol. 12 No. 5 (2020) p. 70-80  

79  

 

Acknowledgement 

The authors gratefully acknowledge to the Ministry of Education Malaysia for financial supports given under the 
Fundamental Research Grant Scheme (FRGS/1/2018/TK03/UNIKL/02/4). 

 
References 

[1]  Papakonstantinou M K, Hart M J, Farrugia R, Gosling C, Kamali Moaveni A, van Bavel D, Page R S and 

Richardson M D 2017 Prevalence of non‐ union and delayed union in proximal humeral fractures ANZ J. 

Surg. 87 55–9 

[2]  Goff M G, Lambers F M, Sorna R M, Keaveny T M and Hernandez C J 2015 Finite element models predict 

the location of microdamage in cancellous bone following uniaxial loading J. Biomech. 48 4142–8 

[3]  Pisani P, Renna M D, Conversano F, Casciaro E, Di Paola M, Quarta E, Muratore M and Casciaro S 2016 

Major osteoporotic fragility fractures: Risk factor updates and societal impact World J. Orthop. 7 171 

[4]  Taylor M and Tanner K E 1997 Fatigue failure of cancellous bone: a possible cause of implant migration and 

loosening J. Bone Joint Surg. Br. 79 181–2 

[5]  Goff M G, Lambers F M, Nguyen T M, Sung J, Rimnac C M and Hernandez C J 2015 Fatigue-induced 

microdamage in cancellous bone occurs distant from resorption cavities and trabecular surfaces Bone 79 8–14 

[6]  Rapillard L, Charlebois M and Zysset P K 2006 Compressive fatigue behavior of human vertebral trabecular 

bone J. Biomech. 39 2133–9 

[7]  Dendorfer S, Maier H J, Taylor D and Hammer J 2008 Anisotropy of the fatigue behaviour of cancellous bone 

J. Biomech. 41 636–41 

[8]  Haddock S M, Yeh O C, Mummaneni P V., Rosenberg W S and Keaveny T M 2004 Similarity in the fatigue 

behavior of trabecular bone across site and species J. Biomech. 37 181–7 

[9]  Kinney J H and Ladd A J C 1998 The relationship between three‐ dimensional connectivity and the elastic 

properties of trabecular bone J. Bone Miner. Res. 13 839–45 

[10]  Fatihhi S J, Rabiatul A A R, Harun M N, Kadir M R A, Kamarul T and Syahrom A 2016 Effect of torsional 

loading on compressive fatigue behaviour of trabecular bone J. Mech. Behav. Biomed. Mater. 54 21–32 

[11]  Fenech C M and Keaveny T M 1999 A cellular solid criterion for predicting the axial-shear failure properties 

of bovine trabecular bone 

[12] Rincón-Kohli L and Zysset P K 2009 Multi-axial mechanical properties of human trabecular bone Biomech. 

Model. Mechanobiol. 8 195–208 
[13]  Fatihhi S J, Harun M N, Abdul Kadir M R, Abdullah J, Kamarul T, Öchsner A and Syahrom A 2015 Uniaxial 

and Multiaxial Fatigue Life Prediction of the Trabecular Bone Based on Physiological Loading: A 

Comparative Study Ann. Biomed. Eng. 43 2487–502 

[14]  Kadir M R A, Syahrom A and Öchsner A 2010 Finite element analysis of idealised unit cell cancellous 

structure based on morphological indices of cancellous bone Med. Biol. Eng. Comput. 48 497–505 

[15]  Wolfram U, Gross T, Pahr D H, Schwiedrzik J, Wilke H-J and Zysset P K 2012 Fabric-based Tsai–Wu yield 

criteria for vertebral trabecular bone in stress and strain space J. Mech. Behav. Biomed. Mater. 15 218–28 

[16] Moore T L a. and Gibson L J 2003 Fatigue of Bovine Trabecular Bone J. Biomech. Eng. 125 761 
[17]  Follet H, Boivin G, Rumelhart C and Meunier P J 2004 The degree of mineralization is a determinant of bone 

strength: a study on human calcanei Bone 34 783–9 

[18]  Ganguly P, Moore T L A and Gibson L J 2004 A phenomenological model for predicting fatigue life in bovine 

trabecular bone J. Biomech. Eng. 126 330–9 

[19]  Guillén T, Zhang Q-H, Tozzi G, Ohrndorf A, Christ H-J and Tong J 2011 Compressive behaviour of bovine 

cancellous bone and bone analogous materials, microCT characterisation and FE analysis J. Mech. Behav. 

Biomed. Mater. 4 1452–61 
[20]  Hsieh Y F and Silva M J 2002 In vivo fatigue loading of the rat ulna induces both bone formation and 

resorption and leads to time-related changes in bone mechanical properties and density J. Orthop. Res. 20 

764–71 

[21]  Yamamoto E, Crawford R P, Chan D D and Keaveny T M 2006 Development of residual strains in human 

vertebral trabecular bone after prolonged static and cyclic loading at low load levels J. Biomech. 39 1812–8 

[22]  Turunen M J, Prantner V, Jurvelin J S, Kröger H and Isaksson H 2013 Composition and microarchitecture of 

human trabecular bone change with age and differ between anatomical locations Bone 54 118–25 

[23]  Stauber M and Müller R 2006 Age-related changes in trabecular bone microstructures: global and local 

morphometry Osteoporos. Int. 17 616–26 

[24] Kopperdahl D L and Keaveny T M 1998 Yield strain behavior of trabecular bone J. Biomech. 31 601–8 
[25]  Padilla F, Jenson F, Bousson V, Peyrin F and Laugier P 2008 Relationships of trabecular bone structure with 

quantitative ultrasound parameters: In vitro study on human proximal femur using transmission and 

backscatter measurements Bone 42 1193–202 



F. Januddi et al., International Journal of Integrated Engineering Vol. 12 No. 5 (2020) p. 70-80  

80  

 
 

[26]  Jaasma M J, Bayraktar H H, Niebur G L and Keaveny T M 2002 Biomechanical effects of intraspecimen 

variations in tissue modulus for trabecular bone J. Biomech. 35 237–46 

[27]  Kumar D, Manal K T and Rudolph K S 2013 Knee joint loading during gait in healthy controls and 

individuals with knee osteoarthritis Osteoarthr. Cartil. 21 298–305 

[28]  Teo J C M, Si-Hoe K M, Keh J E L and Teoh S H 2007 Correlation of cancellous bone microarchitectural 

parameters from microCT to CT number and bone mechanical properties Mater. Sci. Eng. C 27 333–9 

[29]  Bourne B C and van der Meulen M C H 2004 Finite element models predict cancellous apparent modulus 

when tissue modulus is scaled from specimen CT-attenuation J. Biomech. 37 613–21 

[30]  Harrison N M, McDonnell P F, O’Mahoney D C, Kennedy O D, O’Brien F J and McHugh P E 2008 

Heterogeneous linear elastic trabecular bone modelling using micro-CT attenuation data and experimentally 

measured heterogeneous tissue properties J. Biomech. 41 2589–96 

[31]  Legrand E, Chappard D, Pascaretti C, Duquenne M, Krebs S, Rohmer V, Basle M and Audran M 2000 

Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis J. Bone 

Miner. Res. 15 13–9 

[32]  Yeh O C and Keaveny T M 1999 Biomechanical effects of intraspecimen variations in trabecular architecture: 

a three-dimensional finite element study Bone 25 223–8 

[33]  Liu X S, Huang A H, Zhang X H, Sajda P, Ji B and Guo X E 2008 Dynamic simulation of three dimensional 

architectural and mechanical alterations in human trabecular bone during menopause Bone 43 292–301 

[34] Chawla K K 2013 Composite materials 
[35]  Thomsen J S, Niklassen A S, Ebbesen E N and Brüel A 2013 Age-related changes of vertical and horizontal 

lumbar vertebral trabecular 3D bone microstructure is different in women and men Bone 57 47–55 

[36]  Ding M, Odgaard A, Linde F and Hvid I 2002 Age‐ related variations in the microstructure of human tibial 

cancellous bone J. Orthop. Res. 20 615–21 

[37]  Tsubota K, Suzuki Y, Yamada T, Hojo M, Makinouchi A and Adachi T 2009 Computer simulation of 

trabecular remodeling in human proximal femur using large-scale voxel FE models: Approach to 

understanding Wolff’s law J. Biomech. 42 1088–94 

[38]  Majumdar S, Kothari M, Augat P, Newitt D C, Link T M, Lin J C, Lang T, Lu Y and Genant H K 1998 High- 

resolution magnetic resonance imaging: three-dimensional trabecular bone architecture and biomechanical 

properties Bone 22 445–54 

[39] Keyak J H 2001 Improved prediction of proximal femoral fracture load using nonlinear finite element models 

Med. Eng. Phys. 23 165–73 
[40]  Shefelbine S J, Augat P, Claes L and Simon U 2005 Trabecular bone fracture healing simulation with finite 

element analysis and fuzzy logic J. Biomech. 38 2440–50 

[41]  Røhl L, Larsen E, Linde F, Odgaard A and Jørgensen J 1991 Tensile and compressive properties of cancellous 

bone J. Biomech. 24 1143–9 

[42]  Nicholson P H F and Strelitzki R 1999 On the prediction of Young’s modulus in calcaneal cancellous bone by 

ultrasonic bulk and bar velocity measurements Clin. Rheumatol. 18 10–6 

[43]  Ojanen X, Tanska P, Malo M K H, Isaksson H, Väänänen S P, Koistinen A P, Grassi L, Magnusson S P, 

Ribel-Madsen S M and Korhonen R K 2017 Tissue viscoelasticity is related to tissue composition but may not 

fully predict the apparent-level viscoelasticity in human trabecular bone–An experimental and finite element 

study J. Biomech. 65 96–105 

[44]  Bevill G and Keaveny T M 2009 Trabecular bone strength predictions using finite element analysis of micro- 

scale images at limited spatial resolution Bone 44 579–84 

[45]  van Rietbergen B, Weinans H, Huiskes R and Odgaard A 1995 A new method to determine trabecular bone 

elastic properties and loading using micromechanical finite-element models J. Biomech. 28 69–81 

[46]  Massarwa E, Aboudi J, Galbusera F, Wilke H-J and Haj-Ali R 2017 A nonlinear micromechanical model for 

progressive damage of vertebral trabecular bones J. Mech. Mater. Struct. 12 407–24 

[47]  Haj-Ali R, Massarwa E, Aboudi J, Galbusera F, Wolfram U and Wilke H-J 2017 A new multiscale 

micromechanical model of vertebral trabecular bones Biomech. Model. Mechanobiol. 16 933–46 

[48]  Radzuan N A M, Sulong A B, Mamat M R, Tharazi I, Tholibon D, Dweiri R and Hammadi M S 2018 Kenaf 

Reinforced PLA Composite Thermoforming: A Numerical Simulation Int. J. Integr. Eng. 10 

[49]  Zakwan F A A, Krishnamoorthy R R, Ibrahim A and Ismail R 2018 A Finite Element (FE) simulation of 

naked solid steel beam at elevated temperature Int. J. Integr. Eng. 10 


