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1.   Introduction 

In the finite element method, mesh dimensions and topology have significant effects on the results of the analysis. In 

continuum structures such as plates and shells, the results converge to the exact values when the meshing of structures is 

optimally selected small enough. A meshing is desirable if the meshes dimensions are small enough, and the created 

elements have equal dimensions. On the other hand, the analysis will be time-consuming when the mesh size is small. 

Also, in a meshing procedure, creating the elements with the same size is not always possible. Therefore, providing a 

method to modify the stiffness matrix by considering the size and number of elements could be useful. 

The effects of mesh size have been studied in many fields, such as linear FEM, nonlinear FEM, and fracture mechanics. 

Clovgh and Tocher [1] studied the rectangular and triangle plate elements and the mesh size based on the Kirchhoff plate 

bending theory. Choi and Kwak [2] investigated the effects of mesh size on the nonlinear behavior of reinforced concrete 

structures. Kanapady et al. [3] proposed an initial approximate value for mesh density using the data mining techniques 

that there did not require any trial and error to start finite element computations. A relation between the critical strain to 

failure and the size of the “unit cell” was presented by Li et al. [4]. Nam et al. [5] presented mesh sensitivity on the structure 

subjected to the blast wave. Troyani et al. [6] investigated the effect of triangular finite element mesh orientation on the 

responses of solid and fluid mechanics. The effect of element size in numerical simulation of the incremental sheet-forming 

process was studied by Suresh and Regalla [7]. Antunes et al. [8] optimized the finite element mesh that was used to predict 

the plasticity-induced crack closure. Therefore, based on the literature mentioned earlier, it can be observed that several 

types of researches have been proposed on mesh size for analysis of structures. Recently, Perumal [9] introduced a new 

technique for Delaunay triangular mesh generation and element optimization. This method was implemented through the 

generation of sample points using mapping for Delaunay triangulation and mesh
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optimization. Based on the literature mentioned above, it should be noted that the mesh size has an important effect on the 

responses of both static and dynamic problems [10-13]. 

The plate and shell structures are widely used in civil, naval, and aerospace engineering. In topology optimization, 

the plate and shell elements reduce the analysis time and, consequently, the optimization process [14-17]. In the theory of 

plates, the plates are classified into thick and thin plates [18]. For thin plates, the shear deformation is neglected, and the 

Kirchhoff plate theory is used for analysis, but, for thick plates, the shear deformation is considerable, and the Mindlin-

Reissner plate theory must be used. The Mindlin-Reissner plate theory for thin plates leads to poor results due to the shear 

locking phenomenon. To solve the shear locking problem in the Mindlin–Reissner plate theory, (a) the reduced integration 

method, (b) the natural strain approach, and (c) the stress method have been proposed. A lot of studies have been presented 

for solving the shear locking problem using these methods, and also new techniques have been introduced. The reduced 

integration method was used by Zienkiewicz et al. [19] and Pugh et al. [20]. Also, the selective integration method was 

applied to solve these problems by Malkus and Hughes [21], and also Hughes et al. [22]. Bathe and Dvorkin [23] presented 

the MITC family. Batoz and Lardeur [20] and also Batoz and Katili [24] developed the Discrete Shear Triangle (DST) 

family. Choo et al. [25] proposed the hybrid-Trefftz plate elements. The assumed stress/strain elements were used by Lee 

and Pian [26], Katili [27], and also Brasile [28]. Most of these methods solved the shear locking problem in the plate 

elements, but these formulations were complex and difficult. 

A new three-node triangular plate element, labeled as DST-S6 (Discrete Shear Triangular element with six extra Shear 

degrees of freedom), was proposed by Cai et al. [29] to analyze the plate/shell structures. The shear locking is eliminated 

in the DST-S6. In this method, any numerical expediencies (such as the reduced integration, the assumed strains/stresses) 

are ignored, and a simple formulation was presented. In the same way, Zhuang et al. [30] introduced a new locking-free 

element triangular thick plate element. In this formulation, each element has nine standard kinematic degrees of freedom 

and six additional degrees of freedom for shear strains (TTK9S6). This formulation can be used in the analysis of plate and 

shell structures. They evaluated the performance of TTK9S6 by comparing the obtained central displacement using the 

FEM with the exact values. As mentioned above, various methods and formulations have been proposed for plate and shell 

analysis, but the DST-S6 and TTK9S6 formulations presented a simple formulation to calculate the stiffness matrix. 

In this paper, a correction function is proposed to modify the bending and shear stiffness matrices of the plate for each 

element. For this purpose, the TTK9S6 element is used for the plate analysis. In the next section, the TTK9S6 formulation 

for finite element analysis is presented in detail. In the third section, the correction coefficients of the bending and shear 

stiffness matrices are introduced. Then, the sensitivity of the central displacement to the bending and shear stiffness 

matrices is studied. In the fourth section, a correction function is proposed according to the changes of correction coefficients 

of the bending and shear stiffness matrices. Finally, the performance of the proposed correction function is evaluated 

throughout several numerical examples. For this purpose, the errors of central displacement for the TTK9S6 and the 

modified plate element are calculated and compared. 

 

1.1   TTK9S6 Formulation 

In this section, the formulation of shape functions, interpolation function, and computing the stiffness matric in terms of 

bending and shear deformation for the TTK9S6 [30] element is expressed. According to Fig. 1, the total rotations of plates 

around the x- and y-axis (θx and θy) without separating the influence of transverse shear deformation are expressed by: 

   = 
w 

,   = 
w

 
x x y y 

 
(1) 

Where w is the vertical displacement. The total rotation includes the rigid body rotation ( $ ) and transverse shear strain 

(γ). Therefore, the transverse shear strain can be computed as follow: 

 

 x  = x −$ 
x , y  =  y −$ 

y (2) 

The shape functions of TTK9S6 are presented as follows. This element has three main nodes and three additional mid-

side nodes, as shown in Fig. 2. 
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Fig. 1 - Decomposition of total rotation for a plate element 

 

Where i and k are the numbers of main and mid-side nodes, respectively, as shown in Fig. 2. The subscript ",x" denotes 

the derivatives with respect to x. Li and Ni are the shape functions of three and six node elements, respectively, that can be 

calculated by: 

 

L = 
1 

(a + b x + c y ), a = x y − x y , b = y − y , c = x − x 
i 

2 A 
i i i i i    m m    i i j m i m j 

 

(6) 

1    x1 y1  

2 A = 

1    x y 


 

 2 2  
1         x3 y3 

 

 

 
(7) 

N j   = (2L j  −1) L j     ( j = 1, 2, 3) ,  N4   = 4L1L2 ,  N5   = 4L2 L3 ,  N6   = 4L3 L1 

 
(8) 

Also, the derivatives of ϕxi and ϕyi with respect to x and y at the mid-side nodes (k=4.5.6) are calculated by: 
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Fig. 2 - TTK9S6 element with three main nodes and three mid-side nodes 
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The interpolation function of the element can be expressed as follow: 
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(19) 

Now, by determining the interpolation function and using strain energy Πp for a plate element, the stiffness matrix 

can be obtained. The strain energy for a plate element is expressed by: 

 
   = 

1 
( T 

D  +  T 
D  ) dxdy 

p 2 Ae 
b s 

 
(20) 

 

Where χ and γ are the bending and shear strains vectors, respectively that are defined as follows: 
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(22) 

 

Where E is Young's modulus, υ is the Poisson's ratio, and h is the thickness of the plate element. Now, the bending 

and shear stiffness matrices are expressed by: 
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(27) 

Finally, the stiffness matrix of the plate element is obtained by adding the bending and shears stiffness matrices as 

follow: 

Ke = Ke + Ke 
b s (28) 

 

The stiffness matrix can be calculated using Gaussian integration for the bending and shear stiffness matrices as 

follows: 
n 

Ke = 
1 

 BT D B   J  
b 2   b(rm ,sm )    b     b(rm ,sm )    m     (rm ,sm )  

m=1 

 
(29) 

n 
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 BT D B   J  
s 2    s(rm ,sm )    s     s(rm ,sm )    m     (rm ,sm )  

m=1 

 
(30) 

Where n is the number of Gaussian points, rm and sm are the Gaussian points, ωm is the weight of Gaussian points and 

J(r ,s ) is the Jacobian matrix at the Gaussian points that is calculated by: 

 
 X X  
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Where 

X  = 
6     

N x ,  Y  = 
6     

N  y 
i =1     i   i i =1      i   i (32) 

 

1.2   Investigation of the sensitivity of bending and shear stiffness matrices 

In this section, the sensitivity and effects of the bending and shear stiffness matrices on the central deflection of plates 

are investigated. For this purpose, two coefficients for the bending (α) and the shear (β) stiffness matrices are defined. 

Thus the K e and K e are expressed as follows: 

 
n 

Ke =  
1 

 BT D B   J  
b 2   b(rm ,sm )    b     b(rm ,sm )    m     (rm ,sm )  

m=1 

 
(33) 

n 

Ke =  
1 

 BT D B   J  
s 2    s(rm ,sm )    s     s(rm ,sm )    m     (rm ,sm )  

m=1 

 
(34) 

 

 

Here, the variations of the central deflection of the plate by changing the values of the coefficients are studied to 

determine the appropriate values for the coefficients (α and β). For investigating the effects of α and β and subsequently 

Kb
e and Ks

e on the results, a square plate subjected to uniformly distributed surface load (q) is studied. The side length is l, 

and the thickness of the plate is h. Due to the symmetry of geometry and boundary conditions, only a quarter of the plate 

is modeled [29, 30], as shown in Fig. 3. 
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The plate is modeled for a 4×4 and 16×16 mesh size and with clamped and simply supported edges as the boundary 

conditions. The modulus of elasticity is E=100 (Pa), the side length is equal to l=100 (m), the poison’s ratio is υ=0.3, and 

the uniformly distributed surface load is q=1 (N/m). The thicknesses of plates are equal to h=0.001 (m), 0.1 (m), 1 (m), 

10(m), 15(m), and 20(m). The variations of the central deflection with respect to the variations of α (when the β parameter is 

considered to be constant, β =1) for the plate with 16×16 mesh with clamped and simply supported edges are shown in 

Fig. 4. It is shown that for h/l=0.2 and 0.15 with the clamped support (Fig. 4 (a)) the values of α must be less than 1 (α<1) 

but, for the thin plates (h/l =0.1, 0.01, 1e-3, 1e-5), the values of α must be more than 1 (α>1). In the simply supported plate 

(Fig. 4 (b)), for all values of h/l, α must be more than 1. Fig. 4 (b) shows that the values of α, also increase with an increase 

in the values of h/l. These results are provided in Fig. 5 for the plate with 4×4 mesh for both clamped and simply supported 

edges. For the clamped and simply supported plates, the values of α must be more than 1 for convergence to the exact 

central deflection. 

As shown in Fig. 5 (b), increasing the values of h/l leads to an increase in the values of α, but it is inversely for the 

clamped plate (Fig. 5 (a)). In Fig. 4 and Fig. 5, it is shown that for the thin plates (h/l=0.01,1e-3,1e-5), the values of α will 

not be changed approximately. 

l/2 

 
Fig. 3 - Model of a square plate with 8×8 mesh 

 

(a) (b) 

Fig. 4 - Effect of α variations (β=1) on the central deflection for plate with 16×16 mesh, (a) clamped, (b) simply 

supported 

In the following, the variations of the central deflections with respect to variations of the β parameter (when the α 

parameter is assumed to be constant, α =1) are evaluated. The results for 16×16 and 4×4 mesh are shown in Fig. 6 and Fig. 

7, respectively. In Fig. 6 and Fig. 7, it is shown that for thin plates (h/l=0.01,1e-3,1e-5), the variations of β are ineffective 

on the central deflection values. 

As shown in Fig. 6 (a), for 16×16 mesh plate with clamped support edges and h/l=0.2,0.15,0.1, the values of β 

approximately should be equal to 1 for convergence to the exact values. As shown in Fig. 6 (b), the values of the β should 

be more than 2 (β>2) for the convergence of the results to the exact values for the thick plates (h/l=0.2, 0.15, 0.1).
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(a) (b) 

Fig. 5 - Effect of α variations (β=1) on the central deflection for plate with 4×4 mesh, (a) clamped support, (b) 

simply supported 

 

(a) (b) 

Fig.6 - Effect of β variations (α =1) on the central deflection of plate with 16×16 mesh, (a) clamped support, (b) 

simply supported 

 

Fig. 7 (a) shows that only for h/l=0.15 and 0.2, the values of β impact on the values of central deflection. Also, as 

shown in Fig. 7 (b), only for h/l=0.2, the values of the β parameter can be useful. By comparing Fig. 6 and Fig. 7, it is 

proved that the β parameter is effective only for the thick plates (h/l=0.2, 0.15, 0.1) and has no effect on the thin plates 

(h/l=0.01,1e-3,1e-5). Besides, the values of the β parameter are more effective when the mesh size is small, and the plate 

has simply-supported edges. 
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(a) (b) 

Fig. 7 - Effect of β variations (α =1) on the central deflection of plate with 4×4 mesh, (a) clamped support, (b) 

simply supported 

 

The sensitivity analysis illustrates that the central displacement of the plate is affected by the flexural stiffness matrix 

rather than the shear stiffness matrix. The variations of the α parameter indicate that by selecting appropriate values of α 

and β parameters, the central deflection of the plate can be modified. Consequently, this leads to having a reduction in 

error values. Choosing a suitable function is complex since the thickness, mesh size, and type of supports can have effects 

on the results. However, in this paper, using the trial and error method and considering the different scenarios of thickness, 

mesh size and type of support, a function for α and β parameter is presented as follow: 

 

  A − log(h A ) 
2

 

 =  
A

t    
+ A

e       
t t  ,  = 1 

 At    
− A

e At + log(h At )  
  

 

 
(35) 

where At is the area of the plate, and Ae is the area of the elements. The bending correction coefficient should be 

calculated for each element if the area of the elements is not equal. So, the bending matrix is written according to equation 

(36). 
n 

Ke = 
1 
   BT D B   J  

b 
2   m    b(rm ,sm )   b    b(rm ,sm )   m    (rm ,sm )  

m=1 

 
(36) 

 
3.   Numerical studies 

Herein, several numerical studies are presented for evaluating the performance of the proposed modifying function. 

In the following, the results of TTK9S6 and modified stiffness matrices are presented and compared. 

 

3.1   The circular plate under uniform load 
A circular plate under uniform load (q) with clamped or simply supported edges is analyzed to investigate the proposed 

modifying function. Due to symmetry in the geometry and boundary conditions, only a quarter of the plate is analyzed [29, 

30] (Fig. 8). 

The modulus of elasticity (E), the radius of the plate (r), and the Poisson’s ratio (υ) are 100, 100, and 0.3, respectively. 

The uniformly distributed surface load is q=1. The plate is modeled for a mesh with 9, 25, 81, 289, and 1089 nodes [30]. 

The thickness variations are h=0.001, 0.01, 1, 10, 15, and 20. Also, a clamped or simply supported edges are assumed for 

the boundary conditions of the plate [30]. The results for the clamped and simply supported edges for the plates are listed 

in Tables 1 and 2, respectively. Note that the results of the modifying function are labeled as “M: means that it has been 

modified”. The results indicate the desirable effects of the modifying function in most cases. 

For a better comparison, for the 9-node and 1089-node models, the relative errors in the central deflection with respect 

to h/l for the clamped and simply supported edges are presented in Fig. 9 (a) and Fig. 9 (b), respectively. These figures 

show the ability of the proposed function to predict the central deflection. 
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Fig. 8 - 81-node mesh model for a circular plate 

 

Table 1 - Central deflection×(qr4/100D) for circular plate with clamped edges (T:TTK9S6 & M:Modified) 

h/r 0.00001 0.001 0.01 0.1 0.15 0.2 

models T M T M T M T M T M T M 

9n 2.9252 1.7914 2.9252 1.7933 2.9258 1.7948 2.9867 1.8564 3.0635 1.9332 3.1709 2.0405 

25n 1.8944 1.6691 1.8944 1.6708 1.8950 1.6723 1.9566 1.7347 2.0343 1.8126 2.1432 1.9216 

81n 1.6448 1.5904 1.6448 1.5920 1.6455 1.5935 1.7111 1.6599 1.7940 1.7429 1.9099 1.8590 

289n 1.5830 1.5666 1.5830 1.5682 1.5837 1.5697 1.6519 1.6387 1.7380 1.7250 1.8586 1.8457 

1089n 1.5676 1.5606 1.5676 1.5622 1.5683 1.5637 1.6378 1.6339 1.7255 1.7218 1.8482 1.8446 

Exact 1.5625 1.5625 1.5632 1.6339 1.7232 1.8482 

 

Table 2 - Central deflection×(qr4/100D) for circular plate with simply edges (T:TTK9S6 & M:Modified) 

h/r 0.00001 0.001 0.01 0.1 0.15 0.2 

models T M T M T M T M T M T M 

9n 8.1234 5.9875 8.1234 5.9936 8.1243 5.9975 8.2160 6.0834 8.3307 6.1865 8.4894 6.3277 

25n 6.7936 5.9878 6.7936 5.9939 6.7945 5.9978 6.8775 6.0838 6.9804 6.1869 7.1218 6.3280 

81n 6.4757 6.2650 6.4757 6.2714 6.4765 6.2754 6.5548 6.3570 6.6505 6.4531 6.7816 6.5845 

289n 6.3966 6.3304 6.3966 6.3369 6.3974 6.3409 6.4723 6.4191 6.5636 6.5109 6.6901 6.6378 

1089n 6.3768 6.3482 6.3768 6.3547 6.3776 6.3587 6.4500 6.4343 6.5396 6.5246 6.6649 6.6502 

Exact 6.3702 6.3702 6.3709 6.4416 6.5309 6.6559 

 

(a) (b) 

Fig. 9 - Relative error in central deflection with respect to h/l for the plates with (a) 9-node and (b) 1089-node 
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3.2   The clamped circular plate under uniform load with different meshes 

For further evaluation, two-clamped plates with different meshes are studied here. In the first case, as shown in Fig. 

10 (a), the plate has regular mesh with the number of nodes equal to 49. As shown, the area of created elements is different. 

In the second case, as shown in Fig. 10 (b), the plate has an irregular mesh with the number of nodes equal to 40. The 

results of the analysis are listed in Table 3. It is shown that the modifying function has an excellent effect on the convergence 

of the results to the exact values. The relative errors in the central deflection concerning h/l for 49-node and 40-node meshes 

are effectively reduced (see Fig. 11). 

 

(a) (b) 

Fig. 10 - Clamped plate with different meshes (a) 49-node (b) 40-node 

 

Table 3 - Central deflection×(qr4/100D) for a clamped circular plate with different meshes  

(T: TTK9S6 & M: Modified) 

h/l 0.00001 0.001 0.01 0.1 0.15 0.2 

models T M T M T M T M T M T M 

49n 1.7075 1.6046 1.7075 1.6062 1.7081 1.6077 1.7754 1.6756 1.8600 1.7602 1.9783 1.8783 

40n 1.8143 1.5454 1.8143 1.5470 1.8151 1.5486 1.8864 1.6198 1.9726 1.7053 2.0910 1.8225 

Exact 1.5625 1.5625 1.5632 1.6339 1.7232 1.8482 

 

 

(a) (b) 

Fig. 11 - Relative error for evaluation of central deflection with respect to different values for h/l in (a) 49-node 

and (b) 40-node plates 
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3.3   The square plate under uniform load 

A square plate under uniform load (q) with the clamped or simply supported edges is analyzed for evaluating the 

proposed modifying function. Due to symmetry in the geometry and boundary conditions, only a quarter of the plate is 

analyzed (see Fig. 2). The modulus of elasticity is E=100, the length of the plate is l=100, the Poisson’s ratio is υ=0.3, and 

the uniformly distributed surface load is q=1. The plate is modeled with 4×4, 8×8, 16×16, and 32×32 meshes [30]. The 

thickness variations are assumed to be equal to h=0.001, 0.01, 1, 10, 15, and 20 [30]. The clamped and simply supported 

edges are considered for the plate. The results of the plates with clamped and simply supported edges are listed in Tables 4 

and 5, respectively. Also, the relative errors in computing the central deflection are presented in Fig. 12. As shown in Fig. 

12, the effect of modifying function on the errors is reduced when the mesh size is small (16×16). 
 

Table 4 - Central deflection×(ql4/100D) for square plate with clamped edges 

(T:TTK9S6 & M:Modified) 

h/l 0.00001 0.001 0.01 0.1 0.15 0.2  

models T M T M T M T M T M T M 

4x4 0.1499 0.1450 0.1499 0.1451 0.1501 0.1454 0.1685 0.1638 0.1914 0.1867 0.2230 0.2183 

8x8 0.1334 0.1321 0.1334 0.1322 0.1336 0.1324 0.1546 0.1535 0.1802 0.1791 0.2153 0.2142 

16x16 0.1284 0.1279 0.1284 0.1279 0.1286 0.1282 0.1510 0.1507 0.1781 0.1778 0.2149 0.2146 

32x32 0.1270 0.1267 0.1270 0.1267 0.1272 0.1271 0.1503 0.1502 0.1780 0.1779 0.2157 0.2156 

Exact 0.1265 0.1265 0.1265 0.1499 0.1798 0.2167  

 

Table 5 - The central deflection×(ql4/100D) for square plate with simply supported 

(T:TTK9S6 & M:Modified) 

h/l 0.00001 0.001 0.01 0.1 0.15 0.2 

models T M T M T M T M T M T M 

4x4 0.4508 0.4360 0.4508 0.4364 0.4512 0.4370 0.4904 0.4762 0.5321 0.5177 0.5843 0.5697 

8x8 0.4240 0.4121 0.4240 0.4124 0.4246 0.4136 0.4694 0.4626 0.5113 0.5046 0.5626 0.5556 

16x16 0.4137 0.4121 0.4137 0.4124 0.4147 0.4136 0.4636 0.4626 0.5056 0.5046 0.5566 0.5556 

32x32 0.4096 0.4086 0.4096 0.4089 0.4112 0.4107 0.4622 0.4618 0.5042 0.5038 0.5550 0.5547 

Exact 0.4062 0.4062 0.4064 0.4273 0.4536 0.4906 

 
 

(b) (b) 

Fig. 12 - Relative error in central deflection with respect to h/l for (a) 4x4 mesh (b) 32x32 meshes 
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4.   Comparing Errors 

There are several methods to evaluate the errors, such as mean absolute percentage error (MAPE), root mean square 

error (RMSE), and so on [31]. For a comprehensive comparison between the results of the TTK9S6 and the modified 

element, the error percentage (EP) of each element for computing the central displacement in comparison with the exact 

value is presented in Table 6. The error percentage is calculated in absolute maximum, absolute minimum, and average 

(MAPE) for each model. It can be seen that the EP in the modified element is significantly decreased. The values of MAPE 

in the TTK9S6 element (21.57% and 47.32%) are near 5 and 2.8 times the modified element (4.25% and 2.63%) for the 

circular plates with the clamped and simply supported edges, respectively. The ratios of the MAPE for the square plates 

with clamped and simply supported edges in the TTK9S6 (4.50% and 8.71%) in comparison with the modified element 

(3.51% and 7.23%) are equal to 1.28 and 1.20, respectively. So, it is concluded that the effect of the modified element for 

the reduction of the errors is more considerable in the circular plate. Also, for the clamped circular plate with different 

meshes, the significant effect can be seen in the error reduction for the modified element (Table 3). As shown, the values 

of MAPE for the TTK9S6 and modified elements are equal to 11.91 and 1.75, respectively. It means that the MAPE in 

TTL9S6 is approximately 6.81 times the modified element. The results also illustrate a significant reduction in the 

maximum EP. As shown in Table 6, the maximum EP for the TTK9S6 is equal to 87.21%, while this value is 16.13% for 

the modified element. 

 

  Table 6 - Error percentage (%) of TTK9S6 and modified element  

Maximum Minimum Average (MAPE) 
Models 

 

 

 

 

 

 

 

 

 

 

5.   Conclusion 

In this paper, an idea was suggested to improve the results of plate elements based on the coefficient correction. The 

results of the sensitivity analysis proved that the central displacement depends on the bending stiffness matrix, and the 

effects of shear stiffness matrix could be ignored. According to the variations of the correction factor for the bending 

stiffness, a function was proposed. The results indicated that in most cases, the proposed modifying function caused to 

converge the central displacements to the exact values, and the errors were reduced. The investigations showed that in the 

plates with large mesh and also with irregular mesh, the proposed function effectively reduced the errors. The results of 

different numerical examples illustrated that the use of the bending correction factor averagely decreases the errors of FEM 

analysis from 11.06% to 4.04% 
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