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Abstract: The use of deep learning approaches for prognostics and remaining useful life predictions have become 
obviously prevalent. Artificial recurrent neural networks like the long short-term memory are popularly employed 
for forecasting, prognostics and health management practices, and in other fields of life. As an unsupervised learning 
approach, the efficiency of the long short-term memory for time-series predictive purposes is quite remarkable in 
contrast to standard feedforward neural networks. Virtually all mechanical systems consist mostly of rotating 
components which are by nature, prone to degradation/failure from known and uncertain causes. As a result, 
condition monitoring of these rolling element bearings is necessary in order to carry out prognostics and make 
necessary life predictions which guide safe and cost-effective decision making. Several studies have been conducted 
on effective approaches and methods for accurate prognostics of rolling element bearings; however, this paper 
presents a case study on rolling element bearing prognostics and degradation performance using an LSTM model. 

 
Keywords: Bearing Degradation, Long short-term memory, Feature Extraction, Prognostics, Degradation 
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1. Introduction 

Prognostics and health management approaches have witnessed a global improvement ranging from the use of 
traditional physics-based models to more robust data-driven models [1]. The necessity for condition monitoring and 
prognostics of rotating components like bearings cannot be overemphasized [2]. Not only does it offer a wider range of 
information for decision-making, but also, the information gathered from prognostics inspire predictive maintenance 
decisions for extended lives of systems, cost optimization, safety, and productivity. 

The use of deep learning approaches for prognostics and remaining useful life (RUL) predictions have been on the 
increase and research studies are constantly being conducted for more effective and optimized approaches. Statistical 
machine learning models, the more robust deep learning models, and a host of hybrid models are being used and 
customized for optimum prognostics needs in various areas of life. These data-driven models are designed to accept a 
feature vector as input and make predictions as output [3]. Artificial recurrent neural networks like the long short-term 
memory (LSTM) are recently being popularly employed for prognostics and health management (PHM) purposes and in 
other areas of life [4]-[6]. As an unsupervised learning approach, the LSTM’s efficiencies for time-series predictive 
purposes are quite remarkable in contrast to standard feedforward neural networks (FNNs) whose architecture has only 
a forward process- from the input nodes, through the hidden layers and finally to the output nodes [7]. 

Several recent research studies have been conducted on effective and cost-efficient approaches to data-driven 
prognostics based on recurrent neural network (RNN) architecture [8]-[9]; however, because a typical LSTM architecture 
comprises of input-hidden-output layers with a feedback structure, it uses gates to control the memorizing process [10]. 
This addresses the challenging problems of vanishing and exploding gradient issues which conventional RNNs are prone 
to; consequently, making them one of the ‘general purpose computers’ [11]. 
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Virtually all mechanical systems consist mostly of rotating components which are naturally prone to failure from 

both known, and uncertain causes. This is because rolling element bearings (REBs) are commonly used in mechanical 
systems; therefore, condition monitoring (CM) of these REBs is necessary in order to carry out prognostics and make 
necessary life predictions which guide safe, and cost-effective decision making. Accurate health assessment is by a norm, 
a primary pre-requisite for enabling predictive maintenance procedure for increased productivity and reliability as well 
as ensuring optimized utility of machine components. Many works of literature have presented analytical models for 
asset health assessment which relied primarily on historical operation data and sensor data. The authors of [12] presented 
a health assessment approach for REBs by employing the Hilbert-Huang transform as a representative degradation 
feature as input for a particle filter model for tracking degradation state of the test bearings. Consequently, a posterior 
probability distribution of RUL was obtained. From [13], the authors developed a Paris law model comprising of a 
physical-based and a statistical-based approach to RUL prediction of REBs. From the health assessment model of rotating 
bearing proposed by [14], an empirical mode decomposition method was employed for feature extraction from raw 
vibration signals followed by a self-organizing map method for deducing the bearing’s health state based on features that 
were extracted. 

As seen from the above studies (and in many others works of literature), the general ideology for implementing data- 
driven prognostics revolves around the processes: feature extraction for showing system behaviour, construction of a 
prediction model for assessing current system health, and for making future predictions; and finally, RUL prediction. In 
view of this, this study presents a case study of REB prognostics and degradation performance using an LSTM model. 
First, feature extraction was carried out on the test bearings, followed by a degradation assessment of the bearings. Using 
the LSTM model, future predictions were made using the extracted feature. 

The remaining part of the paper is structured as follows: Section II presents a review of the LSTM. Section III shows 
a degradation assessment model based on the LSTM model. Section IV presents an experimental study of the proposed 
model using REB data provided by Intelligent Maintenance System (IMS) Center, University of Cincinnati [15]. Section 
V concludes the paper. 

 
2. Overview of the Long Short Term Memory 

The versatility in purpose of the LSTM ranging from speech recognition [16], language modelling, text prediction 
[17], etc. cannot be overemphasized owing to its feedback-integrated architecture, unlike other RNNS. 

In a typical LSTM network, an LSTM cell contains three gates, namely the input gate, forget gate, and output gate 
[18]. These gates control information passage along with the sequences which can acquire long-range dependencies with 
more accuracy [19]. Fig. 1a shows a typical LSTM cell architecture while fig. 1b shows a series of LSTM cells at time 
steps. 

The forget gate  , input gate 𝐼𝐼𝑡𝑡 , and output gate 𝑂𝑂𝑡𝑡 are single layered neural networks which contain sigmoid 
activation function (yields output between 0 and 1) while the candidate layer uses the 𝑡𝑡𝑎𝑎𝑛𝑛ℎ activation function (yields 
output between -1 and 1). These gates take the input vectors(𝑢𝑢), and previous output vectors (𝑤𝑤), concatenate them, and 
finally apply the sigmoid activation function. 

From fig. 1a, the first layer 𝒇𝒇𝒕𝒕 determines what information to transfer from the previous state 𝑪𝑪𝒕𝒕−𝟏𝟏 and considers a 
previous output 𝑯𝑯𝒕𝒕−𝟏𝟏 and current input 𝒙𝒙𝒕𝒕. Mathematically, it is expressed in (1) as: 

  =  (𝒖𝒖𝒇𝒇𝒙𝒙𝒕𝒕  +  𝒘𝒘𝒇𝒇𝑯𝑯𝒕𝒕−𝟏𝟏 + 𝒃𝒃𝒇𝒇) (1) 

The second layer (𝑖𝑖𝑡𝑡) decides what information to be stored in the current state and is shown in (2). 

  =  (𝒖𝒖𝒊𝒊𝒙𝒙𝒕𝒕   +  𝒘𝒘𝒊𝒊𝑯𝑯𝒕𝒕−𝟏𝟏 + 𝒃𝒃𝒊𝒊) (2) 
 
 

Fig. 1 - (a) LSTM architecture showing a single LSTM cell; (b) LSTM architecture showing LSTM cells at different time steps 
 

Where 𝜎𝜎 represents the sigmoid activation function and 𝑤𝑤𝑖𝑖 represents the weight of 𝑓𝑓𝑡𝑡. 𝑤𝑤𝑖𝑖 represents the weight of layer 𝑖𝑖 
while 𝑏𝑏𝑖𝑖 represents the bias of layer 𝑖𝑖. 
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The current cell memory 𝐶𝐶𝑡𝑡 shown in (3) is a function of the previous memory 𝐶𝐶𝑡𝑡-1 and emanates from an element- 
wise multiplication with the forget gate 𝑓𝑓. The updated candidate from the previous cell to current cell memory is 
expressed mathematically in (4) as: 

𝐶𝐶∗𝑡𝑡   =  ℎ(𝑤𝑤𝑐𝑐  ⊛ 𝐻𝐻𝑡𝑡--1  + 𝑢𝑢𝑐𝑐𝑥𝑥𝑡𝑡 + 𝑏𝑏𝑐𝑐) (3) 

𝐶𝐶𝑡𝑡   =      ⊛ 𝐶𝐶𝑡𝑡−1  ⊕ 𝑖𝑖𝑡𝑡 · 𝐶𝐶∗𝑡𝑡 (4) 
 

Each LSTM cell output 𝐻𝐻𝑡𝑡 is a function of yet another element-wise multiplication between the 𝑡𝑡𝑎𝑎𝑛𝑛ℎ activated 
function of 𝐶𝐶𝑡𝑡, and the last layer- output layer 𝑂𝑂𝑡𝑡 and are shown in (5) and (6) respectively. 

 
  = (𝒖𝒖𝒐𝒐𝒙𝒙  + 𝒘𝒘𝒐𝒐𝑯𝑯𝒕𝒕−𝟏𝟏) + 𝒃𝒃𝟎𝟎) (5) 

  =   ⊛ 𝐭𝐭𝐚𝐚𝐧𝐧𝐡𝐡(𝑪𝑪𝒕𝒕) (6) 

Eventually, the first hidden layer outputs (𝑪𝑪𝒕𝒕 and 𝑯𝑯𝒕𝒕) becomes the input layer of the next cell to form a neural network 
of several hidden LSTM layers (or cells). Table 1 describes each parameter. 

 
Table 1 - Description of Parameters 

 

Symbol Description 
𝑥𝑥𝑡𝑡 Input Vector 
𝐻𝐻𝑡𝑡−1 Hidden Previous cell output 
𝐶𝐶𝑡𝑡−1 Previous cell memory 
𝐻𝐻𝑡𝑡 Current cell output 
𝐶𝐶𝑡𝑡 Current cell memory 
⊛ Element wise multiplication 
⊕ Element-wise addition 
w, u Weight vectors for 𝑓𝑓𝑡𝑡, 𝐶𝐶∗𝑡𝑡, 𝐼𝐼𝑡𝑡, 𝑂𝑂𝑡𝑡 

𝑓𝑓𝑡𝑡 Forget gate 
𝐶𝐶∗

𝑡𝑡
 Candidate 

𝐼𝐼𝑡𝑡 Input gate 
𝑂𝑂𝑡𝑡 Output gate 

 
In summary, the goal is to capture prior information that may contribute to the posterior event in a feedback-enabled 

manner. This leads to the output which is an averaged sum over time and is represented in (7) as: 
 

𝒏𝒏 
𝑯𝑯 = ∑ 𝑯𝑯𝒋𝒋/𝒏𝒏 

𝒊𝒊=𝟏𝟏 
 

3. Degradation Assessment Model 

 
(7) 

This section presents the procedure for carrying out degradation assessment using the proposed method. These 
include feature extraction and an overview of the proposed prognostics model 

 
3.1 Feature Extraction 

In order to effectively carry out effective degradation assessment, the primary and most sensitive step is to extract 
feature(s) that show the degradation trend from normal health condition until failure state. Fig. 2 shows the raw vibration 
signal for the data points however, from the plot, one cannot make meaningful deductive conclusions. 

Vibration signals have shown in [20], [21] and many other works of literature to reflect the behavior of rotating 
element bearings and from these signals, frequency-domain features (Hilbert–Huang transform, fast Fourier transform, 
etc.), time-domain features (root mean square, Kurtosis, etc.) or time-frequency-domain features (Short-time Fourier 
transform, Wigner transform, etc.) can be extracted and prepared for prognostics. 

As verified in [22], the RMS, as a single degradation feature is an effective time-domain statistical feature for 
representing degradation behavior of vibrational (and other signals) with relatively lesser noise (compared to other time- 
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Fig. 2 - Raw vibration signal of Bearing4 
 

based features) and can successfully extract valuable information from the vibrational signals. This study presents the 
RMS as a key feature for assessing bearing degradation behavior and is represented in (8) as: 

 
𝑘𝑘 2 

XRMS = √
∑

𝑘𝑘=1
((𝑘𝑘)) 

𝑘𝑘 
(8) 

 
Where x(k) is a series of vibration signal for k = 1, 2, 3, …, K. 

 
3.2 Proposed Prognostics Model 

Fig. 3 shows the schematic prediction model for the proposed study. After feature extraction and normalization, the 
normalized features were split into training and test data. The training data was input to the model for, and upon 
completion, was fed with the test data for prediction. 

As suggested by the authors of [23], the training-testing process was carried out using several combinations of 
parameters like the epoch size, batch number, number of LSTM cells. This continued iteratively (by trial and error) until 
an acceptable model was achieved. By observing the loss function of every model using several combinations of above- 
mentioned parameters, the model with best convergence of the loss function to zero, is most likely a befitting model for 
prediction; however, the model’s predictive accuracy chiefly depends its performance on the test data. 

 

Fig. 3 - Overview of LSTM model for bearing prognostics 
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Fig. 4 - (a) Schematic view showing Sensor placement and loading illustration; (b) Actual picture of test bench (see [24]) 

 

 
Fig. 5 - (a)Inner race failure in bearing3; (b) roller element failure in bearing4; (c) outer race failure in bearing1 (see [24]) 

 
 
4. Analysis Using The Proposed Method 

In this section, the paper presents the source of vibrational data and the experimental results from the analyses. 
 
4.1 Experimental Setup 

The REB data was generated from a run-to-failure test of four bearings fitted on a loaded shaft with a radial load of 
2730kg. Data was collected hourly with a sampling frequency of 2000rpm. Through a NI DAQ Card-6062E, the 
vibrational data was collected via vertically (and horizontally) installed high sensitivity accelerometers. Three run-to- 
failure experiments were carried out and the results were recorded in three datasets. The data was provided by Intelligent 
Maintenance System (IMS) Centre, University of Cincinnati [15]. As originally presented in [24, fig. 16], fig. 4 shows 
the experimental test setup with a schematic view showing Sensor placement and loading illustration. 

 
4.2 Experimental Results 

Fig. 5 shows the results from the run-to-failure test on the bearings. The results showed an inner race failure in 
bearing3 and a rolling element failure in bearing4, and an outer race failure in bearing1. 

 

4.3 Feature Extraction 
The RMS feature of the failed bearings were extracted, normalized (using a moving average algorithm of window 

size 10), and presented in figs. (6-8). As seen in Fig. 6, Bearing3 failed uniformly as seen from the degradation pattern; 
however, bearing4 exhibited a more random behaviour than bearing3 (Fig. 7). On the other side, bearing1 showed an 
early suspicious behaviour but later showed some self-healing effects as seen in fig. 8. 

Owing to the anomaly in failure behaviour of bearing4 towards its end of life (bearing4 experienced a stage 2 failure 
before finally experiencing a rolling element failure), this study shall focus more on vibrational signal of bearing4 for 
analysis. As seen from Fig. 7, it would take an effective prediction model to make accurate predictions from the 1600th 
measurement point, onwards. We aim to show the dynamically robust capability of the proposed model in making 
accurate forecasts and future predictions from the test data after training. This shall further be illustrated in section D. 

At about 1750 measurement point (corresponding to day 26), the RMS exceeded the failure threshold (0.18); hence, 
signaling failure. Nevertheless, the bearing showed some sort of self-healing behaviour but was short-lived from about 
day 28 till it finally failed (stage 2 failure). 
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Fig. 6 - RMS of bearing3 

 

Fig. 7 - RMS of bearing4 
 

Fig. 8 - RMS of bearing1 
 
4.4 Degradation assessment based on LSTM model 

The accuracy in the prediction of an LSTM model depends reasonably on the number of hidden layers in the network. 
By stacking more LSTM cells or hidden layers, a deep LSTM network with increased model complexity and predictive 
power can be built [16]. More empirically, parameters like learning rate, epoch size, number of time-step-sized batches 
available to be iterated in each epoch, how densely the neurons in the network are connected, etc., all determine the 
performance of an LSTM algorithm on an input data. 

After feature extraction and normalization of bearing4 vibrational signal, the normalized data was divided into 
training, and test data in the ratio 70:30. The training data was used to train the proposed LSTM model, and after training, 
was fed with the test data to make predictions. Fig 9 shows the convergence of the loss function of the trained model. For 
the proposed model, several trials using several combinations of earlier mentioned parameters were conducted. These 
combinations are recorded in Table 2 and their corresponding results presented in fig. 10. After several trials with various 
parameters, fig. 10f shows the most accurate predictive performance of the proposed model on bearing4 RMS against 
other recorded parameter combinations. This corresponds to an LSTM models of 5 hidden layers with epoch size of 50 
and a batch size of 40. 
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Fig. 9 - Loss function of the trained model 

 

Fig. 10 - RMS degradation predictions of bearing4 at various combinations of Epochs and batch sizes 

Table 2 - RMSE Comparison of Model Parameters 

Epoch size Batch Size No. of LSTM cells Computation time(secs) RMSE (%) 
50 3 5 88 2.76 
500 3 5 213 2.31 
500 15 5 157 2.56 
50 15 5 65 2.53 
500 40 5 129 1.75 
50 40 5 41 1.1 
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Fig. 11 - Prediction error histogram of proposed model on bearing4 

Table 3 - Prediction Results of Proposed Model 

 
 
 

4.5 Performance Evaluation Criteria 
The RMS as seen from the previous section represented effectively, the degradation behavior of the bearing. The 

Root Mean Square Error (RMSE) is employed for evaluating the proposed model's accuracy in predicting the bearing's 
degradation behaviour and is expressed in (9) as: 

 
RMSE    = √1 ∑(𝑥𝑥(𝑖𝑖) − 𝑥𝑥∗(𝑖𝑖))2 (9) 

𝑛𝑛 
 

Where (𝑖𝑖) is the i-th value of bearing RMS, 𝑥𝑥∗(𝑖𝑖) represents the i-th RMS prediction value. 

4.6 Evaluation Result 
Table 3 presents the prediction results of the proposed LSTM model on bearing1, bearing3 and bearing4. Fig. 11 

shows the RMSE distribution of the proposed model. As seen from the results in table III, the proposed model has a 
99.9% average RMS prediction accuracy on the presented REBs. 

 
5. Conclusion and Future Works 

The proposed approach is based on a deep learning architecture for predicting bearing degradation behavior using a 
run-to-failure data provided by the NASA. The deep learning structure comprises layers of LSTM neurons and was 
modeled using data from the run-to-failure experiment. As a prerequisite, feature extraction was carried out, and as a 
result, RMS values for the whole degradation life of the REBs were obtained, normalized and for degradation assessment. 

The proposed model was validated using the RMS values extracted from the dataset (training data), and with the test 
data, degradation prediction was made by the trained LSTM model. Consequently, the results show that the proposed 
model can capture system dynamic behavior, and detecting fault in REBs with admirable accuracy, and with less effort, 
unlike most traditional physics-based prognostics models. 

In further studies, we shall carry out a more comprehensive feature extraction from the test bearings to really capture 
in full, the bearing degradation behavior. As suggested by the authors of [25], by combining other time-based features 
with the RMS, a more comprehensive feature index can be obtained and can serve as a better health indicator. 

In addition, we shall develop a more effective hybrid model for prognostics by combining LSTM and physics-based 
prognostics methods. This shall ensure that not only will the physical behavior of the bearing be captured, but no stone 
would also be left unturned in the whole process of data analysis, feature extraction, degradation assessment, and 
prognostics. The new model shall not only be implemented on bearings, but also, on other rotating components like fluid 
pumps, brushless DC Motors, etc. 
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