
Abstract: The reliability and performance of a system with minimum life-cycle cost have become quite prominent 
in engineering systems. With increasing industrial applications, machines are operating in intricate conditions with 
higher uncertainty, causing greater vulnerability of system failure. This paper reports fault-related information of 
Brushless DC Motor (BLDC motor) in non-stationary operating conditions and presents several analyses to 
diagnose the faults. Fault diagnosis is the most crucial and important part of system prognostics which helps to 
increase the remaining useful life (RUL) and prevent catastrophic failures. Having both electrical and mechanical 
characteristics present in a BLDC motor, it shows several faults in different operating conditions. These faults 
cause a significant change in the vibration of the Motor. This paper deals with the anomaly detection of BLDC 
motor in non-stationary speed conditions using vibration signal analysis as well as extraction of several Condition 
Indicators (CI). 

Keywords: BLDC Motor, Condition Monitoring, Fault Detection, Spectral Analysis. 

𝜏𝜏 = Time parameter 

𝜔𝜔 = Frequency parameter 

fn = Fundamental frequency 

fs = Sampling frequency 
fchar = Characteristic frequency 

Nomenclatures 
x(t) = Motor vibration signal 

𝑋𝑋𝑘𝑘 = Transform values in frequency domain 
𝑤𝑤 = Window Function 

N = Number of samples 

𝑥𝑥𝑥 = Mean of vibration samples 
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1. Introduction
In the past few years, BLDC motor has gained significant popularity due to its great performance, higher efficiency

and better torque to current ratio. Besides not having brushes, BLDC motors also lack a mechanical commutator. The 
reduction in the number of components means there are fewer parts that wear out, break, need replacing, or require 
maintenance. Electromagnetic interference and operational noise are also less in BLDC motors as its internal components 
are enclosed [1]. 

Nevertheless, like other electronic components, a BLDC motor can also fail. Particularly, overload and overheating 
cause some electrical faults such as conductor break or short circuit in the stator winding, an abrupt change in resistance 
due to insulation aging as well as some mechanical faults such as- degradation of bearings, destruction of bearing cage, 
rotor shaft deformation, etc. Concurring with Industry 4.0 and an exponential increase in industrial applications, condition 

*Corresponding author: tanvirshifatbd@gmail.com
2020 UTHM Publisher. All rights reserved.
penerbit.uthm.edu.my/ojs/index.php/ijie

151 

http://penerbit.uthm.edu.my/ojs/index.php/ijie
mailto:tanvirshifatbd@gmail.com


J.W. Hur et al., Int. J. of Integrated Engineering Vol. 12 No. 3 (2020) p. 151-160 

152 

 

 

 
 

monitoring and diagnosis have become a major concern to retain the system healthy [2, 3]. Diagnosing the intermittent 
failures that can lead to catastrophic field failure is the primary stage of predictive maintenance. Later, using these faults 
related information, a maintenance scheme is designed that can provide advanced warning of failures, indicate the health 
state, and, overall, increase system efficiency and lifetime. The health monitoring of the BLDC motor will play an 
important role in the reliability of many modern engineering fields, starting from robotics and automation to marine and 
transportation industries where BLDC motor is a widely used component [4]. 

Since both electrical and mechanical characteristics are present in a BLDC motor, it shows several faults such as- 
conductor break or short circuit in the stator winding, aging bearing cage, broken rotor bar, eccentricity related faults etc. 
When a fault takes place in the motor, it will create some abrupt changes in its vibration. We can observe and distinguish 
these anomalies in different operating conditions through several approaches and find the State-of-Health (SOH) of the 
motor. Spectral analysis for the fault detection and diagnosis of rotary machinery has been a quite popular approach this 
far [5,6]. Many types of researches have undergone using many techniques such as Fourier Transform, Short Time Fourier 
Transform (STFT), Wavelet Transform (WT) etc. that allow us to inspect a signal from different domains [7,8]. Using 
these time-domain analyses, frequency-domain analysis, time-frequency analysis, a system’s fault can be observed 
visually by looking at the anomalous change in the spectrum. In different domains, anomalous signal can be observed in 
different extents. Besides analyzing the spectrums, we can also extract several Condition Indicators (CI) of a signal that 
demonstrate the SOH of a system. Several CIs are measured and presented in this paper such as- in time domain: Root 
Mean Square (RMS), Standard Deviation (STD), Kurtosis, Skewness, Crest Factor (CF) and in frequency domain: Root 
Variance Frequency (RVF), Symbol Error Rate (SER), Entropy etc. Analyzing these features, we can identify and isolate 
a motor fault which is the foundation for the prognostics and health management of a system [9-12]. 

 
2. Modeling and Control of BLDC Motor 

Unlike conventional DC Motor, rotor of the BLDC motor is a permanent magnet and the stator are coils working as 
electromagnets. Rotation of the permanent magnet (rotor) is achieved by controlling the magnetic fields generated by 
the electromagnets (stator). In practice, it is done by adjusting the currents into these electromagnet coils. Several studies 
have shown different control schemes for BLDC motors. D. Potnuru et. al. [13] proposed a closed loop control scheme, 
Sultan et. al. [14] discussed about sensor less control of BLDC motors based on experiments. 

A conventional Generator-Motor (G-M) setup is chosen for BLDC motor diagnostic test to avoid complexity and 
ease in collecting data for non-stationary speeding and loading conditions. G-M setup allows us to build, control and 
modify the motor’s external parameters efficiently. To perform tests on BLDC motor, the motor was coupled with a 
generator and some loads were connected to the generator. 9 The motor was controlled using a controller driver which 
has embedded Hall Effect Sensors (HES) and speed control potentiometer in it. Fig. 1 depicts the G-M setup diagram for 
the experiments. 

 
 

Fig. 1 - G-M set circuit 
diagram 
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Fig. 2 - Vibration Signals at variable speeding conditions 
 

3. Spectral Analysis 
The motor was operated in variable speeding conditions from 500 to 5000rpm. Fig. 2 represents motor vibration signals 

in the time domain for both healthy and faulty cases. Although this representation does not give us adequate information 
to validate the fault state of motor, we can observe the state of signal visually and realize that for each speed of motor, 
faulty motor shows greater amplitude than the healthy one for same the time scale. Vibration samples were collected for a 
constant 30 kHz sampling rate and 5000 samples for each speeding condition were measured. 

 
 
3.1 Discrete Fourier Transform (DFT) 

To observe the frequency domain response, these uniformly spaced time samples (𝑡𝑡), were transformed using 
Discrete Fourier Transform (DFT). Spectral analysis using Fourier transform is used to deconstruct the signal into its 
individual sine wave components. DFT allows us to speculate the frequencies and their proportions in original signal. 
Since each of the (𝑡𝑡) contains a total of 5000 samples, calculating conventional DFT will be computationally too much 
expensive. An optimized FFT algorithm is used for the faster and efficient computation of DFT by taking advantage of 
symmetries in sine waves [15]. DFT for a time-domain signal (𝑡𝑡) can be expressed as (1): 

 
𝑁𝑁−1 

𝑖𝑖2𝜋𝜋𝑛𝑛𝑘𝑘 
𝑋𝑋𝑘𝑘 = ∑ 𝑥𝑥(𝑡𝑡) 𝑒𝑒− 𝑁𝑁 

𝑛𝑛=0 

(1) 

Where: 

𝑋𝑋𝑘𝑘 = Transform Values 
x(t) = Motor Vibration Signal 

N = Number of Samples 

k = Each kth value is a complex number including amplitude and phase shift. 

Fig. 3 illustrates the frequency response for vibration signals shown in Fig. 2. Analyzing the signals in frequency 
domain, clear fault sideband frequencies are observed. It is also noted that an increase in the motor speed causes the fault 
frequency magnitude to increase. At around 2 kHz frequency, no sideband is seen for healthy motor case for rpm 1000 to 
rpm 3000. However, a smaller sideband is observed for healthy state for rpm 4000 and rpm 5000 but that is quite smaller 
in magnitude compared to that of faulty state signal as shown in Fig. 2. 
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3.2 Short-time Fourier Transform (STFT) 
DFT gives us only the frequency domain characteristics of a signal. In order to have time and frequency domain 

attributes of a non-stationary signal, we perform the Short-time Fourier Transform (STFT) of our signal. STFT allows 
us to portray the frequency content of a signal as a function of time [16, 17]. In STFT, the signal is truncated into 
narrow time intervals by selecting a window size. Later, Fourier transform is performed for consecutive segmented 
pieces where each Fourier transform then provides the spectral content of that time segment only. STFT can be defined 
as (2): 

 
∞ 

𝑋𝑋(𝜏𝜏, 𝜔𝜔) = ∫ 𝑥𝑥(𝑡𝑡)𝑤𝑤(𝑡𝑡 − 𝜏𝜏)𝑒𝑒−𝑗𝑗𝜔𝜔𝑡𝑡𝑑𝑑𝑡𝑡 
−∞ 

 
(2) 

 
Where: 

𝜏𝜏 = Time Parameter 

𝜔𝜔 = Frequency Parameter 

𝑤𝑤 = Window Function 

Window function (𝑡𝑡−𝜏𝜏) plays an important role on the outcome of STFT analysis. Wider analysis window gives us 
poor time resolution but good frequency resolution. On the other hand, narrow analysis window gives a good time 
resolution but a poor frequency resolution. So, before performing STFT, we have to choose an optimum window function 
and size by time-frequency trade-off. To perform STFT of BLDC motor vibration signal, Hann window with size 256 is 
chosen comparing the results to other window options. 

 
Fig. 4 shows the spectrograms as STFT of motor vibration signals where the frequency is presented as a function of 

time. Observing the spectrograms, more regions with higher magnitudes are seen in faulty motor cases compared to the 
healthy as an evidence of signal’s disorientation or fault. Spectrograms are presented as a heatmap representation of 
magnitudes. 

 
 

 
Fig 3 - Vibration spectrum comparison of motor vibration signals in frequency domain 
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Fig. 4 - Time-Frequency analysis of vibration signals for different speeds 
 
4. System Health Assessment 

 
4.1 Condition Indicators 

There are many CIs available for a system’s condition assessment [18-22]. In this study, the most crucial ones are 
chosen for fault diagnosis that describe motor’s condition best based on collected vibration samples. Below is the brief 
description of the features that are extracted from the time domain (1-7) and frequency domain (8-10) vibration signals. 

1) Root Mean Square (RMS): RMS is a meaningful way of calculating the average of values over a period of time. 
RMS value is proportional to the power of the signal. 

 
2) Variance: Variance is used to observe how individual signal components are related to each other for a given 

dataset. It takes in consideration all the deviations from the mean regardless of direction 
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3) Kurtosis: It is a time domain feature that measures the thickness or heaviness of the tails of the signal by taking 
the bell curve as reference. A higher kurtosis value indicates signal contains of fault. 

 

4) Skewness: Skewness means the degree of distortion from the normal distribution of signal data set. If the data are 
positively skewed, we can conclude that data have a long tail extending to the right of symmetric bell curve. Contrarywise, 
negatively skewed data have a long tail on the left. 

 
5) Crest Factor: The crest factor of waveform is the ratio signal’s peak value to its rms value. CF indicates how 

extreme the peaks are in a waveform. 

 
 

6) Shape Factor: Shape Factor is a dimensionless number that characterizes the efficiency of the shape of a signal, 
regardless of its scale, for a given mode of loading. 

 
7) Impulse Factor: The ratio of peak value and the mean value of vibration samples is defined as the impulse factor. 

 

 

8) Root Variance Frequency (RVF): RVF is the measurement of spectrum power convergence in the frequency 
domain. In (9), fchar stands for the characteristics frequency and fs stands for the sampling frequency. 

 

 
 

9) Symbol Error Rate (SER): It is the ratio of “number of samples in error” to the “number of transmitted samples”. 

 
10) Entropy: It is the measurement of system disorganization. Entropy provides a mathematical way to express the 

intuitive notion of signal’s gradual disorder. 
 

 
Calculating and analyzing these CIs, we can conclude on a system’s state of health easily. Fig. 5 shows the comparison 

between different CIs and their trend of change for motor’s healthy and faulty state vibration signals. From the graphs of 
different CIs at different operating conditions, we can observe that the RMS, Variance, Kurtosis, Skewness, CF, SF, SER 
and Entropy have higher values but RVF has a lower value at each operating condition. 
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Fig. 5 - CI characteristics assessment for variable speeding 
conditions 
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Fig 6 - (a) Normal PDFs for healthy and faulty motor; (b) Normal CDFs for healthy and faulty motor 
 
 
4.2 Statistical Distributions 

We took 25,000 vibration samples for healthy and faulty motor and illustrate the Probability Density Function (PDF) 
and Cumulative Density Function (CDF) as shown in Fig 6(a) and 6(b), respectively. PDF is defined as (12) and the 
relationship between PDF, 𝑓𝑓 (𝑥𝑥) and CDF, 𝐹𝐹 (𝑥𝑥) is: 𝑓𝑓 (𝑥𝑥) = ∂ (𝐹𝐹 (𝑥𝑥) ). 

 
 

 

 
Probability distributions of a random data illustrate the probability in the sample space with mean (μ) and standard 

deviation (σ) of dataset. These distributions give us a better observation of mean and standard deviation of vibration 
samples [21-22]. From Fig. 6, the faulty state behavior of motor can be observed easily as the vibration signal is more 
dispersed in case of faulty motor. 

 
5. Result Analysis and Discussions 

In this study, several spectral analysis results for fault diagnosis are presented starting with Fourier transform. Fig. 3 
illustrates DFT translations that carry clear evidence of fault frequencies at around 2 kHz frequency where abnormal fault 
sidebands are observed. The same vibration signals were analyzed in the time-frequency domain and spectrograms of 
STFT are plotted in Fig. 3. Spectrograms allow us to observe the signal in both time and frequency domain at the same 
time. A clear congruity indicating the faulty motor signals can be observed between FFT and STFT analysis for different 
operating conditions of the motor. 

Condition Indicators described and plotted in Fig. 5(a)-5(j) carry out significant information for determining the SOH 
of a system. Higher values for CIs such as RMS, Variance, Skewness, Kurtosis, CF, SF, SER, Entropy indicate more 
disorientation and aberration of a signal. From Fig. 5(a)-5(f), 5(i), and 5(j) it can be observed that these CIs for the faulty 
motor signal show a higher value compared to the healthy motor signal in each operating condition. On the other hand, a 
lower RVF in Fig. 5(g) implies worse spectral power convergence in frequency domain for faulty motor signals. But there 
are some cases where similar results for both healthy and faulty cases are observed. Such as – Fig. 5(c) shows almost 
similar kurtosis values for healthy and faulty case at 4000 rpm, Fig. 5(d) shows lower skewness value for faulty state at 
5000 rpm, Fig. 5(e) shows almost equal values of CF at 2000 rpm, Fig. 5(f) shows lower SF value at 5000 rpm for faulty 
case. Yet, observing the overall trend of CI and discrepancies between healthy and faulty state, it can be easily concluded 
that motor vibration signals in faulty state are much more disoriented compared to the healthy state. This dispersion can 
be further observed from the PDFs and CDFs of vibration samples illustrated in Fig 6. Amplitudes of vibration samples 
for healthy motor are distributed from -5 to +5 whereas for faulty motor it is around -10 to +10. Also, a wider distribution 
of faulty signal in Fig. 6(a) indicates a higher deviation from the mean of faulty signal compared to healthy signal. 

Going through the overall analysis of spectrum, condition indicators, and probability distributions, we can conclude 
that there are certain anomalies between the vibration responses of the motor in healthy and faulty state. To speculate and 
isolate the fault condition, both the motors are dissembled and investigated as shown in Fig. 7. The faulty motor was passed 

𝑋𝑋 𝑋𝑋 ∂x 𝑋𝑋 

1 (𝑥𝑥−𝜇𝜇)2 
𝑓𝑓 (𝑥𝑥|𝜇𝜇, 𝜎𝜎2) =  𝑒𝑒− 2𝜎𝜎2 𝑥𝑥 

√2𝜋𝜋𝜎𝜎2 

 
 

(12) 
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Fig. 7 - Stator coils in (a) Healthy state; (b) Faulty state 
 

through several accelerated life tests with higher input and higher loading operations in order to acquire the fault state. 
Investigating the stator coils, it was found that several coils were burned and disconnected causing some short circuits in 
the stator windings. This wear out caused irregular excitations of stator coils and induced magnetic flux became unstable. 
Due to this irregular condition, the BLDC motor was showing some abrupt changes in its vibration. 

 
6. Conclusions 

This paper has reported the result analysis of BLDC motor tests under different operating conditions to isolate the 
faulty motor features from the healthy motor’s through vibration signal analysis. Spectral analysis was done for frequency 
domain and time-frequency domain using different algorithms. Signal states in all domains are compared to distinguish 
and identify the anomalies in the motor vibration signal. Then, several condition indicators were extracted from the 
vibration signals that indicate the state-of-health of the system. Finally, some statistical distributions of the vibration 
samples are shown to illustrate motor’s anomalous behavior graphically. All the approaches used have shown similar 
results although the process and algorithms were different for each approach. This gives a clear indication that there was a 
marginal change in the vibration of BLDC motor when the fault took place. Later, inspecting the stator coil, few wear out 
connections were found that was causing the short circuit in the stator winding. 

Inspecting the signal changes of a system is the most essential attribute in system condition diagnosis. Fault diagnosis 
is the preliminary stage of system health monitoring that combines anomaly detection, fault isolation and prognostics of a 
system. Outcomes from this paper can be integrated with diverse industrial applications where BLDC motor is widely used 
and keep the system healthy as well as reduce the potential cost for repairing, maintenance etc. 
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