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1. Introduction 

The understanding of emotion expressed by people is a big challenge in affective computing, human computer 

interaction and social communication. Deployed solutions of human emotion recognition tasks could play an important 

role in various intelligent affective communication systems [1]. Emotion is also very useful in our understanding of 

human social behaviours and also richly embedded in human non-verbal communications. An important part of human 

to human communication is an expected change in the emotional state of a subject [2]. This could indicate emphasizing 

or clarifying spoken words, expressing agreements or disagreements, comprehending intentions as well as interacting 

with others and environments [3]. Human emotion is related to physiological signals and are influenced by 

physiological changes, external events and relationship with others, therefore representing a complex and dynamic state 

of human mind [1]. However, physiological signals originate from the peripheral and the autonomic central nervous 

system, which is one of the most complex systems of the human body. The nervous system is fundamental in human 

behaviours because it empowers human with the ability to perceive, understand and react to environmental events such 
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as emotion, desires and thoughts that are transmitted to the nervous system through the neuropeptides. In addition, 

human brain, which is an essential component of the central nervous system, generates brain waves, which contain 

electrical signals that are collected using electrodes attached to the scalp. These EEG waveforms from the brain 

represent the wave pictures of the electrical activity in the brain. They are physiological signals that inherently capture 

human emotional states and are obtained from the nervous systems using bio-sensors [4].                                                                  

       The peripheral nervous signals that have been collected in the literature include Galvanic Skin Response (GSR), 

Skin Temperature (TEMP), Electrocardiogram (ECG), Electroencephalogram (EEG), Electromyogram (EMG), 

Respiration (RESP), Blood Volume Pulse (BVP), Heart Rate (HR) and Heart Rate Variability (HRV) [5]. In the 

literature, emotion recognition using physiological signals has received relatively less attention in comparison to the 

audiovisual methods of facial expression and speech [6-9]. Meanwhile, the audiovisual methods have some intrinsic 

drawbacks, they are capable of being easily faked and the subject needs to be within a perimeter defined by the camera 

or must always listen to an audio signal. However, physiological signals evolve automatically and spontaneously. They 

are human reactions over which they have less controls and are less influenced by social, language and cultural 

differences [4, 6, 8, 10].  

       The modeling of physiological systems and signals helps in gaining understanding and generating methods of 

analysis which could be applied in diverse fields of engineering including biomedical engineering, biological 

engineering, healthcare engineering, robotic engineering as well as electrical and mechanical engineering etc. 

Consequently, the significant rise in the generation of physiological data, alongside the development of big data 

intelligence, has enabled the extraction of new insights from these massive physiological signals. These include 

bioelectrical signals such as EEG and ECG; biomagnetic signals such as magnetic resonance imaging and computed 

tomography; biochemical signals including pressure of oxygen and carbon dioxide in respiration; and bioacoustic 

signals such as speech and ultrasound. In addition, as a physiological signal, the EEG is one of the many biological 

signals that can be utilised to control wearable robotic devices according to the human motion intention in robotic 

engineering discipline. The various devices used in harvesting the diverse physiological signals utilised also have 

connection to engineering. Hence this current study is well suited to many application areas in engineering fields of 

studies. 

In this study, our objectives include the acquisition of physiological data from the DEAP corpus and analyzed it by 

introducing a shifted tanh-based normalization scheme after which the inverse Fisher transformation algorithm was 

applied. Secondly, we desire to extract distinctive features from the transformed physiological data using the HOG, 

LBP and HIM techniques which are popular shape, texture and pixel intensity distribution descriptors respectively in 

the digital image processing domain. Thirdly, we crave to utilize the RBFANN pattern classifier to compare the 

performances of the three different feature descriptors in recognizing human emotional state along the arousal, valence, 

dominance and liking dimensions. The arousal scale measures the intensity and activation level of an emotion while the 

valence represents the pleasantness or otherwise of an emotion. On the other hand, the dominance scale measures an 

individual control over an emotion being experienced while liking scale is a subjective rating indicating the tastes of 

like or dislike of an emotion [4, 8, 11-13]. 
 

2. Related Works 

In comparison with audiovisual emotion channels consisting of facial expressions, gestures and speech, relatively 

few research works have been conducted over the past one decade on emotion recognition using physiological signals 

[1, 7-9]. While appreciable, but varied recognition accuracy results were recorded in these relatively few works, feature 

extraction remains an open issue in affective computing research [8, 14]. There are also wide disparities in the number 

of emotions to be recognized, the number and types of bio-signals measured, dataset used and its quality, number of 

subjects sampled, emotion stimulus, modality considered, emotion models and pattern recognizer employed [4, 8, 14].  

The subject-independent approach is the focus of many current studies [15-17] as a large number of subjects 

ensure reliability of results. Consequently, we followed this approach in this current study as it addressed the apparent 

limitations of the subject dependent approach such as its low degree of generalization, lack of inter-person variability in 

emotional feelings and inability of applications based on it to be readily deployed for practical usage [6, 14, 18]. 

However, the most critical challenge in developing subject-independent emotion recognition system is the 

identification of the most discriminatory features among the subjects which obviously impacts recognition results 

obtained.  

It was observed that by using different methods [1, 3, 8, 18-22], various results have been recorded in the literature 

as the issue of feature extraction which is germane for performance attained in a pattern recognition system still remain 

open. In this study, we have utilized the digital image feature descriptors of HOG, LBP and HIM because of their 

strong performances in pattern recognition studies [23-31]. Therefore, we carried out feature engineering by applying 

the descriptors to the DEAP physiological dataset and compared our method, features and results obtained using the 

RBFANN pattern classifier with those in literature. The performances of the RBFANN pattern classifier was observed 

to determine whether favorable and reliable results could be obtained with the various configurations employed. 
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Soleymani et al. [3] utilized physiological signals including RESP amplitude, TEMP, GSR and ECG, harvested 

from experiment subjects induced with video clips to classify emotion into the arousal (calm, medium and excited) and 

valence (unpleasant, neutral and pleasant) states. Time domain statistical features, including average standard deviation 

of raw signals, as well as the absolute values of the first and second derivative were extracted and trained with an SVM 

classifier. Using a subject-independent approach, a classification accuracy of 46.2% was obtained for the arousal state 

while 45.5% was recorded for the valence state. The study was extended to EEG signals from where Power Spectral 

Density (PSD) and spectral power asymmetry features were extracted and trained using an SVM classifier. A 

classification accuracy of 52.4% and 57.0% was obtained for the three states of arousal and valence respectively. These 

results are considered low and might not meet the required level of accuracy expected in a real-time implementation.  

In another research study using the DEAP dataset, Jun-Wen et al. [32] categorized ten groups of emotional pictures 

separated into five classes based on the valence and arousal dimensions. Facial EMG of 113 experiment subjects 

consisting of young and senior adults stimulated with these pictures was acquired for each of the mapped classes and 16 

sets of features relating to the frequency, amplitude, variability and predictability of the EMG signals were extracted. 

An SVM classifier was applied on these features and a classification accuracy from 75.6 % upward was obtained for 

the five affective classes and the baseline for all the individuals. 

A Deep Belief Network (DBN) based system was introduced by [33] to automatically extract features from 4 

channels raw physiological data consisting of 2 EOG and 2 EMG channels respectively under an unsupervised scheme 

while building classifiers that predict human emotion along the arousal, valence and liking classes. The classification 

accuracies obtained were 60.9%, 51.2% and 68.4% respectively which compares favourably with the results achieved 

with the Naïve Bayes classifier. 

A related study reported by [34] adopted a two hidden-layer DBN architecture configured with visible and hidden 

nodes as 128-10-10 to classify EEG signals of the DEAP dataset along the binary label scheme for valence, arousal, 

dominance and liking respectively using unsupervised training and future learning. Classification experiments was 

done along individual subject as well as across all subjects. An SVM classifier was also applied on the power spectral 

density as well as the DBN features in order to compare the manually extracted features with the DBN features. 

Recognition accuracies of 58.2% (valence), 64.3% (arousal), 65.1% (dominance) and 66.3% (liking) was achieved with 

the PSD features across the all subjects while 58.4%, 64.2%, 65.8% and 66.9% respectively was recorded for the DBN 

features. There is no significant difference between the results of the two features as the possibility of learning affective 

features through a deep learning and manually generated features approaches were explored. 

The DEAP physiological dataset was utilized by [35] by applying Empirical Mode Decomposition (EMD) method 

to extract first difference of time series, first difference of phase, and the normalized energy features from EEG signals 

which were decomposed into Intrinsic Mode Functions (IMFs) and classification was done along the arousal and 

valence classes using the SVM classifier. A classification accuracy of 71.99% and 69.10% respectively was achieved 

for the arousal and valence classes using 8 EEG channels of Fp1, Fp2, F7, F8, T7, T8, P7, and P8 while 72.10% and 

74.10% classification accuracies for arousal and valence was achieved with 32 EEG channels. These performances are 

better than the results obtained by the same authors using other methods and features such as the fractal dimension, 

sample entropy and discrete wavelength transformations.  

EEG signals’ characteristics such as spatial, frequency domain and temporal were integrated by [36] and mapped 

to a two-dimensional images from which EEG Multidimensional Feature Images (MFI) were built to represent varied 

emotions in EEG signals. A deep learning approach named CLRNN involving hybriding the Convolution Neural 

Networks (CNN) and Long Short-Term-Memory (LSTM) Recurrent Neural Networks (RNN) was consequently 

applied on the EEG MFI obtained from the DEAP dataset. With each subject, an average best emotion classification 

accuracy of 75.21% was achieved with a 2s time window frame as against the available 60s window size containing all 

the EEG data per sample. In addition, the results of other classification methods such as k-NN, random forest and 

support vector machine with the features and method proposed by the authors are below the 75.21% recorded.  

However, a multiple-fusion-layer based ensemble classifier of stacked autoencoder (MESAE) for recognizing 

human emotions was proposed by [37] involving the identification of the deep structure based on physiological-data-

driven approach. Stable feature representations of the physiological signals were obtained as the unwanted noise in the 

physiological signals’ features were filtered by three hidden layers in each stacked autoencoder. The stacked 

autoencoder ensembles were achieved by using an additional deep model and the physiological features are divided 

into many subsets based on various feature extraction methodologies with each subset separately encoded by a stacked 

autoencoder. The derived SAE abstractions were merged based on the physiological modality to create six sets of 

encodings which subsequently served as input to a three-layer, adjacent-graph-based network for feature fusion whose 

features were used for human emotion recognition along the binary arousal and valence emotion states. Average 

classification accuracies of 77.19% and 76.17% was achieved for the arousal and valence state respectively using the 

MESAE scheme with deep classifier while the accuracies reached 84.18% and 83.04% with ensemble classification 

schemes. 

In another study, the LSTM recurrent deep neural network was applied by [38] to the EEG physiological signals in 

the DEAP dataset. An average recognition accuracy of 85.65% was achieved for the arousal class while 85.45% and 

87.99% average accuracies were recorded for the valence and liking classes respectively. Similarly, features were 
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extracted by [39] from EEG signals for affective state modeling using the Russell’s circumplex model. The SVM and 

random forest classifiers were applied on the EEG features of statistical measures, band power as well as higher order 

crossing extracted from the DEAP dataset to classify human emotion into the valence and arousal classes. The highest 

classification accuracy obtained with the bandwaves spectral power density features by the SVM classifier was 69.2% 

and 88.4% for the bipartite scheme of arousal and valence classes respectively while the tripartite scheme recorded 

59.5% and 55.9%. However, the random forest classifier recorded its best classification accuracy of 74.0% (arousal) 

and 88.4 %( valence) along the bipartite labeling scheme (high/low) with the statistical bandwaves features and 63.1% 

(arousal) and 58.8% (valence) with the same features but for the tripartite labeling scheme (high/medium/low). Diverse 

lower results were recorded for each and combined bandwaves (Delta (δ), Theta (𝜃), Alpha (α) and Beta (β)) by both 

the SVM and random forest classifiers for the bipartite/tripartite labeling scheme and statistical bandwaves/spectral 

power density features. 

Lastly, a framework to automatically search for the optimal subset of EEG features using Evolutionary 

Computation (EC) algorithms including the Particle Swam Optimization (PSO), Ant Colony Optimization (ACO), 

Genetic Algorithm (GA), Simulated Annealing (SA) and Differential Evolution (DE) was introduced by [40]. This is 

aimed at removing inefficiency and redundancy resulting from high-dimensionality introduced by combining all 

possible EEG features. The framework used frequency, time and time-frequency domain features of EEG signals from 

which some discriminatory features were selected using the EC algorithm and the probabilistic neural network pattern 

classifier was applied to classify human emotions into four classes. The DE algorithm yielded the best recognition 

accuracies of 96.97% and 67.47% for the MAHNOB and DEAP datasets respectively. Though the results obtained are 

promising, the challenge with this framework and method is its computation complexity as it takes about 80 hours to 

achieve convergence. This is not ideal for a real-time situation where efficient, prompt and accurate classification are 

required. We therefore explored a shallow machine learning approach using our proposed method of physiological data 

transformation and feature extraction to determine if better results above those reported, including by the deep learning 

approaches could be obtained. 

 

3. Materials and Methods 

3.1 Experimental Dataset 

The DEAP dataset was developed by [7] using video clips stimuli to elicit human emotions from 32 subjects (16 

females) and their physiological data such as the EEG, EOG, EMG, GSR, RESP, BVP and TEMP were concurrently 

collected as they watched 40 one–minute extracts of music video clips. These clips are capable of eliciting the target or 

reported felt emotions of anger, contempt, disgust, elation, envy, fear, guilt, hope, interest, joy, pride, relief, sadness, 

satisfaction, shame and surprise. The physiological signals as well as frontal face videos of 22 subjects were acquired 

using various sensors and active electrodes with the Biosemi Active II system. However, only two modalities 

comprising the central nervous system, for instance the EEG, and the peripheral nervous system physiological signals 

consisting of the EOG, EMG, GSR, RESP, BVP and TEMP data as well as a fusion of these two modalities were 

specifically considered in our study. During each trial, subjects also undertook and reported a self-assessment of their 

degrees of valence, arousal, dominance and liking on a continuous 9-point scale using a Self-Assessment Manikin 

(SAM) while familiarity was rated on a 5-point scale. For each subject, there were 40 trials, which gives a total of 1280 

samples for all the 32 subjects. 

 

3.2 Pre-processing of the Physiological Signals 

In order to process the raw DEAP physiological data using our proposed methodology, firstly, we normalized the 

data channel by channel. There are different normalization schemes available in the literature amongst which the Min-

Max and Z-score are famous. In particular, the Z-score has been used in the study of physiological data [41] because it 

has capability to dramatically simplify clinical interpretations [42]. However, both the Min-Max and Z-score 

normalization have received criticisms as they are both sensitive to outliers and their performances are sometimes poor 

[43]. The Min-Max normalization scheme also usually scale data to a fixed range of 0 to 1 thereby giving smaller 

standard deviations. But the Z-score normalization is often preferred to the Min-Max scheme especially when applied 

with Principal Component Analysis (PCA) procedure in order to compare similarities between features as the 

components that maximizes the variance is often the focus [44]. The tanh estimator therefore is suggested as a robust 

scheme in place of Min-Max and Z-score because of its efficiency and elegance [43] as a simple normalization scheme 

based on the tanh function is hereby introduced.  

The general tanh function is given as; 

  
   
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u x u x

u x u x
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where 
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is the Z-score that ensures normalization with a mean ( ) of zero and standard deviation ( ) of one. 

The expression in Equation (1) can be further simplified by multiplying the right hand side by ex and at the same time 

divides it by ex to give; 
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The expression in Equation (3) corresponds to the inverse Fisher transform that has the advantage that it is 

compressive and for large absolute values, the output is compressed to 1 at most while also removing low amplitude 

variations. The inverse Fisher transform is analogous to edge sharpening in digital image processing. Moreover, it is the 

exact solution of the standard Fractional Riccati Differential Equation (FRDE) [45] of the form; 

 
     2 1 0; 0,0 1D f t y t t


         (4) 

where 

   1, 0 0,f t u x           (5) 

The values of F (u(x)) lie in the interval [-1, 1], but we desire a normalizer that compute values in the interval 

[0, L] where L is the maximum grayscale value such as 255. If we add 1 to both sides of Equation (3), we have:  
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To achieve the desire goal of having a normalizer that compute values in the interval [0, L], we multiply both 

sides of Equation (6) by L and at the same time divide by 2 to have: 
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By substituting Equation (2) into Equation (7) and dividing the left hand side of Equation (7) by f (u(x)), we 

have: 

       
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e


 




    (8) 

Equation (8) is the desired normalizer, which is a particular form of growth function with L being the modifier,  is the 

data mean and  is the data standard deviation while k= 2,3,4,5 … and the value of f(x) lies in the interval [0, L].   

 

Algorithm 1 Data pre-processing and transformation for the extraction of features 

 1: Read the raw physiological data from the DEAP dataset 

 2: Determine physiological data class using emotion representation 

 3: Preprocess the physiological data by applying inverse Fisher transformation 

 4: Map the transformed physiological data to hyperspectral images  

 5: Extract features from the hyperspectral images using different standard algorithms of digital  

     image processing techniques – HOG, LBP and HIM 

 6: Apply principal component analysis on the extracted features to compute dimensionally  

     reduced Eigen features  

 7: Select the desired Eigen features using the Kaizer criterion of Eigenvalues greater than one 

 8: Use pattern recognizer to recognize the selected Eigen features as low or high - arousal,  

     valence, dominance and liking respectively 

 

This function corresponds to inverse Fisher normalizer with k=2. After the normalization and applying the inverse 

Fisher transform on the physiological data which involve mapping the transformed data to grayscale image space, we 

thereafter form channels’ images of each channel’s data. This is to enhance the digital image processing techniques 

which we intend to apply for feature extraction. The subjects’ quantitative rating ranges from 1-9 and we thresholded 

them for each of the valence, arousal, dominance and liking dimensions along two classes of low and high by placing 

the threshold in the middle as also done in [7] such that all subject’s ratings above 4.5 score are respectively mapped to 
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high (arousal, valence, dominance) and like while ratings below 4.5 score are mapped to the respective low emotion 

dimensions and dislike representations. Following the procedure shown in Algorithm 1, the Histogram of Oriented 

Gradient (HOG), Local Binary Pattern (LBP) and Histogram of the Images (HIM) features were extracted from the 

inverse Fisher transformed physiological data. These features are called ‘local’ features as they were extracted from 

each channel of each sample. This pre-processing and feature extraction procedure in conjunction with the 

implementation was done using MATLAB 2018a environment. 

 

3.3 Feature Extraction Techniques 

Feature extraction is an important task in pattern recognition studies. It involves the use of specific algorithms to 

acquire discriminating characteristics from raw data for recognition. In this study, we have experimented with the 

HOG, LBP and HIM feature extraction techniques because they have recorded tremendous success in digital image 

processing, speech processing, bioinformatics and other pattern recognition applications [23-24, 26-27, 29-31,46-48]. 

 

3.3.1 Histogram of Oriented Gradient 

The Histogram of Oriented Gradient (HOG) was developed for human recognition and object detection, 

considering that local object appearance and shape of an image can be represented by the distribution of intensity 

gradients or edge orientations [46,47]. Since the digitized physiological data have been presented as images, the 

intensity gradient of the images can be computed to represent discriminatory features. The implementation of the HOG 

involves dividing an image into cells and compiling the histogram of gradient directions for the pixels within the cells. 

The aggregation of these histograms represents the HOG features. To compute the HOG feature from a given image, 

four essential steps are required which are masking, orientation binning, local normalization and block normalization. 

Research work reported in [46] contains detailed information regarding the computations and characteristics of the 

HOG features. 

 

3.3.2 Local Binary Pattern 

The Local Binary Pattern (LBP) descriptor was originally developed by Ojala, Pietikainen and Harwood [48]. It 

describes the texture of an image and has been widely applied in diverse applications [48-51]. It assigns numeric label 

for the block of pixels of an image through a thresholding process that uses a 3x3 neighborhood of the center pixel 

value while treating the result obtained as a binary number. Since the neighborhoods to the center pixel consist of 8 

pixels, the texture descriptor is derived from the histogram of the 28 = 256 different labels. The LBP value is computed 

following the steps described in [48]. We chose the LBP descriptor because of its proficiency in appropriately 

describing the texture of an image [48-52]. In addition, it has a modest theoretical definition which is the foundation of 

its status as a computationally efficient image texture descriptor [53].   

 

3.3.3 Histogram of Images 

Digital image processing involves procedure of obtaining useful information from images by determining an 

image’s pixel properties and variations for the purpose of analysis, classification and recognition or identification. The 

histogram of an image represent the pixels intensity values in the image. It is a graphical representation that covers all 

the various intensity values in the image. Thus, after pre-processing and inverse Fisher transformation of the DEAP 

dataset, the data obtained for each sample is converted and mapped into a grayscale image representation with pixel 

intensity values ranging from 0-255. As an image processing algorithm, the histogram features representing the pixel 

intensity values in the various grayscale images is computed using an automatic binning algorithm that yield bins with 

a uniform breadth which are selected to cover the range of pixel intensity elements thus revealing the underlying unique 

shape and patterns of the distribution. Histogram as features has strong capabilities for identification and differentiation 

of patterns and we therefore employ it for human emotion recognition along the valence, arousal, dominance and liking 

class labels. Histogram based features have been used for image processing and in several pattern classification studies 

[25, 28] thus necessitating its choice as a third option to the HOG and LBP descriptors employed. 

            Therefore, the local HOG, LBP and HIM features of each channel for the EEG modality for instance, are 

reduced from 81, 256 and 256 feature vector sizes respectively to 10, 31 and 31 most dominant features respectively by 

applying a simple dimensionality reduction algorithm based on the principal component analysis (PCA). The associated 

eigenvectors are the most dominant or principal component elements of the feature vectors respectively as 

dimensionally reduced feature vectors are capable of improving classifiers’ performance as reported in the literature 

[54]. Thus, for each sample of the physiological signals to be trained by the RBFANN pattern recognizer, the feature 

vector sizes of the HOG, LBP and HIM features are now 320, 992 and 992 respectively after concatenating features for 

all the 32 channels available in each sample of the EEG modality data. 
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4. Classification Algorithm for Emotion Recognition 

Feature classification involves the cataloguing of the extracted features into appropriate classes or states using a 

pattern recognition or classification algorithm. Such pattern classifier is always trained to learn the inherent 

characteristics in the different extracted features and attempt to match features with similar patterns into the same class. 

The RBFNN is the pattern classifier that was utilized for the various experiments conducted in this study. 

The RBFANN is a feed forward artificial neural network for solving problems of pattern recognition and function 

approximation [55,56]. The concepts of RBF are ingrained in earlier pattern recognition techniques such as clustering, 

spline interpolation, mixture of models and function approximation [55,57]. A typical RBF neural network consists of 

an input layer, one hidden layer consisting of RBF neurons and an output layer of artificial neuron for each class to be 

classified [55-58]. Each neuron in the hidden layer implements a radial basis activation function that represent an 

arbitrary basis for the input vectors, while the network output is a linear combination of radial basis functions of the 

input and neuron parameters. 

According to McCormick [56], classification task performed by a RBFANN measures the input similarity to 

samples from the training dataset. A “prototype” representing one of the samples in the training dataset is stored in each 

RBFNN neuron as classification of a new input involves each neuron computing the Euclidean distance between the 

new input and its prototype. The new input is classified as belonging to Class 1 prototypes if it resembles Class 1 than 

Class 2 prototypes. The prototypes are indeed cluster centres computed as the average of all the data points in the 

cluster. 

Each of the n-dimensional feature vector which are named, the HOGPEPS, LBPPEPS, HIMPEPS; HOGPS, 

LBPPS, HIMPS and HOGHES, LBPHES and HIMHES for the peripherals; EEG and fused modality respectively are 

extracted from the DEAP dataset and respectively fed into the network through the input layer for classification. 

Because of its reputation for good performance, the most popular similarity function called the Gaussian radial 

activation function was employed as a one dimensional input vector in the RBFNN classifier configurations for the 

experiments conducted in this study. Furthermore, the RBFNN classifier is noted for its ability to approximate 

continuous functions arbitrarily. It has a faster training process because of its local mapping attribute as compared to 

other neural networks, very robust to noise [59-61] while it is also capable of yielding at least 10% higher accuracy 

than can be obtained by the back propagation ANN algorithm [62]. More details about the RBFNN classifier can be 

obtained in the literature [55,56]. 

 

4.1 Experimental Models 

The generic architecture for the design and implementation of the procedures for the 3 experimental models 

consisting of 36 experiments conducted in this study is shown in Fig. 1.  

 
 

Fig. 1 - The generic architecture of the human emotion recognition experimental model 
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The first step in the architecture is the DEAP dataset from which the physiological signals as our experimental data 

was acquired. This step was followed by data pre-processing procedure involving data normalization. Thereafter, the 

inverse Fisher transform algorithm and mapping of the transformed data to image space was conducted. Feature 

extractions using the signal and digital image processing algorithms including the HOG, LBP and HIM were 

subsequently applied and the extracted features were passed to the RBFNN pattern classifier for training or testing and 

the results of human emotion recognition were obtained.  

The first experimental model in this study was conducted on the 8 channels peripheral physiological data 

consisting of the EOG, EMG, GSR, RESP, BVP and TEMP data of the DEAP dataset from which the HOG, LBP and 

HIM features named the HOGPEPS, LBPPEPS and HIMPEPS respectively were extracted. There are 1,280 samples in 

the dataset which was obtained from the 32 subjects’ 63s (60 second trial and 3 second pre-trial) duration physiological 

signals of 40 trials per subject. The twelve experiments performed in this first experimental model was conducted to 

determine how best the combined peripheral physiological data could accurately recognize human emotions along the 

arousal, valence, dominance and liking classes. We utilized the HOGPEPS, LBPPEPS and HIMPEPS features for 

experimentations along each of these four emotion classes or dimensions.  The RBFNN classifier was first applied on 

the arousal class with the HOGPEPS, LBPPEPS and the HIMPEPS features in the MATLAB R2018a environment. For 

each sample of the 1280 dataset, the HOGPEPS feature vector contain 48 elements per sample of the training data. This 

serves as the input data to the RBF network and therefore has 48 neurons in the input layer while the output layer has 2 

neurons for the 2 emotion classes indicating the low and high arousal binary classes for classification. 

In order to train an RBFNN network, determining the number of neurons in the hidden layer is very essential as 

this affects the result that can be obtained. The prototypes as well as the beta coefficient of the RBF neurons and the 

matrix of output weights between the RBF neurons and the output node are the parameters that must be carefully 

selected in the course of determining the number of neurons in the hidden layer [56]. There exist no strict rule in the 

literature for selecting the prototypes for the RBF neurons. One approach is to create an RBF neuron for each training 

sample [54] such that for the problem at hand, we would have 1280 neurons; while the other is to randomly select k 

prototypes from the training samples [56]. These requirements are slack because with adequate number of neurons, an 

RBFNN can outline any random complex decision boundary and recognition accuracy can always be improved upon 

by adding more RBF neurons in the hidden layer. However, a trade-off between the efficiency of the RBF network and 

the accuracy parameters should be considered because more RBF neurons will indicate more computation cost as it is 

essential that an excellent accuracy is obtained with the possible minimum number of RBF neurons. 

A novel method for selecting the prototypes is to perform k-Means clustering on the training sample while 

selecting the cluster centres as the prototypes [56]. The average of all the data points in the cluster is computed as the 

cluster centres. In addition, while utilizing the k-Means algorithm, the training samples are clustered according to 

classes such that samples from multiple classes are not included in the same cluster. 

In order to enhance the network’s efficiency and reduce computation costs, instead of using all the available 1280 

neurons for the hidden layer, we determined the optimal number of neurons in the hidden layer of our RBFNN by 

varying the number of clusters between50-250 per emotion class. For instance, for the arousal class with 2 classes (high 

or low), with 50 clusters per class, this gives 100 neurons in the hidden layer for the 1280 training samples. We chose 

50-250 number of clusters which indicate 100-500 neurons as we leveraged on [54] where the same range of neurons 

were chosen for each hidden layer in the MLP-ANN configuration consisting of 534 training samples, 2 hidden layer 

and 14 classes. The authors also utilized all the available 534 neurons in the hidden layer for the RBF network 

configuration in their study. Our RBF network is therefore much simpler and efficient than the MLP-ANN and RBF 

configurations reported in [54] as a maximum fewer hidden neurons (39.06%) were utilized out of the available 1280 

neurons. The results obtained with the varied number of clusters for the HOGPEPS feature were chronicled. This 

experiment was further extended to using the LBPPEPS and HIMPEPS features of the peripheral physiological 

modality and classification was also done along the arousal classes (high or low).  

The input feature vectors for the LBPPEPS as well as the HIMPEPS features have 56 elements each, representing 

the input neurons in the RBF network. The number of neurons in the hidden layer is also experimentally determined as 

earlier done for the HOGPEPS feature while the number of output neurons remain as 2 representing the arousal classes 

of high or low.  

The first experimental model was concluded by separately utilizing the three features HOGPEPS, LBPPEPS and 

HIMPEPS extracted from the peripheral physiological modality for classification of human emotion along the 

outstanding three emotion representation classes namely valence, dominance and liking. The number of input neurons 

and the features employed are the same with those used for the arousal class but the number of optimal neurons in the 

hidden layer varies. In all, 12 experiments were conducted in the first experimental model that was mapped to the 

peripheral physiological modality data. 

The second experimental model utilizes the EEG modality data. The inverse Fisher transformed 32 EEG channels 

of the DEAP dataset was used and the HOG, LBP and HIM feature descriptors was applied to extract corresponding 

features which was named the Histogram of Oriented Gradient Physiological Signal (HOGPS), Local Binary Pattern 

Physiological Signal (LBPPS) and the Histogram of Images Physiological Signal (HIMPS) features respectively. The 

first experiment conducted in this second experimental model is on the arousal class. In classifying the extracted 
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features into the high or low arousal classes, the HOGPS features have 320 elements as feature vectors for each of the 

1280 training samples and was fed into the RBF network. The number of neurons in the input layer is thus 320 while 

the output layer has 2 neurons. As executed in the first experimental model, the optimal number of neurons in the 

hidden layer was experimentally determined between 50-250 as we intend to reduce the complexity and computation 

costs of the RBF network by not utilizing all the available 1280 neurons of the total input samples to obtain the best 

recognition result. 

This experiment was extended to separately using the LBPPS and the HIMPS features of the EEG modality data 

for the arousal class. The number of neurons in the input layer is 992 each for the LBPPS and the HIMPS features. This 

huge number of input neurons is as a result of the higher number of channels (32) and the dominant components in the 

EEG modality data above that of the peripheral physiological data. However, the output layer has 2 neurons consisting 

of the high or low arousal class. Thus, three sets of experiments yielding three results were performed with the features 

extracted from EEG modality with the arousal emotion class. In concluding the second experimental model, the 

outstanding three emotion representation classes of valence, dominance and liking were each and separately used with 

each of the HOGPS, LBPPS and HIMPS features of the EEG modality data. The same parameters as utilized in the 

arousal class experiments in the second experimental model are adopted. In summary, 12 experiments were performed 

in the second experimental model mapped to the EEG modality data. 

The third experimental model is the last sets of experiment to be performed. It utilized the fused modality 

(EEG+peripheral physiological) 40 channels data of the DEAP dataset from which the HOGHES, LBPHES and 

HIMHES features were extracted for human emotion recognition task. For the extracted HOGHES features 

classification into the arousal class, there are 160 elements in each sample feature vectors indicating that the input layer 

of the RBF network has 160 neurons and the output layer has 2 neurons. The number of clusters or neurons per class 

was experimentally determined. This experiment was extended to using the LBPHES and HIMHES extracted features 

respectively for classifying human emotions along the arousal class. The RBF network has 1440 and 1560 input 

neurons respectively for the LBPHES and HIMHES features and the number of optimal neurons in the hidden layer of 

the RBFNN was experimentally determined. 

The valence, dominance and liking emotion representation classes are subsequently used for human emotion 

recognition with the fused modality data as the HOGHES, LBPHES and HIMHES features were each and separately 

used for classification along each of these three emotion classes. In this third experimental model, a total of 12 

experiments were performed. The general differences in the three experimental models lies in the modality data used, 

hence the features extracted, the number of input neurons fed to the network and the optimal number of neurons in the 

hidden layer with which the best result was attained. The number of output neurons are however the same for all the 

experimental models as 2 neurons were utilized for each emotion dimension. 

 

5. Experimental Results and Discussion 

This section presents the results of the 36 experiments carried out in this study. The qualitative results of the 

inverse Fisher transformation of the emotion physiological data are first presented in order to ascertain the similarities 

across subjects’ emotional responses despite the variation in individual’s emotional experiences [63]. Out of the 40 

experimental trials of each subject, 8 trials were randomly selected such that the trials selected from each of the 32 

subjects (S1-S32) are unique to enable an appropriate trial mix towards enhancing the generalization and reliability of 

inferences drawn and results obtained. From the 32 EEG channels, the Fp1, F7, T7, P7, Fp2, F8, T8 and P8 channels 

were identified and selected having been reported in literature to be directly related to human emotions [8, 39, 40, 64- 

67]. The grayscale image plots of the inverse Fisher transformed physiological data of each subject for 8 random trials 

and identified channels are shown in Fig. 2 indicating the similarities in the patterns of the images across the subjects. 

As shown in Fig. 2, there seems to be a similar textural pattern in the majority of the images across the subjects despite 

the individual variability that do exist in emotional experiences which necessitates the little variations noticed in the 

few image patterns of one or two channels per subject. 

The textural similarity in the images across the subjects is observed in the dense and coarse patterns of the images 

with observed varied brightness or darkness as a result of the different pixel intensity values and distributions in each 

image. Thus the strength of the inverse Fisher transformation method that was applied to the physiological data 

revealed the inherent similarity between the subjects’ emotional experiences and responses towards ensuring a subject-

independent based inferences and results. 

       In addition to the grayscale image plot of the transformed physiological data from which the respective features are 

extracted, the histograms representing accurate distributions of the pixel intensity values for each of the greyscale 

images in Fig. 2 are investigated. The range of pixel intensity values was binned to 256 that is 0-255, which represent 

the greyscale image pixel intensity distribution. The importance of the histogram data is that it reveals the density of the 

underlying distribution of the transformed physiological data and can be employed for probability density function 

estimation of the underlying variable especially by a pattern classifier. Histograms have been utilized in digital image 

processing for image analysis, brightness, equalisation, stretching and thresholding. There is no ideal image’ histogram 

shape, but the notable patterns include the unimodal, multimodal, bimodal, skewed right, skewed left and symmetric. In 
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this study, it was observed that the multimodal pattern dominates the histogram sketches and has multiple peaks which 

could indicate that the physiological emotional responses of subjects have several patterns of responses and preferences 
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Fig. 2 - Images of inverse Fisher transformed EEG physiological data 

 
that support the literature position that the emotional experiences and responses of different subjects may not be the 

same [63].   

In addition, it was noted that for all the selected channels and across subjects, the pixel count evenly covers a wide 

range of pixel intensity which indicate a good contrast properties of the image as well as a similarity in the contrast 

property among the subjects. The shape of the histograms for some of the channels are noticed to be similar for each 

subject while some similarities can also be observed across many subjects. It is from these pixel intensity values that 

the respective features are computed for a subject-independent emotion recognition task that is employed in this study.  

The extracted features are observed to be similar across subjects as they have the same shape, but usually of varied 

sizes as a result of the varied feature value otherwise termed amplitude or intensity of the signal. This indicates the 

robustness of the inverse Fisher transformation method that was applied as well as the feature extraction algorithm in 

revealing the similarities inherent in a specific feature descriptor of the physiological data of the various subjects.    

The aim is to show the differences in shapes and patterns between the different modalities as well as the feature 

descriptors while also revealing the similarities across the subjects and channels within a particular feature and 

modality. The strength of the data transformation technique and features employed enhances the attainment of 

impressive results. 

The subjective evaluations carried out are however complemented, as the quantitative analysis and results obtained 

using the RBFNN pattern classifier and the respective feature descriptors are hereby presented. 

For the peripheral physiological modality, the arousal scale results consist of classifying human emotion along the 

high or low arousal classes. The RBFNN classifier using the HOGPEPS features with 50 clusters per class which 

represents 100 neurons in the hidden layer, achieved a recognition accuracy of 72.11% with a Mean Square Error 

(MSE) of 0.7187. The number of clusters which determines the number of neurons that is used in the hidden layer, was 

varied between 50-250 in a step of 50. It was noticed as shown in Table 1, that as more clusters or neurons are added, 

the recognition accuracy increases until it peaked at 85.16% with 250 clusters after which the accuracy starts to decline. 

Thus the best recognition accuracy attained using the HOG features of the peripheral physiological data is 85.16% 

(MSE=0.0398). This result is indeed very promising and better than the best result of 69.2% obtained with the SVM 

classifier by [39] that used the bandwaves spectral power density features of the DEAP physiological signals dataset. 

 

Table 1 - Results of the arousal dimension of the peripheral modality data 

 
The LBPPEPS features which represent the LBP features extracted from the peripheral physiological modality data 

recorded a recognition accuracy of 73.36% (MSE=0.3300) with 50 clusters per class or 100 neurons in the hidden layer. 

As shown in Table 1, the best recognition accuracy of 84.92% (MSE=0.4973) was however achieved with 200 clusters 

as the network performance suffers a decline with subsequent increase in the number of hidden layer neurons. 

However, this result is marginally lower by just 0.24% to the result of 85.16% (MSE=0.0398) posted by the 
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HOGPEPS. In terms of network’s efficiency, the LBPPEPS result is preferred because, it was achieved with a lower 

number of neurons in the hidden layer as an increase of 100 neurons yielding just 0.24% marginal accuracy might be 

considered not efficient. 

However, the HIMPEPS features recorded the best recognition accuracy of 83.98% (MSE=0.2089) using 250 

clusters or 500 neurons in the hidden layer as shown in Table 1. This result is lower by 1.18% and 0.94% respectively 

to the results posted by the HOGPEPS and LBPPEPS features. This indicate that for the peripheral physiological signal 

modality of the DEAP dataset, with our proposed method, the pixel intensity values as features for classification is not 

better than the HOGPEPS and LBPPEPS features. Despite the seeming lower performance of the HIMPEPS features, 

the recognition accuracies achieved by the HOGPEPS, LBPPEPS and HIMPEPS features are all better than the arousal 

class best results of 77.19% [37], 69.2% by the SVM and 74.0% by the random forest classifiers [39], 71.99% [35], and 

60.9% [33] recorded by the various research studies. 

Furthermore, with the valence class, the HOGPEPS features achieved a recognition accuracy of 85.94% 

(MSE=0.4246) with 500 neurons in the hidden layer as shown in Table 2. This result is marginally better than the 

85.16% (MSE=0.0398) posted by the same features under the arousal class label. In the same vein, a recognition 

accuracy of 83.20% (MSE=0.3057) was recorded by the LBPPEPS features. This was achieved with 400 neurons in the 

hidden layer of the RBFNN and the performance declined with more additional neurons. This result is lower than the 

results of the HOGPEPS features of the valence class, including also the corresponding LBPPEPS result and those of 

the HOGPEPS and HIMPEPS features of the arousal class.  

 

Table 2 - Results of the valence dimension of the peripheral modality data 

 
As shown in Table 2, a recognition accuracy of 82.66% (MSE=0.4792) was achieved with the HIMPEPS features 

with the valence class using 400 neurons in the RBFNN hidden layer. The import of the results posted by the various 

features under the valence class of the peripheral modality data is that, the HOGPEPS features have the most 

discriminatory properties with which human emotion can be recognised using the DEAP peripheral physiological 

dataset. This is because, the highest results are posted by the HOGPEPS features across the valence and arousal classes 

as shown in Tables 2 and 1 respectively, though the 84.92% (MSE=0.4973) recorded by the LBPPEPS features could 

be preferred, if efficiency is considered above accuracy as a 100 fewer neurons were expended. However, these best 

results achieved for the peripheral physiological modality using the HOGPEPS, LBPPEPS and HIMPEPS features for 

the valence class are better than the 69.10% [35], 76.17% [37], 51.2% [33] and 58.2% [34] ] reported in various recent 

studies that utilized the DEAP dataset with classification done along the valence class. 

As contained in Table 3, a classification accuracy of 87.34% (MSE=0.3775) was achieved with 500 neurons in the 

hidden layer of the RBFNN using the HOGPEPS features with the dominance emotion class. However, with 100 

neurons less in the hidden layer, a classification accuracy of 87.03% (MSE=0.1609) was recorded. In terms of 

comparing efficiency and accuracy, the 87.03% recognition results is preferred because of its associated lesser network 

complexity and computation cost. 

 

Table 3 - Results of the dominance dimension of the peripheral modality data 
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From the result obtained, the respective HOG features of the high and low dominance classes was further 

investigated to determine some of the inherent characteristics in the features and classes that could have imparted this 

impressive result. As shown in Fig. 3, 6 subjects (S4, S8, S12, S18, S22 and S27) were uniformly selected and, the 

plots of the HOG features for the high and low dominance classes revealed different feature values otherwise termed 

amplitude or intensity in this study. It was observed that the high dominance class has a higher amplitude than the low 

dominance class, thereby enhancing easy classification by the pattern recognizer. For instance, amplitude values of 197, 

187, 179, 203 and 177 respectively, were recorded for the high dominance class for subjects S8, S12, S18, S22 and 

S27. Conversely, the low dominance class has amplitudes of 195, 173, 152, 198 and 157 respectively for the subjects 

and only subject S4 has a higher amplitude for the low dominance class than the high dominance class. However, the 

trend of a high amplitude value for high dominance dimension and low amplitude value for low dominance dimension 

is predominant among all the subjects and further contributes to the classification result obtained.   

 
Fig. 3 - Images of sampled HOG features of dominance dimension of peripheral modality data 
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In emotional signal processing including speech signal, an amplitude is otherwise referred to as intensity and can 

be computed in various ways which are a measure of the maximum change in a quantity that occurs when the signal is 

being transmitted [68] as a peak amplitude is a measure of emotional intensity. It has also been established in the 

literature that as a general rule, the larger the amplitude, the greater is the intensity of the signal [68] including 

emotional speech and physiological data. In addition, an increase in emotional intensity will trigger an increase in 

performance up to an optimal point [69] as human emotions are associated with amplitude fluctuations while a highly 

significant effect of amplitude in various emotions do exist [70-72]. Emotions such as fear, sadness, fear, disgust, joy 

and boredom have been detected with high, medium and low amplitude values expressed by various subjects [72, 73]. 

In the next experiment, the LBPPEPS features recorded the best recognition accuracy of 84.92% (MSE=0.1271) 

using 400 neurons in the hidden layer with the dominance emotion class. However, both the results of 87.34% 

(MSE=0.3775) and 87.03% (MSE=0.1609) posted by the HOGPEPS features as shown in Table 3 are better than the 

84.92% (MSE=0.1271) of the LBPPEPS features and also agrees with the trend earlier recorded in both the arousal and 

valence classes where the HOGPEPS features also outperforms the LBPPEPS features.  

The best recognition accuracy recorded by the Histogram of Images features with the dominance class was 84.14% 

(MSE=0.1700) while using 500 neurons in the hidden layer of the RBFNN classifier. This performance though falls 

short of the HOGPEPS and LBPPEPS features’ results under the dominance class but it is better than the 83.98% 

(MSE=0.2089) and 82.66% (MSE=0.4792) respectively recorded by the HIMPEPS features of the arousal and valence 

classes respectively. So far, the HOGPEPS features and the dominance class is the best combination for the peripheral 

physiological modality using the DEAP dataset. This clearly indicate that the level of submissiveness of subjects in 

response to emotional feelings using the 40 emotion elicitation music videos is high and also indicate the ability of the 

subjects to quantitatively report their emotional feelings. The various best recognition accuracies achieved with the 

HOGPEPS, LBPPEPS and HIMPEPS features by the peripheral physiological modality with classification done along 

the dominance dimension are all better than the 65.1% recorded for the dominance dimension by [33] who also used 

the DEAP dataset.  

Liking is the next emotion class that was considered. As shown in Table 4, for the HOGPEPS features, the best 

recognition accuracy of 83.52% (MSE=0.1647) was achieved with 400 neurons in the hidden layer of the RBFNN as a 

decline in performance was noticed as more neurons are added. This performance falls short of the results obtained 

with the same features under the arousal, valence and dominance labels. However, with a cluster size of 150, the 

LBPPEPS features posted 86.33% (MSE=0.0645) as its best recognition performance which is more than all the results 

achieved with the respective features under the arousal, valence, dominance and liking class except the 87.34% 

(MSE=0.3775) result of the HOGPEPS features with the dominance class. This might suggest that more discriminatory 

and useful information are inherent in this LBPPEPS feature set of the liking dimension for the peripheral modality.  

 

Table 4 - Results of the liking dimension of the peripheral modality data 

 
This LBP result of the liking dimension was further investigated to determine the inherent distinctiveness in the 

features and class among the subjects that necessitated the recognition’s performance. As earlier done with the HOG 

result of the dominance dimension, the 6 subjects (S4, S8, S12, S18, S22 and S27) uniformly selected posted different 

feature values otherwise called amplitude for the like and dislike classes. For instance, subjects S4, S8, S12, S18 and 

S27 posted feature values of 1911, 4278, 4656, 4239 and 694 respectively for the like class. These are higher than the 

feature values of 1873, 2771, 3368, 4154 and 474 recorded respectively by the subjects for the dislike class, thus 

revealing the pattern classifier’s prowess towards achieving the result obtained.  The result aligns with the earlier 

findings in literature that the larger the amplitude, the greater is the intensity of the signal [68] including emotional 

speech and physiological data as the like class has a higher intensity than the dislike class. 

Furthermore, a recognition accuracy of 83.20% (MSE=0.7421) as shown in Table 4 is the best result posted by the 

HIMPEPS features and this was achieved with 300 neurons in the RBFNN hidden layer. In addition, all the three best 

results of 83.52%, 86.33% and 83.20% achieved for the liking dimension of the peripheral physiological modality data 
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by the HOGPEPS, LBPPEPS and HIMPEPS features respectively are better than the 68.4% and 66.3% classification 

results achieved by [34,33] along the liking dimension using the DEAP dataset. 

The results of the EEG modality experiments are hereby presented. For the arousal class, as shown in Table 5, the 

HOGPS features yielded a recognition accuracy of 88.28% (MSE = 0.1851) with 500 neurons in the RBFNN hidden 

layer. This result is better than all the results recorded by all the three different features along all the four emotion 

dimensions with the peripheral physiological modality data. This confirms the literature position that the EEG modality 

is capable of producing a better result than the peripheral physiological modality [3]. This performance is also better 

than the results recently reported in the literature by other authors who also used the DEAP dataset [39,40].  

Along the arousal dimension of the EEG modality, the LBPPS features recorded its best recognition result of 

83.20% (MSE=0.4066) with the RBFNN using 400 neurons in its hidden layer as shown in Table 5. This performance 

matches the 83.20% (MSE=0.3057) also reported using the LBPPEPS features for the valence dimension as well as the 

HIMPEPS features of the liking dimension for the peripheral physiological modality data as shown in Tables 2 and 4 

respectively . However, the result falls short of the performance of 88.28% (MSE=0.1851) posted by the HOGPS 

features indicating that despite its huge feature vector size of 992 elements, the LBPPS features does not contain as 

many useful and discriminatory data as available in the 320 elements feature vectors of the HOGPS features. 

 

Table 5 - Results of the arousal dimension of the EEG modality data 

 
However, as shown in Table 5, the HIMPS features which represent the pixel intensity values of images of the 

EEG modality data recorded its best recognition accuracy of 93.36% (MSE=0.2974) with 500 neurons in the hidden 

layer of the RBFNN classifier. This result is very remarkable and surpasses all the results reported for the peripheral 

physiological modality and that of the HOGPS and LBPPS features of the EEG modality. This is an indication that with 

our proposed data pre-processing, inverse Fisher transformation and mapping to images technique, the histogram of 

images is a very potent feature for human emotion recognition as it has also yielded good performances in other studies 

[25,28]. The 93.36% (MSE=0.2974) recognition result is also better than the results obtained in various recent research 

studies that have utilized the DEAP dataset [36-37, 39-40]. 

With this result, the images of Histogram features of the low and high arousal dimensions was analysed with a 

view to determining some of the inherent characteristics in the features and classes that yielded this result. For the 6 

uniformly selected subjects, the plots of the Histogram features for the low and high arousal dimensions revealed 

different feature values or amplitude. It was observed that across all the selected subjects, the high arousal dimension 

has a higher amplitude than the low arousal dimension for each of the subjects thereby enhancing easy classification by 

the pattern recognizer. For instance, amplitudes values of 246, 389, 232, 252, 234 and 460 were recorded for the high 

arousal class for subjects S4, S8, S12, S18, S22 and S27 respectively while the corresponding amplitude values for the 

low arousal class are 226, 296, 142, 243, 217 and 313 respectively. This trend of high amplitude for high arousal 

dimension and low amplitude for low arousal dimension is predominant among the subjects and also agrees with the 

findings reported for the HOGPEPS and LBPPEPS features of the dominance and liking dimensions of the peripheral 

modality data. 

As shown in Table 6, the RBFNN classifier with the HOGPS features of the EEG modality posted its best 

recognition result of 88.05% (MSE=0.3022) along the valence dimension while utilizing 500 neurons in its hidden 

layer. This result is marginally lower than the 88.28% (MSE=0.1851) recorded with the HOGPS features with the 

arousal dimension but better than the LBPPS features’ performance as well as all the results reported under the 

peripheral physiological modality. 

On the other hand, the LBPPS features of the EEG physiological data recorded a recognition accuracy of 85.31% 

(MSE=0.2523) while 500 neurons was utilized in the hidden layer of the RBFNN. Following a similar trend as noticed 

in the results earlier reported, the 85.31% (MSE=0.2523) result is lower than the 88.05% (MSE=0.3022) achieved with 

the HOGPS features using the same number of neurons.  

With the HIMPS features, a recognition accuracy of 92.81% (MSE=0.3502) as shown in Table 6 was achieved 

with 400 neurons in the hidden layer of the RBFNN classifier. An additional 100 neurons was only able to marginally 
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increase the result by 0.08% to 92.89% (MSE=0.0878). This might not be significant enough, if the efficiency of the 

network is considered more relevant than the marginal accuracy obtained. Notwithstanding, this highest result obtained 

with the HIMPS features is better than the result of the HOGPS and LBPPS features of both the arousal and valence 

dimensions of the EEG modality. In addition, it is marginally lower by 0.47% to the highest result of 93.36% 

(MSE=0.2974) achieved with the HIMPS feature along the arousal class. Thus, for the EEG modality, the HIMPS 

features yielded the best recognition result for both the valence and arousal dimensions. 

 

Table 6 - Results of the valence dimension of the EEG modality data 

 
The dominance dimension with the HOGPS, LBPPS and HIMPS features posted varied results. The HOGPS 

features with a feature vector size of 320 and 1280 training samples posted its best recognition accuracy of 89.53% 

(MSE=0.2345) as shown in Table 7 and was achieved with 500 neurons in the hidden layer of the RBFNN. However, 

this result is better than those obtained by the HOGPS and LBPPS features for the arousal and valence dimensions of 

the EEG modality already considered. It is also observed that the results posted by any of the HOGPS, LBPPS and 

HIMPS features are often better than the corresponding results obtained with the peripheral physiological modality as 

the ability of the features extracted from the EEG data to outperform the features extracted from the peripheral 

physiological modality is further proven and aligns with the literature [3]. 

With the LBPPS features of the EEG modality data classified along the dominance dimension, a recognition 

accuracy of 87.89% (MSE=0.0430) shown in Table 7 and achieved with 400 neurons of the RBFNN classifier performs 

less than the corresponding HOGPS features. Though, this result is better than the results of the LBPPS features for the 

arousal and valence classes, it still confirms that the EEG modality of the DEAP physiological data are more responsive 

to the HOG than the LBP descriptor. It also shows that the edges and corners of the grayscale images from which these 

features are extracted are better captured than the local patterns of the images thereby resulting in better HOGPS 

features’ performances than the LBPPS features. While still classifying along the dominance scale, the HIMPS features 

of the EEG modality achieved its best recognition accuracy of 93.36% (MSE=0.2623) using 300 neurons in its hidden 

layer as indicated in Table 7. This result is better than the 92.89% (MSE=0.0878) recorded by the same features when 

classified along the valence dimension while it also matches the 93.36% (MSE=0.2974) obtained with the arousal 

dimension. The high performance of the HIMPS features of the EEG data for the dominance dimension was also 

investigated for the 6 subjects uniformly selected for the low and high dominance dimension. This is to determine if 

there are similar properties inherent in the features and classes among these subjects, which could indicate a subject-

independent result as also shown in the arousal dimension of the EEG data modality. 

 

Table 7 - Results of the dominance dimension of the EEG modality data 

 
The amplitude of the high dominance dimension for subject S12 is 119 while the low dominance dimension is 96. 

Similarly, subjects S18, S22 and S27 have amplitudes of 87, 84 and 107 respectively, for the high dominance 

dimension with 77, 47 and 88 respectively for the low dominance dimension. With marginal values, only subjects S8 

and S4 did not align with this observation. However, the observed trend is predominant across the subjects and the 
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same as also noticed in the HIMPS features of arousal dimension signals of the EEG modality as the large amplitude 

values are associated with high dominance dimension and low amplitude values are attached to the low dominance 

dimension. The few signals that do not follow this trend may be due to some emotions and emotional responses of 

some subjects which may cover any amplitude range including high, medium and low [73] but these subjects are few 

out of the 32 subjects considered in the DEAP data set that is utilized in this study. 

In another vein, the liking dimension of emotion is utilized with the HOGPS, LBPPS and HIMPS features for 

classification. According to the various results shown in Table 8, the HOGPS recorded its highest recognition accuracy 

of 88.83% (MSE=0.1101) with 400 neurons in the hidden layer of the RBFNN classifier. This result is better than all 

the results posted by the LBPPS for the arousal, valence and dominance dimensions as well as marginally better than 

the HOGPS results of the arousal and valence dimensions. The best recognition result of 85.23% (MSE=0.1002) was 

however achieved with the LBPPS features using 400 neurons and with this performance, the HOGPS features are 

more responsive to and yielded better performance with the RBFNN algorithm than the LBPPS features with the DEAP 

data set and data transformation method applied. 

As the experiment was extended to the HIMPS features and classification done along the liking dimension, a 

recognition accuracy of 93.13% (MSE=0.1136) was achieved using 300 neurons after which performance declines with 

further neurons addition. Out of the HIMPS features’ results of the EEG modality data for the four emotion dimensions 

considered, this 93.13% (MSE=0.1136) result is only marginally better than the 92.89% (MSE=0.0878) obtained with 

the valence dimension. The fact is hereby reiterated that the results obtained along the liking dimensions are 

not necessarily emotion feelings but subjective ratings of participants indicating their tastes of like 

 

Table 8 - Results of the liking dimension of the EEG modality data 

 
or dislike of the various emotions or elicitation materials. Thus, the liking dimension ratings aside from assisting in 

tagging of elicitation materials for human emotion recognition can also be used for predictive analytics including 

addiction management, suicidal thoughts, crime control as well as marketing, advertisement and sales of materials with 

emotional contents.  

The results obtained with the fused modality data using the various features and emotion representation classes are 

hereby presented. It has been shown in the literature that modality fusion is capable of yielding an improved 

classification result in a human emotion recognition system [3,7]. This is because complementary characteristics in the 

different modalities are exploited with a view to detecting a unique pattern from which features are extracted with the 

primary aim of obtaining a higher performance.  

The RBFNN pattern classifier using the HOGHES features for classification along the arousal class achieved a 

recognition accuracy of 87.11% (MSE=0.2134) with 400 neurons in the hidden layer as shown in Table 9. When 

compared with the corresponding results of 85.16% (MSE =0.0398) in Table 1 and 88.28% (MSE=0.1851) in Table 5 

achieved with the HOG features of the peripheral physiological and EEG modalities data respectively under the arousal 

dimension, this result is only better than the 85.16% (MSE =0.0398) accuracy of the peripheral physiological modality 

and falls short of the 88.28% accuracy (MSE=0.1851) of the EEG modality. This result therefore implies that the fused 

modality did not always lead to a higher performance. This might be traced to the somewhat lower performance of the 

peripheral physiological data which negatively impact on the 87.11% (MSE=0.2134) result that was obtained. This 

trend was also shown in the liking dimension F1- score result in [7], where a fusion of EEG, peripheral and Multimedia 

Content Analysis (MCA) features yielded an F1-score of 61.8% which though more than the 50.2% and 53.8% attained 

by the EEG and peripheral modalities respectively but falls short of the 63.4% obtained with the MCA features. In 

addition, the fused peripheral and MCA modalities only yielded an F1-score of 62.2% which is also less than the 63.4% 

obtained by only the MCA modality. Furthermore, in the same study [7], with an F1-score of 58.3%, 53.3% and 61.8% 

recorded for the EEG, peripheral and MCA modalities respectively obtained with classification done along arousal 

dimension, a marginally low 61.6% F1-score was obtained when the three modalities were fused. These results are 

lower than the best single modalities’ results recorded as noted under the arousal and liking dimensions thus agreeing 



Abayomi et al., International Journal of Integrated Engineering Vol. 13 No. 6 (2021) p. 1-26 

 

 

 20 

with our findings as well as literature position that classification results might not always necessarily improve with 

fused modalities. Notwithstanding this, as shown in [7], the F1-score posted by the fused best two modalities for the 

arousal and valence dimensions respectively are better than any of the single modality in these dimensions. 

With the LBPHES features of the fused modality data and the arousal dimension scheme, the best recognition 

accuracy of 81.80% (MSE=0.1968) obtained using 300 neurons in the hidden layer is shown in Table 9. This result is 

less than the 83.20% (MSE=0.4066) and 84.92% (MSE=0.4973) achieved respectively with the LBPPS and LPBPEPS 

features as shown in Tables 5 and 1 respectively. Hence the fused modality result achieved does not indicate its 

superiority to those of the single modalities and it is also more computationally expensive as it contains a huge feature 

vector size of 1440 elements. The HIMHES result on the hand recorded its best recognition result of 88.36% 

(MSE=0.3363) with 500 neurons and aligns with the trend earlier noticed in the HOGHES and LBPHES features 

wherein the fused modality data does not yield a better result than both results of the single modalities. 

 

Table 9 - Results of the arousal dimension of the fused modality data 

 
The valence dimension is the next scheme that was considered for the fused modality data. The RBFNN classifier 

was applied on the HOGHES features and 90.08% accuracy (MSE=0.4309) was obtained as the best result as shown in 

Table 10. The number of neurons utilized in the hidden layer to achieve this best result was 500. This result is better 

than both the 88.05% (MSE=0.3022) and 85.94% (MSE=0.4246) obtained by the corresponding HOGPS and 

HOGPEPS features respectively as shown in Tables 6 and 2. This clearly shows that the HOGHES features with 

classification done along the valence dimension confirms and aligns with the facts in literature that modality fusion can 

indeed improve performance of a pattern classifier as the feature set is enriched with more useful and discriminatory 

information [3]. 

However, with the best recognition result of 80.39% (MSE=0.2964) achieved by the RBFNN using the LBPHES 

features with 400 neurons as shown in Table 10, this performance is lower than the 85.31% (MSE=0.2523) and 83.20% 

(MSE=0.3057) results respectively obtained with the corresponding LBPPS and LBPPEPS features as shown in Tables 

6 and 2. This similar trend is also recorded by the HIMHES features where its best recognition accuracy of 88.36% 

(MSE=0.3970) shown in Table 10 is only able to surpass the 82.66% (MSE=0.4792) of the HIMPEPS features but falls 

short of the 92.89% (MSE=0.0878) attained by the HIMPS features. Thus, it is only with the HOGHES features of the 

valence dimension that the modality fusion approach improved the classification result obtained by the RBFNN pattern 

classifier. 

 

Table 10 - Results of the valence dimension of the fused modality data 

 
As observed in Table 11, the dominance emotion dimension, using the HOGHES features of the fused modality 

data yielded the best recognition accuracy of 88.36% (MSE=0.1396) using 400 neurons in the hidden layer of the 

RBFNN. The 89.53% accuracy (MSE=0.2345) in Table 7 and 87.34% accuracy (MSE=0.3775) in Table 3 as best 

results obtained with the HOGPS and HOGPEPS features respectively with 500 neurons each indicates that the fused 

modality features performance cannot be a replacement for the EEG single modality. 
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Table 11 - Results of the dominance dimension of the fused modality data 

 
 

This trend is also demonstrated with the LBPHES features’ performance wherein the best recognition accuracy of 

81.33% (MSE=0.2092) shown in Table 11 achieved with 200 neurons is below the 87.89% (MSE=0.0430) and 84.92% 

(MSE=0.1271) respectively achieved with the corresponding LBPPS and LBPPEPS features. In the same vein, the 

HIMHES features with 89.77% best recognition accuracy and MSE of 0.1183 as shown in Table 11, was only able to 

surpass the 84.14% recognition accuracy and MSE=0.1700 as shown in Table 3 of the HIMPEPS features but falls 

short of the 93.36% (MSE=0.2623) of the HIMPS features as shown in Table 7; thus cannot replace this single 

modality performance.  

The fused modality data, the HOGHES, LBPHES and HIMHES features and liking dimension is the next scheme 

and the various results are shown in Table 12. The HOGHES features have its best recognition result of 88.59% 

(MSE=0.3303) which was attained using 400 neurons in the hidden layer of the RBFANN. When compared with the 

performances of the corresponding HOGPS and HOGPEPS features of the single modalities that recorded 88.83% 

(MSE=0.1101) and 83.52% (MSE=0.1647) respectively as shown in Tables 8 and 4, only the peripheral physiological 

modality was surpassed by the fused modality result while it falls marginally below the EEG modality result by 0.24% 

hence not a replacement for the single modalities. 

 

Table 12 - Results of the liking dimension of the fused modality data 

 
Also, with the LBPHES features, a similar trend is noticed where the best recognition result of 81.41% 

(MSE=0.0683) shown in Table 12, of the fused modality data cannot match the 85.23% (MSE=0.1002) and 86.33% 

accuracies (MSE=0.0645) of the EEG and peripheral physiological single modalities shown in Tables 8 and 4. On the 

other hand, the HIMHES features with its best result of 89.38% (MSE=0.0826) is below the highest performance of 

93.13% (MSE=0.1136) of the HIMPS as shown in Table 8 and, only better than the 83.20% of the HIMPEPS features 

as shown in Table 4, which aligns with the earlier position that the fused modality scheme cannot always replace the 

single modalities scheme in terms of classification performance. 

The summary of the best results obtained under each modality and the corresponding features while using our 

proposed methods are shown in Table 13. The arousal class recorded 85.16% (MSE=0.0398)  as its best recognition 

accuracy for the peripheral physiological modality using the HOGPEPS features while the EEG and the fused 

modalities recorded their best recognition results of 93.36% (MSE=0.2974) and 88.36% (MSE=0.3363) respectively 

using the HIMPS and HIMHES features respectively. Thus based on the results obtained, the peripheral physiological 

data appears to be easily detected by local appearance and shape of their mapped images as provided by the HOG 

feature descriptors. However, for the arousal class and across all the modalities considered, the HIM features and EEG 

modality produced the best result of 93.36% (MSE=0.2974) and this combination is hereby recommended. 

As shown in Table 13, for the valence class and across the three modalities, the best recognition results of 92.89% 

(MSE=0.0878) was achieved by the EEG modality using the HIM features. The fused modality’s result of 90.08% 

(MSE=0.4309) and 85.94% (MSE=0.4246) of the peripheral modality were achieved with the HOG features thus 

confirming their unique strength of shape and local appearances. Because of its superior performance, a combination of 

the EEG modality and the HIM features is recommended for the valence class in human emotion recognition using the 

DEAP dataset. However, the dominance class recorded recognition accuracies of 89.77% 



Abayomi et al., International Journal of Integrated Engineering Vol. 13 No. 6 (2021) p. 1-26 

 

 

 22 

Table 13 - Summary of experimental results across dimensions, modalities and features 

 

 

 

 

 

 

(MSE=0.1183) and 87.34% (MSE=0.3775) as its best results, for the fused and peripheral modalities respectively with 

the HIM and HOG features. Following the trend noticed in the arousal and valence classes, the best result of 93.36% 

(MSE=0.2623) was recorded by the EEG modality using the HIM features and the combination is thus recommended. 

In summary, as contained in Table 13, even for the liking class, the best result of 93.13% (MSE=0.8827) was recorded 

by the EEG modality using the HIM features. The overall best recognition result is 93.36% which was obtained by 

arousal and dominance classes but the dominance class has a lower MSE of 0.2623 as the dominance class, EEG 

modality and HIMPS features combination is hereby recommended for emotion recognition using the DEAP dataset. 

To enable replicability of the RBF neural networks experimentations in this study, the parameters that were 

optimized to obtain the recognition results include the numbers of neurons that was utilized in the hidden layer which 

was experimentally determined for the HOG, LBP and HIM features respectively for the various modalities. There are 

2 neurons in the output layer, which denote the number of emotional states to be classified. The hidden layer and output 

layer implemented a hyperbolic tangent sigmoid transfer function which is considered simple and suitable above the 

rectified linear unit (ReLU) of multi-layer deep neural.  

 

6. Conclusion 

In this study, we have successfully carried out comparative experiments on the suitability of using the HOG, LBP 

and HIM features extracted from the DEAP physiological data with the RBF-ANN classifier to recognize human 

emotional states along the arousal, valence, dominance and liking classes. The unique method of our data pre-

processing and the application of the inverse Fisher transform algorithm on the preprocessed physiological data greatly 

enhances the discriminatory strength of the extracted features of the HOG, LBP and HIM descriptors.  

According to the literature, emotional physiological data exhibit significant non-linearity [74] as most 

physiological data do not increase linearly even for only a single subject while experiencing an emotional state. We 

leveraged on the peculiar non-linearity of emotional physiological data and the inherent capability of neural network 

models to perform efficiently when the data distribution is non-linear to achieve higher emotion recognition accuracies 

in the study at hand as the models were able to approximate arbitrary non-linear functions [75]. This is in addition to 

the model’s strength of tacitly detecting and extracting intricate non-linear relationships between independent and 

dependent variables as well as their capabilities of detecting every probable interaction between predictor variables 

[76].  

To navigate the computational complexity drawbacks in deep learning and explore the possibilities of getting 

promising results, the RBFANN was applied to the extracted HOG, LBP and HIM features in the experiments 

conducted. From the summary of results shown in Table13, it can be observed that the HOG, LBP and HIMS features 

offered competitive and varied performances. This indicates that the three feature extraction techniques performed 

differently on the DEAP dataset by extracting different discriminatory features from it. The various best results 

obtained by each of the three modalities and features are state of the art and better than the results obtained in recent 

research studies [7, 33-40, 77-89] that utilized the DEAP dataset. These results are also better than those reported by 

[34, 36-38] despite the trending deep learning approaches applied in those studies. 

Thus, the three set objectives of this study have been successfully achieved. These objectives include, (i) to acquire 

physiological data from the DEAP corpus for the purpose of human emotion states recognition (ii) to extract 

discriminatory features from the physiological data using the Histogram of Oriented Gradient (HOG), Local Binary 

Pattern (LBP) and Histogram of Images (HIM) feature extraction techniques and (iii) to compare the performances of 

the RBFANN models using the three different features for the task of human emotion recognition. In conclusion, based 

on our findings and results obtained in this study, we recommend a combination of HIM features and EEG modality 

data with classification done along the dominance scale in order to carry out emotion recognition task using 

physiological signals. This combination gave the best result of 93.36% (MSE = 0.0153) when compared to the other 

features sets, modalities and configurations. The other results obtained in this study are also better than the results 

reported in similar recent research works that utilized the same dataset [33-40]. With the current result, there is a huge 

prospect of the adoption of an automated emotion recognition paradigm in application domains such as customer 

services, call centers, safe driving, biomedical and healthcare engineering, emergency services and psychiatric disorder 

 

Modalities 

Peripheral EEG Fused 

Emotional 

Dimension 
ACC (%) Feature ACC (%) Feature ACC (%) Feature 

Arousal 85.16 HOG 93.36 HIM 88.36 HIM 

Valence 85.94 HOG 92.89 HIM 90.08 HOG 

Dominance 87.34 HOG 93.36 HIM 89.77 HIM 

Liking 86.33 LBP 93.13 HIM 89.38 HIM 
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research. Future works will include the use of other machine learning methods, merging of audio and physiological 

signals, the discovery and adoption of other physiological feature extraction algorithms and the practical prototyping 

for real-time application purpose. 
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