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Abstract: Vehicle performance is affected by road profile since the road profile supplies vibration to the vehicle.
The road profile can be identified by vibration response of the vehicle. By using the vibration response, road
profile identification can be, in fact, formulated as a single-objective optimization in which an objective, a
minimization criterion, is the numerical difference between vehicle vibration response of actual road profile and
that of predicted road profile. This paper present multistage search in genetic algorithm (GA), an optimization
algorithm, in the road profile identification. In the multistage search, a solution is divided into a number of parts
and each part is consequently evolved as GA process separately from other parts. A quarter vehicle models with
two test cases of double bump on road profiles are used. Simulation runs reveal that the multistage search can
enhance performance of GA. In addition, the multistage search using the least number of decision variables in each
solution part gives the best results of the optimized solutions.
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1. Introduction
Here Road profile affects vehicle performance by contributing vibration to the vehicle. The road profile can be

actually detected by the vibration signal measured on the vehicle [1], [2], [3], [4]. By using vibration response, the road
profile identification can be formulated as a single objective optimization problem. In optimizat ion process, there are
two main optimization approaches, derivative-based and derivative-free methods. Compared to the derivative-based
schemes, the derivative-free methods do not need a functional derivative of a given objective. They, instead, rely on the
repeated evaluations of the objective functions and perform the search direction under the nature -inspired heuristic
guidelines. Although the derivative-free schemes are generally slower than the derivative-based methods, they are
much more effective for the complicated objective functions and combinatorial problems as the methods do not require
differentiable objective functions. Genetic algorithm (GA) [5], [6], [7], [8] is a derivative-free population-based
optimization method of which search mechanisms are based on the Darwinian concept of survival of the fittest.

This paper proposes a multistage search for GA in road profile identification using vibration response of a quarter
vehicle model. In multistage search, a full solution is divided into a number of solution parts. A part of a full solution is
evolved by GA generation in each solution search stage. The multistage search is quite different from co-operative co-
evolution employed in genetic algorithm (CCGA) [9], [10], [11] in which a solution is also divided into a number of
parts, the so-called species. In CCGA, each species is evolved simultaneously with other species. In contrast, each
solution part in multistage search is evolved separately to other parts. In multistage search, the first part is optimized
until termination condition is satisfied, the second part is started to be optimized, and so on.
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2. Quarter vehicle model in road profile identification
A quarter vehicle model, two-degree of freedom system, as shown in Fig. 1(a) is used in the road profile

identification. There are 2 cases of the road profiles which are shown in Figure 1(b) and Figure 1(c). The road profile
for cases (a) and (b), displayed in Fig. 1(b) and Fig. 1(c), is expressed as equations (1) and, respectively. In the vehicle
model, there are 2 independent coordinates of the system – vertical displacement of seat mass (zc), and vertical
displacement of sprung mass (zs). The vehicle is moved directly with constant speed of 10 m/s and excited by the road
profile. In the model, sprung mass (ms), tire mass (mt), equivalent spring constant of suspension (ks), equivalent
damping constant of suspension (cs), equivalent spring constant of tire (kt) are 250 kg, 53 kg,10 kN/m, 200 kN/m, 1,000
Ns/m, respectively.
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where (asp)i and (asa)i is acceleration obtained from the predicted road profile and that obtained from the actual road
profile. In optimization, a solution is encoded into a real chromosome consisting of N decision variables in which each
variable xi  [0,1]. The increment of road profile in a time interval j (zr,j) is defined as equation (3).

zr , j  (xj − 0.5) zr ,max (3)

In this paper maximum value of the increment of road profile in a time interval zr,max is predefined to equal to
0.005 m. The height of road at a time interval i is then equal to the cumulative summation of zr,j as equation (4).
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zr ,i zr , j
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Fig. 1 - A quarter vehicle model and road profile (a) Vehicle model (b) Road profile of case 1 (c) Road
profile of case 2

3. Genetic algorithm with multistage search
The genetic algorithm (GA) has been extensively explained in [5] and is discussed here to illustrate the basic

components and mechanisms of the GA. The GA procedure of the GA starts with the generation of random individual
of an initial population which are a set of solutions to an optimization problem. A solution is encoded into a string of
number which generally called "chromosome". The chromosome of every individual is decoded in order to obtain
corresponding solutions to the optimization problem. The objective value of each individual in the population can be
then calculated. The fitness value is then evaluated based on the objective value obtained. The fitness scaling technique
[8] is introduced in order to improve the performance of search mechanism. The aim of this technique is to encourage
the difference between the maximum and average fitness values to be used in the following selection process by the
introduction of a scaling factor which is actually more than one. Based on the fitness values, a parent population is then
selected from the current population. The parent population are performed a transformation using genetic operators,
crossover and mutation, to obtain the resulting offspring population. The offspring population is then merged with the
elite individuals to form the new population. Finally, termination condition is verified. If the condition is satisfied, the
best solution to the current population is reported as the output solution. If the condition is not satisfied, chromosome of
every individual is decoded again in order to obtained a represented solution. It is noted that one loop after the current
population is created until the population is updated is called one GA generation. The main procedure of GA is shown
in

Fig. 2.

Randomly generate individuals of an initial population.
GA generation

Decode chromosome of every individual in population to obtain corresponding solutions.

Calculate objective and fitness values of each individual in current population.

Apply elitism operator to pass the first n best individuals to the next generation

Select a parent population from the current population.

Perform a transformation on the parent population using genetic operators to obtain the resulting
offspring population which is then merged with the elite individuals to form the new population.

Termination condition is satisfied? No

Yes
Finish.

Fig. 2 - the Main procedure of GA
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Fig. 3 - Genetic algorithm with multistage search for 10 decision variables real coded chromosome divided
into 5 parts

This paper multistage search (MS) in the genetic algorithm (GA) for the optimization in the road profile
identification. In the multistage search, a solution is divided into a number of parts. A part of a full solution is evolved
in ascending order by GA generation in each solution search stage. For instance, if a full solution is represented by 10
decision variables real coded chromosome and divided into 5 equal parts of which each contains 2 variables as shown
in

Fig. 3. At first solution search stage, the first part which has 2 first design variable is evolved by GA process. In
objective calculation, only the first 2 design variables are used in order to achieve the corresponding objective of an
individual. After the termination condition, the first 2 optimized variables are consequently obtained. Thereafter, the
second part is then evolved in which the optimized design variables in the first parts is used. In objective calculation of
an individual in the second part, corresponding objective of the individual is calculated from 2 design variables from
the individual by using the required coordinates numerically obtained from the optimized variables from the first part.
The process is repeated until the GA evolution of the last solution parts is finished. The output solution of GA with
multistage search is obtained from combination of the best solutions of all solution parts as displayed in

Fig. 3. The multistage search (MS) is particularly proposed to reduce search space of this problem. For the case as
shown in

Fig. 3, if normal GA is used in optimization with a full solution represented by 10 three decimal digits variables
chromosome and each variable is from 0.000 to 1.000, the number of possible solutions is about 100010 = 1030. By



sp ii

dividing a full solution into 5 equal parts in MS, the number of possible solutions is exponentially reduced to be only
about 5×10002 = 5×106. However MS is not suitable to enhance performance of GA in all optimization problems. The
multistage search (MS) is particularly proposed for the road profile identification test problem. In the objective
function, f, as shown in equation (2), sub-objective function, fi, in time interval i is defined as equation (5).

f  a  − asa i (5)

where (asp)i and (asa)i is the acceleration obtained from the predicted road profile and that obtained from the actual
road profile. From equations (3), (4), and (5), it is found that the sub-objective function fm is numerically evaluated
from x1, x2, ..., xm-1, and xm so that sub-objective functions f1 to fm are affected by only x1, x2, ..., xm-1, and xm. Therefore,
by GA with multistage search using the sum of sub-objective functions f1 to fm as the optimized objective function, the
optimum x1, x2, ..., xm-1, and xm can be obtained. After the first m decision variables are optimized, the next m decision
variables xm+1, xm+2, ..., x2m-1, and x2m can be similarly obtained by the use of the sum of sub-objective functions f1 to fm
as optimized objective function. The optimization of the decision variables are repeated until all N decision variable, x1,
x2, ..., xN-1, and xN are optimized. With the use of the multistage search, the solution search space is significantly
reduced so that the optimized solution obtained from the multistage search is better than an optimized solution searched
from a full solution represented by N decision variables by normal GA.

Table 1 - GA parameters settings

Parameters Settings and values
Chromosome coding The real-value chromosome with 250 decision variables.

Number of decision variables in
each solution search (NVE)

GAwith no MS: 250
GAwith MS : 125, 25, 5

Fitness scaling Linear fitness scaling with a factor of 2.0
Crossover method SBX crossover [12], [13] with probability = 1.0
Mutation method Variable-wise polynomial mutation [14] with probability = 0.025
Population size 100

Number of generations in each
solution search stage

20×number of decision variables

Number of repeated runs 10

(a) (b)

Fig. 4 - Convergence of objective value of GAwith no MS for both 2 cases (a) Case 1
a) Case 2

4. Results and Discussions
The parameter settings for GA are illustrated in Table 1. Fig. 4 show convergence of objective value against the

number of generations of GA with no MS from one simulation run. This figure shows that number of generations in
Table 1 is enough for the study in this paper. The box plots of objective values of the optimized solutions obtained from
GAwithout MS, GAwith MS, number of decision variables in each solution search (NVE)= 125, GAwith MS, NVE =
25, and GAwith MS, NVE = 5, are shown in Fig. 5. The figure shows that GAs with MS outperforms GAwithout MS.
For GA with MS, the objective values are better with the decrease of the NVE. Fig. 6 and Fig. 7 display road profiles
from optimized solutions, which is the best solution of all repeated runs, of case 1 and case 2 respectively. The
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coefficient of determination (R2), a maximum criterion, is also shown in the figures. R2 is equal to its maximum
number which is 1, means the predicted road profile is same as the exact one. From the figures, the road profiles from
the optimized solutions of GA with MS are obviously better than GA without MS. In addition, GA with MS and NVE
= 5 provides the best road profiles.
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Fig. 5 - Objective values of optimized solutions (a) Case 1 b) Case 2
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(c) MS with NVE = 25 (R2 = 0.979223) (d) MS with NVE = 5 (R2 = 0.998281)

Fig. 6 - Road profile from optimized solutions of case 1 (black line is actual, blue circle = predicted)
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Fig. 7 - Road profile from optimized solutions of case 2 (black line is actual, blue circle = predicted)

5. Summary
This paper proposes the multistage search in a genetic algorithm (GA) in the road profile identification using

vibration response of a quarter vehicle model. In the multistage search, a part of solution is optimized separately in each
of solution search stage. There are 2 test cases of double bump on-road profiles to be studied. In both cases, the road
distance is equally divided into 250 elements each of which has length of 10 cm. In GA, a full solution is encoded into
real-coded chromosome which contains 250 decision variable. In the multistage search, the full solution is partitioned
in a number of parts of which each has equal decision variables in which are 3 numbers of decision variables in each
solution search (NVE) which are 125, 25, and 5. From the simulation runs, optimized solutions by GA with the
multistage search are better than GA without the multistage search regardless of numbers of decision variables in each
solution search. In addition, the multistage search using the least number of decision variables contributes the best-
optimized solutions to the road profile identification. Due to the reduction of the number of possible solutions by the
multistage technique as previously described. the number of possible solutions of GA with small NVE is less than that
of GA with large NVE. Therefore solutions obtained from GA with the small NVE is better than those obtained from
GAwith the large NVE.
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