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1. Introduction

With the expanding usage of high-tech machinery in power systems, power quality (PQ) disturbances are

becoming a challenging research for engineers [1]. The disturbances stated include voltage sag, swell, interruption, 

harmonic, transient and so on [2]–[4]. These may lead to malfunctions, reduced lifetime and failure of equipment in the 

industry. To determine and reduce PQ in the industry, the characteristics of these disturbances should be analyzed and 

classified properly [4]–[6]. In this paper, the PQ disturbances focused are the voltage variations, which consist of 

voltage sag, swell and interruption. 

The main requirement in PQ study is the ability to perform data analysis. Signal processing is an important step to 

analyze the signals [7]–[9]. There are several techniques for analyzing signals. The most widely used in signal 

processing is spectral analysis using Fourier Transform but due to the non-stationary nature of PQ, this technique is not 

effective in detecting the disturbances [10], [11]. There are some other time-frequency distribution (TFD) techniques 

such as Spectrogram, Wavelet transform, Gabor Transform, S-Transform and so on [12]–[16] . In this study, 
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spectrogram with several windows will be applied for analyzing voltage variation signals by distinguishing the signals 

obtained in time and frequency domain. Window selection will be focused after the signals are analyzed. 

Several methods have been proposed for classification of PQ events [17]. The classification of three types of 

voltage variations are tested to identify the best classification. K-Nearest Neighbors Algorithm (KNN) as well as 

Support Vector Machine (SVM) are used as classifiers in this study. KNN is a non-parametric method to assign weight 

to the contributions of the neighbors, so that the closer neighbors attribute more to the average than the further ones 

[18], [19].SVM is a supervised learning models that analyses data which build a model that appoints new patterns to 

one category, making it a non-probabilistic binary linear classifier [5], [20]. 

To summarize, this paper shows the windows selection and classification of the voltage variation signals by using 

spectrogram. First the work handles with TFD analysis of 3 windows which are 256, 512 and 1024 by using the 

variations simulated in Matlab. Next, the paper describes the TFR and voltage per-unit graphs of each window. Finally, 

the performance of KNN and SVM classification of each window will be compared and best window will be selected. 

 

2. Research Method 

In this paper, the voltage variation signals will be simulated in Matlab. The simulated signals will then be analyzed 

in time-frequency distribution (TFD) of different windows and voltage variation parameters will be extracted. The 

extracted parameters will be used in the classification. 

 

2.1 Voltage variation signals 

Voltage variation signals are complicated, and it is tough to obtain them. Research workers usually use software to 

simulate the signals interested and sample the signals produced [21]. In this research 3 types of voltage variation were 

simulated in Matlab R2016a. The simulated samples were then analyzed by the spectrogram. The equations used to 

simulate each signal are as shown in Table 1. The amplitude (A) used is 230V, the fundamental frequency (f) is 50 Hz 

and a(t) is a step function. 

 

Table 1 - Mathematical model of PQ disturbances. 

 

Disturbances Equation Controlling 

Parameter 

Pure Sine      a t Asin wt   2w f  

Sag         1 2 1 )(a t A u t t u t t sin wt      

2 1

0.1  0.9;

  –   9 ;

x

T t t T

 

 

 

Swell         1 2 1( )a t A u t t u t t sin wt      

2 1

0.1  0.9;

  –   9 ;

x

T t t T

 

 

 

Interruption         1 2 1( )a t A u t t u t t sin wt      

2 1

0.9  1;

  –   9 ;

x

T t t T

 

 

 

a(t) = PQ signal, A = Amplitude (constant), w = angular 

frequency, t = time, 

 = time duration of event occurrence (constant), T = time 

duration 

 

 

 

2.2 Time-frequency distribution (TFD) 

The spectrogram is a mathematical tool used to stimulate an analytical signal from a real-time signal obtained from 

data collection [12], [22], [23]. It involves a composition between frequency and time resolution [24]. It is one of the 

time-frequency distributions (TFDs) that describes the signal in time and frequency representations. It enumerates 

square magnitude of STFT [25]. The equation can be expressed as:             
2

2( , ) ( ) ( ) j fS t f x t e d    





        (1) 

where x(τ) is the input signal and w(τ) is the observation window. 

      In the spectrogram, space-frequency resolution is demonstrated as the accumulation degree of space-frequency 

degree [26], [27]. Flawless resolution causes the highest accumulation degree [28]. This means that it causes the most 

confining spectrogram. A good frequency-resolution requires a wide window; on the contrary, a good spatial resolution 

needs an attenuated window; thus an appropriate window size should be selected to give a compromise between these 

two resolutions [29], [30]. In this study, windows size of 256, 512 and 1024 are selected to do the analysis. 
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2.3 Voltage variation parameters 

The parameters of the voltage variation signals can be estimated from their time-frequency representation (TFR) to 

identify their characteristics [22], [31]. The parameters used in this study will be the RMS voltage, Vrms, and power 

measurement [32]. Vrms can be derived from the TFR obtained and can be expressed as: 

max

0
( ) ( , )

f

rms xV t P t f df       (2) 

where Px(t,f) is the time-frequency distribution (TFD), fmax is the maximum interest frequency. 

      The power equation can be expressed as: 

0

1
( ) ( )

T

t

P v t i t dt
T



        (3) 

 

2.4 Classification 

The parameters of the voltage variation signals obtained using different window sizes of the spectrogram are given 

as input to KNN and SVM for classification purpose. K-nearest neighbors (KNN) is a non-parametric prediction 

algorithm [19], [33]. It searches the most similar feature vectors within the historical database to predict future values. 

The model has simple structure and high computation efficiency where best k value is selected (k =3) [34]. Support 

Vector Machine (SVM) is a discriminative classifier that creates a model which can favorably anticipate the class label 

of data instance [35]. Numbers of kernel functions are available while Gaussian RBF kernel is proved to be the suitable 

kernel functions for this purpose [33]. Gaussian Radial Basis Function (RBF) kernel is used in this paper. The equation 

of k for RBF is given as: 
2

2
( , ) exp

2

x y
k x y



 
  

 
 

    (4) 

where ||x-y||2 is the squared Euclidean distance between the two feature vectors, is a free parameter. 

Cross-validation is a model validation technique for computing the results of statistical analysis and for 

generalizing to an independent data set [36]. In this paper, k-fold cross-validation is used. The original sample is 

randomly partitioned into k equal sized subsamples (k = 4 in this paper). From the k subsamples, a single subsample is 

preserved as the affirmation data for testing the model [37]. Then the remaining k-1 subsamples will be used as training 

data. This process is repeated k times, with each of the subsamples will be used as the affirmation data. The k results 

from the folds will be then moderated to produce a single estimation [38]. 

 

 

3. Results and Discussion 

In this research, the fundamental frequency set was 50Hz while the sampling rate was 12kHz. The signals were 

generated from the mathematical models and then analyzed by using spectrogram. Fig. 1 shows the voltage waveforms 

(pure sine, swell, sag and interruption) produced by using the mathematical models. 

 
 

Fig. 1 - Voltage signal simulated. 
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The signals generated were then analyzed by using the spectrogram with different windows (256, 512 and 1024). 

Fig.2, Fig.3 and Fig.4 show the voltage variation signals analyzed by using spectrogram with windows 256, 512 and 

1024 respectively. The variations occurred in the time-frequency representation during 0.1 to 0.2 seconds. The highest 

power was presented in yellow color, while blue color represented lowest power. During voltage swell, there was an 

increase in power magnitude from 0.1 to 0.2s. During voltage sag, there was a sudden decrease in power magnitude 

from normal magnitude in between 0.1 to 0.2s. There was a sudden halt where no any power magnitude in between 0.1 

to 0.2s during the occurrence of voltage interruption. The voltage per-unit (PU) graphs were directly related to the 

variations. During voltage swell, there was an increase in power and thus voltage PU was increased as well during the 

period 0.1 to 0.2s. During the occurrence of voltage sag, the voltage PU decreased as the magnitude of voltage dropped 

in between 0.1 to 0.2s. In voltage interruption, there was a halt in between 0.1 to 0.2s indicated no voltage was supplied 

during the period, so the voltage PU dropped to 0 Vrms in 0.1s and back to normal to 1 Vrms in 0.2s.  

  TFR of spectrogram by using window 256 could not show the proper frequency used. There were many sidelobes 

in voltage PU which showed less accurate Vrms reading. TFR of spectrogram by using window 512 showed an 

insufficient of scaling presentation of frequency used in TFR. The presentation was incomplete during voltage 

interruption, where the spectrogram was unable to present the complete TFR. The voltage PU graphs presented by 

using window 512 showed better graphs than window 256 as the graphs displayed in window 512 were smoother 

without sidelobes compared to windows 256. Spectrogram using window 1024 showed a complete presentation of TFR 

where the high and low power magnitudes could be identified well along with the presentation of the frequency. The 

voltage PU graphs displayed using window 1024 showed complete graphs without sidelobes as well. 

 
(a) 

 
(b) 

Fig. 2 - (a) TFR graph by using window 256, (b) Voltage PU graph by using window 256. 
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(a) 

 
(b) 

Fig. 3 - (a) TFR graph by using window 512, (b) Voltage PU graph by using window 512. 

 

 
(a) 
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(b) 

Fig. 4 - (a) TFR graph by using window 1024, (b) Voltage PU graph by using window 1024. 

 

       Parameters such as RMS voltage and power were calculated from the signals generated by spectrogram. These 

quantities of different windows were set as input features of the classification. Noises were then being added into the 

variation signals. KNN and SVM were applied to get the accuracy of the data as shown in Table 2. 

 

Table 2 - Classification results of different windows using KNN and SVM 

 

 

 

 

 

 

 

 

 

 

 

  

Each classifier was trained with input samples with and without noise in Matlab. White noise SNR values of 0 and 

20 were simulated to test the classification accuracy. It can be seen from Table 2 that the output of the KNN and SVM 

classifiers are the highest in window 1024 compared to window 256 and 512. The highest recognition accuracy among 

the three windows is 1024 window. For the best accuracy of each classifier, the highest accuracy of 100% in 20 SNR, 

92% in 0 SNR and 100% in normal signal of KNN as well as the highest accuracy of 100% in 20 SNR, 94% in 0 SNR 

and 100% in normal signal of SVM respectively, are obtained from window 1024. 

 

4. Conclusion 

In this paper, an attempt has been proposed to select the suitable window in spectrogram to analyze voltage 

variations in TFR and to classify the variation signals using KNN and SVM. Window 1024 shows best time-frequency 

representation as well as voltage per unit graphs with proper information in terms of frequency and magnitude out of 

window 256 and 512. Compared to window 256 and 512, window 1024 shows the best classification accuracy in both 

KNN and SVM in signal with and without noise. So, window 1024 is the most suitable window to be used in this case 

compared to window 256 and 512. 
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Window Classifier 

Accuracy (%) 

Without 

Noise 

0 

SNR 

20 

SNR 

256 
KNN 

SVM 

100 

100 

94 

92 

98 

97 

512 
KNN 

SVM 

100 

100 

90 

96 

98 

98 

1024 
KNN 

SVM 

100 

100 

92 

94 

100 

100 
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