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1. Introduction

Nowadays, almost 70-80% of industrial applications have used induction motors as the main driving component of

the production process. induction motor damage causes important problems for users, especially if used in industries that 

can cause production process to stop [1-2]. Based on surveys conducted by Electric Power Research Institute (EPRI) on 

6312 motors and IEEE-IAS Motor Reability Working Group on 1.141 motors almost 41-44% induction motor damage 

occurs in the bearing [3-5]. Bearing damage based on location can be categorized as outer race bearing damage and inner 

race bearing damage. Bearing damage causes vibration, noise, increase in operating temperature, can even cause sparks 

due to friction between motor components that cause damage to other parts of the induction motor. [5]. Studies of bearing 

damage have been carried out by several previous researchers such as detecting bearing damage based on vibration 

analysis in [6], although this method is quite effective, analysis will get different results based on the location of sensor 

so it is difficult to determine the position of sensor. Paper [7], also conducted a bearing damage detection study using 

noise but in practice it did not show accurate results because there were other disturbing noise around. Paper [8] analyze 

magnetic flux from induction motors that contain a lot of harmonics. Observation through magnetic flux can produce 

very accurate results in monitoring motor conditions, this can be seen in the harmonic spectrum, but this method is not 

practical because it requires the installation of coils at the stator core, so that the motor operation must be stopped, and 

the small air gap also makes this method difficult to implement. Monitoring using a stator current analysis has also been 

carried out on [8-10], analysis on the stator current successfully performed detection analysis on rotor bar damage, airgap, 

Abstract: This paper describes a new method for monitor and detection bearing damage on induction motor. This is 

considered important because induction motors have an important role in the industry which functions as the main 

engine in the production process. This paper focuses on bearing damage because this is the most common case. the 

case of damaged bearing is done by giving the outer race bearing hole in three cases, 1 mm hole, 2 mm hole and 3 

mm hole. Bearing damage analysis is carried out through a stator current signal on an induction motor, then the Fast 

Fourier transform (FFT) algorithm is used to see the characteristics of the frequency spectrum that appears in the 

stator current signal. High frequency analysis is applied to get clear analysis results. The results obtained by analyzing 

the frequency spectrum in the stator current that bearing damage indicate there is an amplitude that appears in the 

sideband frequency. 
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stator winding, etc. The novelty in this paper is the use of high-resolution frequencies in analyzing stator currents to 

obtain more detailed analysis results so that amplitude observations can be carried out clearly and minimize errors. 

 

2. Bearing Damage Types 

 Bearing construction consists of 4 important parts, outer race bearing, inner race bearing, balls and cages. Each part 

has its own function to make the rotor spin freely [2]. Bearing construction can be seen in Fig 1. 

 

 
 

Fig. 1 – Construction of Bearings in Induction Motors 

 

 Bearing damage begins with small cracks because the induction motor works under normal conditions, varying 

loading conditions and misalignment of the rotor position. This can certainly be the cause of damage to other parts of the 

induction motor. In addition to mechanical factors, damage to the bearing can also be caused by external factors such as 

contamination, corrosion, lubrication errors, installation errors, and brinelling [9]. 

 Contamination and corrosion are external factors that can cause damage to the bearing. This is influenced by bad 

environmental conditions and improper placement of induction motors. Dirt and dust are particles that can cause 

contamination of the bearing. While corrosion is caused by the chemical process between induction motors with other 

substances around it such as water, acids, and other substances [10]. 

 Lubrication failure such as less or more lubrication on the bearing element is not recommended because it can cause 

overheating which can accelerate the process of bearing damage [10]. Installation errors occur due to improper bearing 

installation on the bearing house. This causes physical damage to the induction motor such as friction between the stator 

and rotor [12]. The missalignment of the rotor position due to installation errors causes eccentricity, disruption of the 

bearing that has an impact on the inner race and outer race bearing [11].  

 Bearing damage in each part has a different frequency of damage. In this paper only outer race damage is selected 

for analysis. When the three phase induction motor operates, the ball also rotates following the movement and direction 

of rotation of the rotor. The outer race bearing damage causes the bearing ball to experience direct contact with the 

damaged part so that the friction effect occurs. This is what causes the bearing to experience vibration, noise, and an 

increase in working temperature [13]. In general, bearings are located in two different places. At one place, the bearing 

is located on the main-shaft while on the other side the bearing is located on the fan-shaft [14]. In this paper the bearing 

varied is located on the fan-shaft. This can be done by opening the construction of the 3 phase induction motor used. 

 

3. Characteristic Frequencies of Stator Current 
 Bearing damage in an induction motor causes the flux density in the air-gap to be asymmetrical and affect to the 

stator inductance. In this condition the stator current contains harmonics  that can be predicted by the equation (1) [8]-

[12]. 
 

       vebng mfff                                                  (1) 

Where, fbng is prediction frequency of bearing demage, fe is electrical supply frequency, m = 1, 2, 3, .., and fv is one of the 

characteristic frequencies. Damage that occurs in induction motor bearings has a different frequency of bearing demage 

depending on the type of bearing damage. The frequency for each type of bearing damage can be seen in the equation (2-

5) [15].  

 

 











P

B
rm

B
o

D

D
f

N
f

cos
1

2
     (2) 

 



Iradiratu Diah P K et al., Int. J. of Integrated Engineering Vol. 11 No. 3 (2019) p. 181-193 

 

 

 

 

183 

 









P

B
rm

B
i

D

D
f

N
f

cos
1

2
      (3) 

 











2

2 cos
1

2 P

B
rm

B

B
b

D

D
f

D

D
f


     

                                                                                                        (4) 

     









P

B
rmc

D

D
ff

cos
1

2

1
      

 (5) 

 

Where, fo is outer race frequency, fi is inner race frequency, fb is bearing ball frequency, fc is bearing cage frequency, NB 

is number of ball, frm is the mechanical rotor speed in hertz, DB is the ball diameter, DP is the ball pitch diameter, is the 

ball contact angel (typically equals to 0o). 

 Equations (2) to (5) are equations used to determine the value of the the exact characteristics frequency of the 

bearing based on the construction. In this case, with the ball bearings of 6 to 12 elements, the frequency of damage 

characteristics for the outer race and inner race can be determined using equation (6) and equation (7) [16]. 

 

rmBo fNf 4.0       (6) 

 

rmBi fNf 6.0       (7) 

 

Where, fo is outer race bearing frequency characteristics, fi outer race bearing frequency characteristics, 

 

4. Fast Fourier Transform (FFT) 

Fast Fourier Transform (FFT) is a fast calculation method of Discrete Fourier Transform (DFT). DFT is a calculation 

method that converts signals from the time domain to the frequency domain [17]. Usually DFT is used for the purposes 

of spectrum analysis in the frequency domain [18]. By using DFT, a signal can be seen as an object in the frequency 

domain. DFT is more suitable for periodic discrete signals and symmetry. Periodic and symmetric discrete signals are 

discrete signals that repeat over a period of time and have a mirror around their midpoint. Mathematically, DFT of a 

discrete signal x [n] using N points can be seen in equations (8) and (9) [19]. 
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 In numerical calculations the DFT computational load is quite heavy because it requires a number of complex N2 

multiplications. Whereas FFT has a lighter computing load by only requiring a number of (N/2 )log_base2 (N) complex 

multiplications. FFT with the computational load is for radix-2 type FFT [19-20]. 

 The stator current analysis using Fast Fourier Transform method is used to view the stator current from the time 

domain to frequency domain. This analysis method has been widely used to diagnose motor interferences. The success 

of frequency-based analysis is depended on the frequency resolution level. The frequency resolution corresponds to the 

total length of time range to consider sample numbers and sampling frequencies are used. The more the sample numbers 

are used, the more detail signal representation will be. While the greater sampling frequency are used, the longer FFT 

frequency range will be. Mathematically the resolution frequency can be seen in (8) [20]. 
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Where ∆f is the frequency of resolution, fs is the sampling frequency, Ts is the sampling period, and N is the length of 

data used. 
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5. Experimental Setup 

 This experiment consists of main equipment such as 3 phase induction motor 2 HP, 220/380 volt, 4 poles, speed 

1390 rpm and equipped with 2 bearing balls. Other experimental support such as AC power sources, mechanical loading 

is a generator that is combined with a bulb lamp, and data acquisition equipment connected to a computer and supporting 

software for processing data are Labview, Diadem, and Matlab.  

 

5.1 Bearing Damage Detection Techniques 

 Monitoring an induction motor condition by analyzing the frequency spectrum of stator current is a new 

measurement technique that uses computational processing and data acquisition. The FFT algorithm is used to change 

data acquisition which is the current signal in time domain to be a current signal in frequency domain. Several previous 

techniques, the vibration analysis used to monitor and detect motor damage but stator current analysis is more widely 

used because it provides the same application without requiring direct physical contact on the motor, this method is 

known by the name Motor Current Signature Analysis (MCSA). Fig. 2 shows the scheme of monitoring induction motor 

conditions carried out in three processing parts: data acquisition, FFT transformation analysis, bearing damage 

monitoring and detection. 

 

 

 

 

 

 

 

 

 

Fig. 2 – Bearing damage monitoring scheme in single phase stator current 

 The stator current sampling process is carried out for damage analysis purposes. Sampling data from stator current 

was carried out using a sampling frequency of 50,000 Hz/s with a total data length of 250 kHz. This value is deliberately 

chosen so that the band frequency is longer and detailed when data from the time domain is transformed into the frequency 

domain for analysis purposes. The sampling results are stator current signals in the time domain, then transformed in the 

frequency domain using a fast fourier transformation algorithm, signals in the frequency domain show some amplitude 

that appears around fundamental frequency. Equation (2) is used to predict the amplitude that occurs due to outer race 

bearing damage, then the amplitude of the outer race bearing damage is compared to the amplitude of healty bearing in 

the same frequency predictable. Diagnosis of damaged and healthy bearing conditions can be concluded based on changes 

in the magnitude of the amplitude that appears at the location of the predicted frequency damage. 

5.1 Reconstruction of Outer Race Bearing Damage 

Bearing damage reconstruction is made by providing defects in outer race bearing. Damage reconstruction is made 

by making a hole 2 mm in diameter with a variety of cases 1 hole, 2 holes and 3 holes each bearing that shows fig. 3. 

This variation of damage holes is intended so that the data produced can be measured based on the severity, even though 

in reality bearing damage occurs with an undetermined severity. The results of the reconstruction can be seen in Fig 3, 

while bearing specifications can be seen in table 1. 

 
Table 1 - Spesification of bearing 

Merk ASB Ball Bearing 9 

Type 6205 ZZ Wide Bearing 15 mm 

Inner Race 25 mm Outer Race 52 mm 

 

FFT 
algorithm 
analysis 

Monitoring 

& Detection 
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Fig. 3 - Reconstruction of outer race bearing damage 

 

6. Analysis of Stator Current Spectrum on Different Damage Cases 

 This section describes the results of experiments that have been carried out on the analysis of error detection on the 

outer race bearing through the spectrum frequency in the stator current. Testing is done by comparing the results of the 

frequency spectrum analysis on a normal motor with motor bearing damage. In this experiment observations were carried 

out at 20 points of damage frequency using a constant value m = 1 ... 10, this is needed to facilitate observation and 

improve accuracy in the analysis of damage amplitude. The frequency point is determined based on equation (2), with 

the case of outer race bearing damage being made varying into 3 cases, first case (1 hole's bearing), second case (2 hole’s 

bearing), and third case (3 hole’s bearing). 
 

6.1 Determine The Threshold Amplitude 

Threshold amplitude need to be determined as the first step for the detection process. The threshold amplitude will 

be used as a reference in order to identify healthy bearings and damaged bearings. Stator current data on motors with 

healthy bearings is sampled in no load, half load and full load conditions. The current signal obtained is transformed in 

the frequency domain using FFT. Bearing damage prediction based on equation (2) is used to sample the amplitude to be 

used as a comparison with the frequency spectrum of bearing damage. Fig. 4 – Fig. 6 are healthy bearing frequency 

spectrum in three load variations. Each load has a different amplitude, so it will be used to calculate the average amplitude 

of each prediction frequency based on all load variations. 

 

Fig. 4 - The frequency spectrum of healthy bearing - no load 
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Fig. 5 - The frequency spectrum of healthy bearing – half load 

 

 

Fig. 6 - The frequency spectrum of healthy bearing – full load 

Fig. 4-6 shows different frequency spectrums of three variations in load conditions. The results of the plotting amplitude 

at each prediction frequency are shown in table 2. 

Table 2 - The amplitude value of the determined threshold 

Constant 

(k = 1, 2, 3, ..10) 

Amplitude (dB) 

No load Half load Full load Avg (Threshold) 

fp (k = 1) -57.09 -64.11 -64.83 -62.11 

fp (k = -1) -54.26 -48.34 -55.58 -52.87 

fp (k = 2) -65.52 -69.3 -65.23 -67.84 

fp (k = -2) -64.39 -68.45 -64.26 -65.76 

fp (k = 3) -69.14 -72.12 -68.78 -71.03 

fp (k = -3) -66.18 -70.12 -70.15 -69.90 

fp (k = 4) -71.92 -75.29 -71.72 -74.16 

fp (k = -4) -69.89 -68.37 -71.83 -71.52 

fp (k = 5) -69.82 -76.96 -72.41 -74.92 

fp (k = -5) -71.60 -72.61 -73.34 -74.58 

fp (k = 6) -74.71 -74.4 -72.21 -75.44 

fp (k = -6) -73.23 -78.99 -73.77 -76.18 

fp (k = 7) -74.05 -78.26 -76.11 -77.96 

fp (k = -7) -73.66 -75.85 -75.32 -76.84 

fp (k = 8) -75.59 -79.41 -76.70 -79.18 

fp (k = -8) -74.8 -79.78 -76.35 -78.75 

fp (k = 9) -76.23 -79.98 -77.48 -80.38 

fp (k = -9) -76.04 -80.69 -77.12 -79.22 

fp (k = 10) -76.63 -81.02 -77.9 -79.13 

fp (k = -10) -76.91 -80.49 -77.19 -79.22 
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Table 2 shows, in the gray area is the average amplitude obtained from the calculation at each location of the bearing 

damage frequency. The amplitude value is used as a threshold to determine the bearing health and bearing damage 

conditions. The bearing of motor is identified as healthy if the amplitude that appears at the prediction frequency location 

is lower than the threshold amplitude. Vice versa, a bearing motor damage is detected if the amplitude at the prediction 

frequency is higher than the threshold amplitude. 

 

6.2 Frequency Spectrum on Stator Current Analysis – No Load Condition (0%) 

Testing of induction motors in no-load conditions with variations in bearing damage, 1 hole (case 1), 2 holes (case 

2), and 3 holes (case 3). The results show that there are differences in the amplitude value between healthy bearing (blue) 

compared to bearing damage (red). The frequency spectrum in case 1 (fig 7) shows a graph sampled at a frequency of 

500Hz to 1500Hz, the amplitude at the prediction frequency k = 3 (574.2 hz) has increased amplitude of -58.59 dB greater 

than the threshold amplitude -71.03 dB. The amplitude value of the constant k=-5, k=5, k=6, k=-8 also has an increase in 

amplitude exceeding the threshold. Amplitude at 20 points of prediction frequencies in case 1, there were 13 amplitudes 

that exceeded the threshold or the system could detect damage bearing by 65% success. In case 2 (fig 8) with an indication 

of bearing experiencing 2 holes in the outer race bearing, indicating that there are 12 points which have increased beyond 

the threshold. In case 3 (fig 9) shows that there are 13 frequency points that have amplitude exceeding the threshold 

amplitude. The percentage of success of each case can be seen in table 2. 

 

Fig. 7 - Frequencies spectrum of Case 1 – No load 

 

Fig. 8 - Frequencies spectrum of Case 2 – No load  

 

k=-3 
k=-5 k=5 

k=6 k=-8 
k=8 

k=-5 

k=5 
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Fig. 9 - Frequencies spectrum of Case 3 – No load 

Table 3 - Predictable frequencies and amplitude for all cases - no load (0%) 

Constant 
Threshold 

Amp (dB) 

Case #1  Case #2 Case #3 

Freq (Hz) Amp (dB) Freq (Hz) Amp (dB) Freq (Hz) Amp (dB) 

fp (k = 1) -62.11 224.8 -58.89 224.8 -58.83 229 -61.39 

fp (k = -1) -52.87 128.8 -57.81 127.8 -59.91 129 -49.78 

fp (k = 2) -67.84 407.8 -69.24 407.6 -71.34 408.2 -61.39 

fp (k = -2) -65.76 310.2 -67.34 307.2 -58.9 308.6 -58.54 

fp (k = 3) -71.03 574.2 -58.59 587.8 -74.48 587.2 -72.48 

fp (k = -3) -69.90 474.8 -65.98 487.8 -68.62 486.4 -63.28 

fp (k = 4) -74.16 770.2 -73.64 767.4 -72.69 767 -76.82 

fp (k = -4) -71.52 670 -72.97 667.6 -74.26 667.8 -79.5 

fp (k = 5) -74.92 949.6 -56.54 948.8 -53.58 951.8 -58.96 

fp (k = -5) -74.58 849.6 -54.13 849 -54.80 851.6 -50.26 

fp (k = 6) -75.44 1123 -67.99 1123 -65.51 1126 -67.47 

fp (k = -6) -76.18 1024 -75.15 1023 -79.42 1026 -77.92 

fp (k = 7) -77.96 1309 -78.6 1308 -79.69 1305 -83.09 

fp (k = -7) -76.84 1209 -77.9 1208 -78.06 1205 -82.99 

fp (k = 8) -79.18 1449 -71.38 1488 -77.41 1486 -62.15 

fp (k = -8) -78.75 1349 -66.97 1388 -76.06 1385 -61.55 

fp (k = 9) -80.38 1668 -80.05 1669 -64.08 1664 -82.36 

fp (k = -9) -79.22 1568 -79.3 1569 -68.82 1564 -72.33 

fp (k = 10) -79.13 1849 -76.53 1848 -67.49 1854 -62.33 

fp (k = -10) -79.22 1749 -74.66 1747 -79.31 1752 -71.59 

Percentage detection 65% 60% 65% 

 

6.3 Frequency spectrum on stator current analysis  – load condition (50%) 

In this section, the analysis is carried out in the condition that the motor is given a half load. Table 4 shows the 

results of testing in three different cases. In case 1 (1 hole at bearing) the amplitude that appears at the prediction 

frequency has a value above amplitude threshold. The success percentage of detection in case 1 is 100%. Analysis in case 

2 (2 hole at bearing) also shows some amplitude that has a value above the threshold, but there is something unique in 

fig 6, the frequency spectrum of healthy bearings is higher than the bearing damage spectrum. This occurs because of the 

impact on voltage changes when retrieving data so that it impacts on the value of the stator current sampled. Spectrum 

equalization of healthy bearings and damaged bearings is carried out to obtain the correct analysis results. In case 3 (3 

hole at bearing) it is clear there is an increase in amplitude at the prediction frequency, the success percentage of detection 

in case 3 reaches 100%. The frequency spectrum in cases 1-3 can be seen in figure 10-12. 

 

 

 

k=-5 

k=5 
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Table 4 - Predictable frequencies and amplitude for all cases – Half load (50%) 

Constant 
Threshold 

Amp (dB) 

Case #1  Case #2 Case #3 

Freq (Hz) Amp (dB) Freq (Hz) Amp (dB) Freq (Hz) Amp (dB) 

fp (k = 1) -62.11 225.4 -46.60 225.8 -50.26 224 -57.31 

fp (k = -1) -52.87 125 -44.33 123.4 -18.45 123 -24.53 

fp (k = 2) -67.84 401.2 -58.07 401.2 -66.06 397.9 -61.68 

fp (k = -2) -65.76 300 -56.19 301.2 -62.51 297.6 -57.76 

fp (k = 3) -71.03 573 -61.18 577 -68.48 573.8 -62.42 

fp (k = -3) -69.90 473.8 -57.83 477.4 -69.91 473.2 -63.96 

fp (k = 4) -74.16 749.4 -63.49 753 -71.45 747.8 -59.63 

fp (k = -4) -71.52 649 -61.50 651 -56.05 648.2 -59.6 

fp (k = 5) -74.92 925 -63.07 929.4 -73.58 932.6 -69.06 

fp (k = -5) -74.58 825.6 -64.77 829.4 -75.81 830.4 -62.16 

fp (k = 6) -75.44 1100 -67.34 1101 -46.57 1095 -50.07 

fp (k = -6) -76.18 1000 -66.06 1003 -62.75 995.6 -68.13 

fp (k = 7) -77.96 1272 -67.62 1280 -75.24 1272 -72.98 

fp (k = -7) -76.84 1172 -67.29 1180 -76.39 1170 -55.37 

fp (k = 8) -79.18 1448 -69.46 1456 -76.11 1446 -70.15 

fp (k = -8) -78.75 1349 -67.86 1356 -75.52 1346 -66.35 

fp (k = 9) -80.38 1622 -69.40 1633 -76.71 1621 -74.07 

fp (k = -9) -79.22 1522 -68.86 1533 -76.82 1521 -73.86 

fp (k = 10) -79.13 1798 -69.40 1806 -77.02 1796 -75.06 

fp (k = -10) -79.22 1697 -69.68 1706 -77.11 1696 -74.5 

Percentage detection 100% 85% 100% 

 

 
Fig. 10. Frequencies spectrum of Case 1 – half load 

 

  
Fig. 11. Frequencies spectrum of Case 2 – half load 

 

k=-4 

k=4 

k=-5 

k=5 

k=-6 

k=6 
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Fig. 12. Frequencies spectrum of Case 3 – half load 

 

6.4 Frequency spectrum on stator current analysis – full load condition (100%) 

In this section, the analysis is carried out under full load conditions, Figure 13-15 shows appearance of amplitude 

at damage frequency spectrum. In case 1 there are 10 amplitudes that exceed the threshold, the success percentage of 

detection is 50%. Case 2 shows the clear detection result, that damage amplitude appears higher than amplitude threshold, 

in this case the successful of percentage is 100%. Case 3 shows that 13 envelopes have identified damaged bearings, the 

damage amplitude increases higher than the amplitude threshold, a success percentage of 65%. The overall amplitude 

analysis results at the frequency location can be seen in the table 5. 

Table 4 - Predictable frequencies and amplitude for all cases - full load (100%) 

 Threshold 

Amp (dB) 

Case #1  Case #2 Case #3 

Freq (Hz) Amp (dB) Freq (Hz) Amp (dB) Freq (Hz) Amp (dB) 

fp (k = 1) -62.11 225.6 -42.46 222.2 -50.18 220.4 -60.26 

fp (k = -1) -52.87 122 -19.75 122.2 -15.91 121.4 -28.81 

fp (k = 2) -67.84 397.4 -62.97 398.6 -56.17 397 -67.48 

fp (k = -2) -65.76 297.6 -56.1 298.4 -49.58 297.2 -54.26 

fp (k = 3) -71.03 568.2 -78.97 569.2 -60.42 561 -71.18 

fp (k = -3) -69.90 469.2 -71.33 469.2 -58.76 461 -67.68 

fp (k = 4) -74.16 741.5 -90.07 741 -62.54 739.2 -73.9 

fp (k = -4) -71.52 641.8 -82.75 641 -61.53 639.2 -72.39 

fp (k = 5) -74.92 914.6 -61.64 911.4 -60.67 911.6 -76.92 

fp (k = -5) -74.58 814.8 -58.27 811.2 -62.67 811 -75.06 

fp (k = 6) -75.44 1084 -74.29 1084 -49.69 1080 -51.4 

fp (k = -6) -76.18 983 -66.71 987.6 -63.03 984.4 -73.34 

fp (k = 7) -77.96 1259 -88.24 1256 -67.08 1252 -71.23 

fp (k = -7) -76.84 1159 -76.25 1156 -54.69 1152 -56.58 

fp (k = 8) -79.18 1435 -82.16 1436 -65.5 1427 -76.37 

fp (k = -8) -78.75 1330 -79.91 1336 -67.37 1327 -79.08 

fp (k = 9) -80.38 1606 -80.04 1604 -67.99 1600 -79.5 

fp (k = -9) -79.22 1506 -80.86 1504 -65.5 1500 -79.27 

fp (k = 10) -79.13 1778 -97.27 1776 -68.71 -73.94 -80.86 

fp (k = -10) -79.22 1676 -91.27 1678 -68.32 1679 -73.94 

Percentage detection 50% 100% 65% 

 

k=-4 k=4 
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Fig. 13 - Frequencies spectrum of Case 1 – full load 

 
Fig. 14 - Frequencies spectrum of Case 2 – full load 

 
Fig. 15 - Frequencies spectrum of Case 3 – full load 

 

The all experiments result show that the outer race bearing can be detected properly using a frequency spectrum analysis 

on stator current. Experiments analyzing bearing damage without load conditions to full load obtained very clear results 

even though variations of damage cases did not significantly affect the succes percentage of detection. This is indicated 

by the percentage of detections that are not linear to the more severe changes in damage. accuracy of percentage detection 

is more affected by load conditions change, indicated by differences in the no load and half load condition. While in full 

load conditions the difference in the percentage of each case is very far, different from no load and half load conditions. 

The possibility is that there is a damping produced by a mechanical load, a case like this also occurs on paper [15]. The 

percentage comparasion of each case in different load variations can be seen in Figure 16. 
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Fig. 16 – Comparison of percentage detection in all load variations 

 

7. Conclusion 

1.  Analysis of the frequency spectrum on stator current can clearly detect the outer race bearing damage. 

2.  The success of detection analysis is based on changes in motor load rather than the severity 

3.  Half load conditions are most suitable for use in this system configuration, this is indicated by the highest percentage 

of success 

4.  Detection accuracy is unstable under full load conditions due to damping effect of mechanical loads 

5.  Unbalanced voltage affects the stator current so that the analysis of the frequency spectrum of the stator current is 

disrupted 

6.  Future work, bearing damage detection is carried on the inner race and ball bearing for comparison with the outer 

race bearing result, applying voltage stabilizers to facilitate the analysis process, applying different cases of bearing 

damage such as bearing contamination, broken bearings, etc. 
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