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1. Introduction

Over the years, with the emergence of robots into the manufacturing industry, the manufacturing efficiency have

increased. The continuous advancement of robot technologies in the field of navigation including localization, path 

planning, costmap design, obstacle sensing and tracking have drove revolutions to the industry. In the recent effort of 

transforming the industry towards Industry 4.0 [1], robot navigation remains a crucial part for a robot to co-exist with 

human co-workers. Humans prefer to maintain a certain proxemic distance [2] between themselves and robots for safety 

Abstract: In the revolution of Industry 4.0, autonomous robot navigation plays a vital role in ensuring intelligent 

cooperation with human workers to increase manufacturing efficiency. Human prefers to maintain a proxemic 

distance with other subjects for safety and comfort purposes, where the human personal-space can be represented by 

a costmap. Current proxemic costmaps perform well in defining the proxemic boundary to maintain the human-robot 

proxemic distance. However, these approaches generate static costmaps that are not adaptive towards different 

human states (linear position, angular position and velocity). This problem impacts the robot navigation efficiency, 

reduces human safety and comfort as the autonomous robot failed to prioritize avoiding certain humans over the 

other. To overcome this drawback, this paper proposed a neural-network based adaptive proxemic-costmap, named 

as NNPC, that can generate different sized personal-spaces at different human state encounters. The proposed 

proxemic-costmap was developed by learning a neural-network model using real human state data. A total of three 

human scenarios were used for data collection. The data were collected by tracking the humans in video recordings. 

After the model was trained, the proposed NNPC costmap was evaluated against two other state-of-art proxemic 

costmaps in five simulated human scenarios with various human states. Results show that NNPC outperformed the 

compared costmaps by ensuring human-aware robot manoeuvres that have higher robot efficiency and increased 

human safety and comfort. 
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and comfortability purposes. Humans are governed by invisible social rules, and these affect their movement during 

Human-Robot-Interaction (HRI). Hall [2] separates human personal-space into intimate, personal, social and public. 

Human personal-space are governed by complex rules, and it is vital for robot designers to ensure their robots abide to 

these rules to gain acceptance from human.  

In the context of human-aware robot navigation, the human personal-space is represented by a costmap with high 

cost cells surrounding a human. Human-aware robot navigation is distinct from conventional navigation as it considers 

human safety, comfortability and path smoothness in the search of an optimum robot path without trading off navigation 

efficiency. There are various human-aware navigation methods [3]. This research focuses on improving the costmap 

method, where an adaptive Neural-Network based Proxemic Costmap (NNPC) is proposed. The rest of the article is 

organized as follows: Section 2 presents the literatures related to human-aware costmaps, Section 3 introduces the 

methods used to design, develop and evaluate NNPC, the result of NNPC performance evaluation is discussed in Section 

4, and this article is concluded in Section 5. 

 

2. Literature Review 

Human-aware costmaps typically use self-defined or learnt proxemic model to generate human personal-space 

boundaries to prevent a robot from traversing too close to a human or human group. Papadakis et al. [4] proposed a 

costmap that represents different types of human social-zone using velocity and orientation dependent proxemic model. 

Gómez et al. [5] designed a costmap that uses various Gaussian models to generate personal-spaces for individuals and 

human-groups. Vega-Magro et al. [6] group individuals into human-group based on their relative distances and define a 

boundary surrounding the group to avoid a robot from interrupting the group formation. These prior mentioned methods 

excel in categorizing humans into different human groups and assign personal-space to respective formations. This 

prevents a robot from interrupting the human group activities. However, the methods are designed in static human 

contexts where when moving humans are encountered, a robot can still fail to maintain an appropriate human-robot 

proxemic distance. 

Some researches focus solely on the costmap generation for the personal-space of an individual. Kirby et al. [7] used 

2 Gaussian functions to represent the front and rear sides of a personal-space. They also utilized a pass-on-the-right 

proxemic model [8] to ensure a robot to always pass-by a human on a socially preferable side. Scandolo and Fraichard 

[9] designed a costmap that has a proxemic model dependent on the Hall’s proxemic model [2], human motion and 

interaction between humans and other objects in an environment. Patompak et al. [10] introduced Social Relationship 

Model (SRM), an extended version of Social-Force Model (SFM) [11] to assign different sized personal-space to humans 

in an environment, based on the human position, velocity and social relationship. These proxemic costmaps only define 

the personal-space boundary for individuals, which can cause a robot to interrupt a group personal-space. Besides, their 

limited capability on human trajectory prediction can also cause poor navigation performance when a moving human or 

human group is encountered. 

There are some approaches involve human path prediction capability to reason about human future movements. By 

assuming linear human motions, Kollmitz et al. [12] utilized a multi-layered costmap that populates human predicted 

trajectories using Gaussian functions with linear decaying amplitudes from the current human position. Karageorgas [13] 

reasons about human future paths using the Bayesian Human Motion Intentionality Prediction (BHMIP) [14], and 

represented the paths using a series of Gaussian function. These costmaps serve the purpose of maintaining a human-

robot proxemic distance and to allow early preparation for collision avoidance. 

In overall, the main drawback of these current proxemic costmap approaches are not adaptive towards different 

human states (linear position, angular position and velocity). In simple, same sized personal-spaces are generated even 

though the humans are located far or near a robot, moving towards or away a robot and moving fast or slow relative to a 

robot. Although certain costmaps [4, 7, 10] took consideration of human states, but those approaches are designed for 

less complex scenarios like static individuals and small human group encounters. This drawback causes a robot to not 

able to prioritize avoiding certain human over the other, which impacts the human-aware navigation performance in terms 

of human comfortability and navigation efficiency and even potentially causes safety issues such as increase in human-

robot collisions. Hence, this research proposed the NNPC, an adaptive costmap that can adapt to different human states 

to overcome the drawback of current approaches. NNPC utilizes a learnt neural-network model to generate appropriately 

sized personal-space for encountered humans at different states. The neural-network model was trained using real human 

motion data. 

 

3. Methodology 

NNPC is designed using 3 main parts. The first part is the basic Gaussian function (𝑓𝑝𝑟𝑜𝑥𝑃𝐿) proposed by Kirby et 

al. [7] that forms the personal-space boundary of a human. The second part of NNPC is the human intention predictor 

(HI) presented by Karageorgas [13] used to predict human future trajectory and the third part, the main contribution of 

this research, is the neural-network proxemic model (𝑓𝑁𝑁) used to change the size of the personal-space in order to adapt 

to different human states. 
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Fig. 1 – human personal-space costmap generated by 𝒇𝒑𝒓𝒐𝒙𝑷𝑳. 

 

The first part, 𝑓𝑝𝑟𝑜𝑥𝑃𝐿 (Fig. 1) is used in the design of NNPC because it provides a smooth exponential increasing 

cost from the personal-space boundary towards the center of a human position, thus allowing smooth robot paths to be 

planned in avoiding a human. 𝑓𝑝𝑟𝑜𝑥𝑃𝐿 can further be broken down into 2 minor parts. The first minor part is the proxemic 

function as follows: 

 

𝑓𝑝𝑟𝑜𝑥 = 𝐴𝑒𝑥𝑝(−(𝐹1 + 𝐹2)) (1) 

where 

 

𝐹1 =
(cos(𝜙 − 𝜃) √(𝑥𝑐 − 𝑥0)2 + (𝑦𝑐 − 𝑦0)2)

2
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2  

𝐹2 =
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2
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2  
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, 𝑖𝑓 |𝜙 − 𝜃| < 90°
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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(5) 

 

and 𝐴 is the amplitude, 𝜎𝑥
2 and 𝜎𝑦

2 are the variances, 𝛾 is the velocity dependent factor and |𝜙 − 𝜃| is the absolute value 

of the shortest angular difference. The second minor part is the passing layer, 𝑓𝑃𝐿. 𝑓𝑃𝐿 is included in the design of NNPC 

to ensure the robot pass-by a human on a socially acceptable side. 𝑓𝑃𝐿 has the same equation as 𝑓𝑝𝑟𝑜𝑥 except for 𝜃 in 

Equation 2, 3 and 5 is changed to 𝜑 with the following equation: 

 

𝜑 = {
𝜃 + 90°
𝜃 − 90°

, 𝑖𝑓 𝑝𝑎𝑠𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑟𝑖𝑔ℎ𝑡
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
(6) 

 

Combining 𝑓𝑝𝑟𝑜𝑥 and 𝑓𝑃𝐿 (Equation 7) results in the first part of NNPC (𝑓𝑝𝑟𝑜𝑥𝑃𝐿) that generates a human personal-

space boundary shown in Fig. 1. 

 
𝑓𝑝𝑟𝑜𝑥𝑃𝐿 = max  {𝑓𝑝𝑟𝑜𝑥, 𝑓𝑃𝐿} (7) 

 

The second part of NNPC is HI. HI is vital in the design of NNPC as it predicts the human future trajectory for a 

robot to have early preparation for collision avoidance. HI computes the most probable human destination using Hidden 

Markov Models (HMM) [15] where Karageorgas [13] provided a detail explanation on the algorithm. Then, using A* 

[16] algorithm, a shortest path is planned from the human current position towards the most probably destination to 

represent the predicted human trajectory. The human trajectory is then populated with a series of Gaussian function 

(𝑓𝑝𝑟𝑜𝑥𝑃𝐿) using the following equation: 

 
𝑓𝑝𝑟𝑜𝑥𝐻𝐼𝑃𝐿 = max  {𝑓𝑝𝑟𝑜𝑥𝑃𝐿1

, 𝑓𝑝𝑟𝑜𝑥𝑃𝐿2
… 𝑓𝑝𝑟𝑜𝑥𝑃𝐿𝑁

} 

 

(8) 

where 

 

 𝑁 =
𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒

𝑣𝑞 × 𝑓
 

(9) 
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and 𝑁 is the total number of populated personal-space, which is influenced by the human-robot relative distance, 

robot’s velocity, 𝑣𝑞  and the velocity dependent factor, 𝑓. Fig. 2 shows the costmap generated by 𝑓𝑝𝑟𝑜𝑥𝐻𝐼𝑃𝐿. 

 

 
Fig. 2 – human personal-space costmap generated by 𝒇𝒑𝒓𝒐𝒙𝑯𝑰𝑷𝑳. 

 

The third part of NNPC is 𝑓𝑁𝑁, the neural-network proxemic model. 𝑓𝑁𝑁 is designed to take in 3 input human states 

which relates to angular position, velocity and linear position, and have an output as a weight to control the size of the 

personal-space generated by 𝑓𝑝𝑟𝑜𝑥𝐻𝐼𝑃𝐿. These inputs are selected based on several costmap approaches [4, 7, 10]. NNPC 

has the following equation: 

 
𝑓𝑁𝑁𝑃𝐶 = 𝑓𝑁𝑁 × 𝑓𝑝𝑟𝑜𝑥𝐻𝐼𝑃𝐿 (10) 

 

 
 

Fig. 3 – robot 𝒒 encounters human 𝒏. 

 

In the context of robot 𝑞 and human 𝑛 as shown in Fig. 3, (let 𝑛 be the general notation to represent any human), the 

first input is the angular position, which is represented by anisotropic factor, 𝜔(𝜑𝑛𝑞) [17]. The second input is the 

normalized human-robot relative velocity (𝑣̃𝑛𝑞) while the third input is the normalized human-robot relative distance 

(𝑑̃𝑛𝑞), both are normalized to the range of 0 to 1 using the min max normalization [18] method. 𝑓𝑁𝑁 is a feedforward 

multilayer perceptrons neural-network model as shown in Fig. 4. 

 

 
 

Fig. 4 – 𝒇𝒏𝒏 of NNPC with 𝑵 nodes in the hidden layer. 
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Fig. 4 – human 𝒊 encounters human 𝒋. 

 

As mentioned earlier, NNPC was designed where 𝑓𝑁𝑁 was trained using real human state data, as in several human-

aware navigation literatures [19-22] suggested human is an appropriate demonstrator to teach a robot to react in a human 

environment. The human movements were recorded using video recording method and the human state data were 

collected by tracking the human movements in the footages. The input data and the training data have the same formula, 

but the latter relate to the states of humans 𝑖 and 𝑗 as shown in Fig. 5 instead of human 𝑛 and robot 𝑞. The first training 

data is 𝜔(𝜑𝑖𝑗), the anisotropic factor, the second training data is the normalized relative velocity (𝑣̃𝑖𝑗) and the third 

training data is the normalized relative distance (𝑑̃𝑖𝑗). The target data is the lateral distance between humans 𝑖 and 𝑗 (𝑦̃𝑖𝑗). 

𝑦̃𝑖𝑗 is chosen as the target data as it represented the proxemic distance humans prefer to maintain during interaction. 

 

a 

 

b 

 

c 

 
 

Fig. 6 - (a) Scenario 1 (S1); (b) Scenario 2 (S2) (c); Scenario 3 (S3). 

 

Three human scenarios (Fig. 6) were used to collect the human state data. These scenarios are scenarios used by 

previous literatures. Scenario 1 (S1): face-to-face encounter [9, 12, 13, 21, 23, 24] (Fig. 6a), Scenario 2 (S2): walking-

away  [19] (Fig. 6b), Scenario 3 (S3): overtaking (Fig. 6c) [12]. A total of 16 human subjects were involved, only male 

subjects with age between 19 to 24 years old (young adult group [25]) were chosen to remove the dependence of the 

training data on demographic factors (gender and age). The subjects were randomly split into 2 groups, one representing 

human 𝑖 while the other represents human 𝑗. Each subject from the groups were then randomly assigned a label from 1 

to 8. The data collection started with S1 where subjects with label 1 from each group were positioned at 𝑠̅𝑖  and 𝑠̅𝑗 

respectively. The subjects were instructed to walk towards their respective goal 𝑔̅𝑖 and 𝑔̅𝑗 and their movements were 

recorded. This was repeated for 3 times before changing the subjects to the consecutive labels. Data collection for S1 was 

completed when all subjects from label 1 to 8 were involved, and the same procedures were repeated for S2 and S3. 

The human state data were then collected by tracking the human in the video footage using Kernelized Correlation 

Filters (KCF) [26] in OpenCV. The neural-network model was then trained using Levenberg-Marquardt backpropagation 

algorithm [27]. The output of the trained model, 𝑓𝑁𝑁 is then used to adaptively scale the size of the personal-space when 

different human states are encountered.  

The 𝑓𝑁𝑁 effect on the size of the personal-space towards different human states are shown in Fig. 7. When human 𝑛 

was moving towards robot 𝑞 (Fig. 7a), the size of the personal-space increased. Fig. 7b to Fig. 7d show the scenario 

where human 𝑛 was facing away from robot 𝑞. As shown in Fig. 7b, when human 𝑛 was much faster than robot 𝑞 (𝑣̃𝑛𝑞 =

 0.0), the size of the personal-space remained small regardless of their relative distance. Fig. 7c shows that, when human 

𝑛 was walking slightly slower than robot 𝑞 (0.0 < 𝑣̃𝑛𝑞 <  0.5), the size of the personal-space decreased as their relative 

distance decreased. Fig. 7d shows that, when human 𝑛 was walking much slower than robot 𝑞 (𝑣̃𝑛𝑞 >  0.5), the size of 

the personal-space decreased as their relative distance decreased, but the size was larger than that in the previous case 
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(0.0 < 𝑣̃𝑛𝑞 <  0.5). These changes in the size of personal-space allow a robot to adapt to different human states and 

prioritize avoiding certain human over the other to improve navigation performance. 

 

a 

 
b 

 
c 

 
d 

 
 

Fig. 7 - (a) 𝝎(𝝋𝒏𝒒) ≥ 𝟎. 𝟓 at varying 𝒅̃𝒏𝒒; (b) 𝝎(𝝋𝒏𝒒) ≤ 𝟎. 𝟓 at 𝒗̃𝒏𝒒 =  𝟎. 𝟎 and varying 𝒅̃𝒏𝒒; (c) 𝝎(𝝋𝒏𝒒) ≤

𝟎. 𝟓 at 𝟎. 𝟎 < 𝒗̃𝒏𝒒 <  𝟎. 𝟓 and varying 𝒅̃𝒏𝒒; (d) 𝝎(𝝋𝒏𝒒) ≤ 𝟎. 𝟓 at 𝒗̃𝒏𝒒 >  𝟎. 𝟓 and varying 𝒅̃𝒏𝒒. 

 

To evaluate whether the proposed NNPC can improve the navigation performance, several human-robot scenarios 

were involved. The evaluation was carried out in a human-robot simulator [28] using manufacturing scenarios and were 

designed by benchmarking several human-aware navigation literatures [12, 13, 19, 23]. The scenarios were also setup to 

include a robot encountering human at different states, to test whether NNPC can adapt to changes in states. The first to 

forth scenarios involve robot encountering a human worker in a factory with several production lines as obstacles. The 

first scenario (SS1) as shown in Fig. 8a was a face-to-face human-robot encounter. Fig. 8b, the second scenario (SS2) 

involved a human walking parallel to and eventually away from the robot. The robot behaviour in SS1 and SS2 were 

used for evaluating NNPC towards the change in human angular position. Scenario 3 (SS3) was setup similar to SS2, but 

with a decreased in human velocity from 1.4 𝑚𝑠−1  [29] to 0.25 𝑚𝑠−1 and the human initial and goal positions were 

setup as (0,1) and (7,1) respectively. The robot behaviors in SS2 and SS3 were used to evaluate whether NNPC can 

adapt to changes in human velocity. The forth scenario was designed similar to SS3, but with an increased in the initial 

human-robot distance where the human initial and goal positions were setup as (7,1) and (12,1) respectively. The robot 

behaviors in SS3 and SS4 were utilized to test whether NNPC can adapt to human at different linear positions.  
 

a 
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b 

 
 

Fig. 8 - (a) face-to-face human-robot encounter; (b) human facing away from robot encounter. 

 

The fifth scenario (SS5) as shown in Fig. 9 was used to test whether NNPC can handle higher human density scenario 

where a robot can possibly encounter in real life, for example, groups of workers exiting a factory through a pathway 

during recess time. The performance of NNPC was compared against two prior mentioned human-aware costmap 

methods: proxPL (Equation 7) by Kirby et al. [7] and proxHIPL (Equation 8), a combination of methods by Kirby et al. 

[7] and Karageorgas [13]. The performance metrics used were based on three criteria: human safety and comfort, path 

smoothness and navigation efficiency. The criteria and their respective metrics are shown in Table 1. 

 

 
 

Fig. 9 - robot encounters human worker groups. 

 

Table 1 - Performance criteria and their respective metrics. 

Criteria Metrics Symbol 

Human safety and 
comfort 

Minimum relative 
human-robot 
distance 

𝑑𝑟𝑒𝑙𝑚𝑖𝑛
 

Path smoothness Average integral of 
linear jerk 

𝐼𝑗 𝑙𝑖𝑛
 

 Average integral of 
angular jerk 

𝐼𝑗 𝑎𝑛𝑔
 

Navigation efficiency Execution time 𝑡𝑡𝑎𝑠𝑘 

 Path length 𝐿𝑝 

 

4. Results and Discussion 

 

a 

 

b 

 
 

Fig. 10 - robot behaviours in SS1 using (a) proxPL; (b) proxHIPL/ NNPC. 
 

Fig. 10a shows that, for SS1, proxPL was unable to predict human future trajectories which ended up choosing the 

bottom lane and moved too close to the human (𝑑𝑟𝑒𝑙 𝑚𝑖𝑛
= 0.79 𝑚), which can cause human safety issues. NNPC with 

human path prediction was able to perform as well as proxHIPL by choosing the top lane, avoided getting too near to the 
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human with 𝑑𝑟𝑒𝑙𝑚𝑖𝑛
 value of 1.97 𝑚  and 2.08 𝑚  respectively. For path smoothness, in terms of 𝐼𝑗𝑙𝑖𝑛

, NNPC 

(1.25 𝑚𝑠−3) was significantly better (𝑝 > 0.05) than proxPL (1.43 𝑚𝑠−3) because the robot with proxPL had to come 

to an emergency stop when the human suddenly appeared around the corner of the bottom lane. NNPC had no significant 

difference (𝑝 > 0.05) in terms of 𝐼𝑗 𝑎𝑛𝑔
 as compared to other methods. NNPC and proxHIPL had greater execution time 

and path length as compared to proxPL because the top lane was chosen to provide better human safety and comfort. 

 

a 

 

b 

 
 

Fig. 11 - robot behaviours in SS2 using (a) proxPL/ proxHIPL; (b) NNPC. 
 

For SS2, Fig. 11a shows the robot behaviour of proxPL where the robot chose the longer path because the large size 

of the generated human personal-space was blocking the top lane. The non-adaptive proxHIPL also had the similar issue 

as shown in Fig. 11a. NNPC however managed to adapt to the human angular position, generated a smaller sized personal-

space which allowed the robot to plan a shorter path through the top lane (Fig. 11b). 𝑑𝑟𝑒𝑙 𝑚𝑖𝑛
 is not used in SS2, SS3 and 

SS4 as all costmaps would have the similar values which equate to either the initial or final human-robot distance. In 

terms of 𝐼𝑗 𝑙𝑖𝑛
, NNPC (0.96 𝑚𝑠−3) had an improvement of 9.44 % as compared to proxPL (1.06 𝑚𝑠−3) and 12.32 % as 

compared to proxHIPL (1.09 𝑚𝑠−3). In terms of 𝐼𝑗𝑎𝑛𝑔
, NNPC (10.03 𝑚𝑠−3) had a significant improvement (𝑝 ≤ 0.001) 

of 20.96 % as compared to proxPL (12.69 𝑚𝑠−3) and 19.40 % as compared to proxHIPL (12.44 𝑚𝑠−3). For navigation 

efficiency, NNPC had significant improvements in both 𝑡𝑡𝑎𝑠𝑘 and 𝐿𝑝. For 𝑡𝑡𝑎𝑠𝑘, NNPC (22.22 𝑠) had an improvement of 

16.62 % and 16.87 % as compared to proxPL (26.65 𝑠) and proxHIPL (26.73 𝑠) respectively. For 𝐿𝑃, NNPC (10.66 𝑚) 

had an improvement of 12.26 % as compared to both proxPL and proxHIPL (12.15 𝑚). These improvements show that 

the by adapting to human angular position, the navigation performance can be improved. 

 

a 

 

b 

 
 

Fig. 12 - robot behaviours in SS3 using (a) proxPL; (b) proxHIPL/ NNPC. 
 

For SS3 where the human encountered was walking slowly, the personal-space generated by proxPL (Fig. 12a), 

proxHIPL and NNPC in Fig. 12b generated similar sized personal-space. This shows that NNPC was able to adapt to the 

slow-moving human and generate a larger sized personal-space as compared to the one in SS2 (Fig. 10b). This allowed 

the robot to select a faster path when the slow-moving human was blocking the top lane and at the same time avoid 

getting too close to the human for safety and comfort purposes. NNPC performed as well as proxPL and proxHIPL in 

SS3 where the performance metrics (Table 2) of NNPC show no significant difference (𝑝 > 0.05) as compared the other 

approaches. 

 

a 

 

b 

 
 

Fig. 13 - robot behaviours in SS4 using (a) proxPL/ proxHIPL; (b) NNPC. 
 

For SS4, Fig. 13a shows the costmap generated by proxPL blocked the top lane and caused the robot to take a longer 

path. The non-adaptive proxHIPL also faced the similar problem as shown in Fig. 13a. NNPC however adapted to the 

change in human linear position, generated a smaller sized personal-space, allowing the robot to plan a shorter path 
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towards the goal. NNPC significantly outperformed (𝑝 ≤ 0.001) proxPL and proxHIPL in all metrics. In terms of 𝐼𝑗𝑙𝑖𝑛
, 

NNPC ( 0.82 𝑚𝑠−3 ) was 23.36 %  and 18.00 %  lower than proxPL ( 1.07 𝑚𝑠−3 )  and proxHIPL ( 1.00 𝑚𝑠−3 )  

respectively. For 𝐼𝑗𝑎𝑛𝑔
, NNPC (9.85 𝑟𝑎𝑑𝑠−3 ) had improvements of 25.72 %  and 24.58 % as compared to proxPL 

(13.26 𝑟𝑎𝑑𝑠−3 ) and proxHIPL ( 13.06 𝑟𝑎𝑑𝑠−3 ) respectively. For navigation efficiency, in terms of 𝑡𝑡𝑎𝑠𝑘 , NNPC 

(22.10 𝑠) improved by 17.01 % as compared to proxPL (26.63 𝑠) and 17.44 % as compared to proxHIPL (26.77 𝑠). 

NNPC (10.63 𝑚) also had shorter 𝐿𝑝 , 12.51 % shorter than proxPL (12.15 𝑚) and 12.73 % shorter than proxHIPL 

(12.18 𝑚). These improvements show that the adaptive behaviour of NNPC towards human linear position can improve 

the path smoothness and navigation efficiency. 

 

a 

 

b 

 
 

Fig. 14 - robot behaviours in SS5 using (a) proxPL/ proxHIPL; (b) NNPC. 
 

In a higher human density scenario (SS5), Fig. 14a shows that proxPL overpopulated the costmap with human 

personal-space, where the robot wrongly avoided the 𝐺1 which was initially closer to the robot. This caused the robot to 

detour towards the wrong side and moved too close to 𝐺2. The non-adaptive proxHIPL also had similar behaviour as 

shown in Fig. 14a. NNPC however, was able to reduce the size of the personal-space for 𝐺1that was moving towards the 

same direction as the robot, but not the oncoming 𝐺2. This helped the robot to prioritized in avoiding the oncoming group 

and joined the other group to navigate towards the goal. For human safety and comfort (𝑑𝑟𝑒𝑙 𝑚𝑖𝑛
), NNPC (0.68 𝑚) 

outperformed proxPL (0.38 𝑚) by 78.95 % and proxHIPL (0.47 𝑚) by 44.68 %. For 𝐼𝑗𝑙𝑖𝑛
, NNPC (1.79 𝑚𝑠−3) had 

significant improvement (𝑝 ≤ 0.001), where it was 36.07 % better than proxPL (2.80 𝑚𝑠−3) and 37.63 % better than 

proxHIPL (2.87 𝑚𝑠−3). In terms of 𝑡𝑡𝑎𝑠𝑘 , NNPC (22.72 𝑠) also significantly improved (𝑝 ≤ 0.001) by 21.03 % as 

compared to proxPL (28.77 𝑠) and 24.84 % as compared to proxHIPL (30.23 𝑠). In terms of 𝐼𝑗 𝑎𝑛𝑔
 and 𝐿𝑝, NNPC had 

no significant difference as compared to other methods as all methods caused the robot to make certain detours, that 

increased angular jerk and path length, but the robot with NNPC detoured to the correct side while the robot with proxPL 

and proxHIPL detoured to the wrong side. These improvements show that the adaptive capability of NNPC improved the 

navigation performance in a multiple human scenario. Table 2 shows the navigation performance for each costmap in all 

human scenarios, with highlighted improvements made by NNPC. 

Table 1 – Navigation performance 

Scenario Costmap 𝒅𝒓𝒆𝒍𝒎𝒊𝒏
 

[𝒎] 

𝑰𝒋𝒍𝒊𝒏
 

[𝒎𝒔−𝟑] 

𝑰𝒋𝒂𝒏𝒈
 

[𝒓𝒂𝒅𝒔−𝟑] 

𝒕𝒕𝒂𝒔𝒌 

[𝒔] 
𝑳𝒑  

[𝒎] 

SS1 proxPL  0.79 1.43 10.59 24.27 10.60 
 proxHIPL 2.08 1.36 9.90 26.12 12.10 
 NNPC 2.03 1.25 10.59 25.67 12.21 

SS2 proxPL  − 1.06 12.69 26.65 12.15 
 proxHIPL − 1.09 12.44 26.73 12.15 
 NNPC − 0.96 10.03 22.22 10.66 

SS3 proxPL  − 1.17 12.87 26.26 12.17 
 proxHIPL − 1.15 13.31 26.20 12.14 
 NNPC − 1.16 12.89 26.25 12.20 

SS4 proxPL  − 1.07 13.26 26.63 12.15 
 proxHIPL − 1.00 13.06 26.77 12.18 
 NNPC − 0.82 9.85 22.10 10.63 

SS5 proxPL  0.38 2.80 14.60 28.77 10.52 
 proxHIPL 0.47 2.87 13.32 30.23 10.78 
 NNPC 0.68 1.79 14.53 22.72 10.80 

       

 

5. Conclusion 
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In this study, a neural-network based adaptive proxemic costmap, named NNPC is introduced to overcome the 

drawbacks of current human-aware costmap methods. The neural-network proxemic model of NNPC was trained using 

human state data from real human subjects. NNPC then used the model output to generate different sized personal-space 

based on various human state encounters. By adapting to the changing human states, NNPC managed to significantly 

outperform two other costmap methods in both single and multiple human scenarios, in terms of human safety and 

comfort, path smoothness and navigation efficiency. Future works can take account of human demographic and social 

relationship as model input to further improve the human-aware navigation performance. 
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