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1. Introduction

Cognitive radio (CR) is employed as an opportunistic spectrum access which promotes intelligence for 5G wireless

networks to provide higher capacity and a network speed of 10Gbps [1]. The need for more capacity will demand more 

spectrums resulting in integration of CR in 5G networks. The need of CR is to enable much more efficient use of the 

Abstract: The emerging 5G wireless communications enabled diverse multimedia applications and smart devices in 

the network. It promises very high mobile traffic data rates, quality of service as in very low latency and improvement 

in user’s perceived quality of experience compared to current 4G wireless network. This encourages the increasing 

demand of significant bandwidth which results a significant urge of efficient spectrum utilization. In this paper, 

modelling, performance analysis and optimization of future channel selection for cognitive radio network by jointly 

exploiting both CR mobility and primary user activity to provide efficient spectrum access is studied.  The modelling 

and prediction method is implemented by using Hidden Markov Model algorithm. The movement of CR in wireless 

network yields location-varying spectrum opportunities. The current approaches in most literatures which only 

depend on reactive selection spectrum opportunities result of inefficient channel usages. Moreover, conventional 

random selection method tends to observe a higher handoff and operation delays in network performance.  This 

inefficiency can cause continuous transmission interruptions leading to the degradation of advance wireless services. 

This work goal is to improve the performance of CR in terms number of handoffs and operation delays. We perform 

simulation on our prediction strategy with a commonly used random sensing method with and without location. 

Through simulations, it is shown that the proposed prediction and learning strategy can obtain significant 

improvements in number of handoffs and operation delays performance parameters. It is also shown that future CR 

location is beneficial in increasing mobile CR performance. This study also shows that the number of primary user 

in the network and the PU protection range affect the performance of mobile CR channel selection for all methods. 
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spectrum while intelligently adapts itself to provide the optimum communications channel. CR is expected to operate 

dynamically in an opportunistic way in which spectrum access is permitted only if the channel selected is detected idle. 

Conventionally, a CR must perform spectrum sensing periodically at each licensed channel to determine the primary user 

(PU) transmission states in every time slot. Literatures states that channel detection greatly depends on PU traffic pattern 

and sensing errors [2]. 

5G wireless network incorporates high mobility requirements [3], hence spectrum availability becomes location 

varying besides the common time-varying. This has become more complicated in providing an efficient utilization of the 

idle portions of the radio spectrum and resource allocation. Many studies and strategic methods had been proposed to 

improve the accuracy of channel selection.  

 

1.1 Motivation 

CR network (CRN) implements spectrum utilization by allocating low priority unlicensed users (CR) to exploit idle 

license channels which are used by high priority licensed users (PUs) in an opportunistic manner [4]. However, the CR 

must vacate the channel prior to PUs return to claim for channels access. A set of procedures called spectrum handoff 

will be initiated where the system will find any new vacant channel through random channel selection and spectrum 

sensing to resume their interrupted transmissions. It is seen that the performance of a spectrum handoff operation depends 

greatly on the performance of spectrum sensing. Many works studies on the decision errors provide by spectrum sensing 

[5]–[7], quantified in terms of false alarm and misdetection probabilities that are caused by noise and the channel 

impairments such as shadowing and fading. A false alarm occurs when an idle channel is sensed busy, while misdetection 

occurs when busy channel is sensed free. These errors will consequently lead to loss of opportunities and collision with 

PU in the channel respectively. 

Correspondingly, many studies have focused on the spectrum handoff that depends on spectrum opportunities which 

is time-varying  due to the random variations PUs activities [8], [9]. The QoS performance of spectrum utilization such 

as delay and throughput rate is being compared. In most of these works, both CR and PUs are assumed to be stationary. 

Evidently, in mobile CR, the spectrum opportunities change due to network topology change and the existence of 

transmission range. This is due to the spectrum availability exist in time and space domain at which the spectrum 

opportunity is due to time varying PU traffic pattern and CR or PU movement in time respectively. For spectrum 

opportunity in space, the CR must determine the relative position of PU transmitter. Work in [10]–[14], shows that by 

considering location information of the PUs or CR, CRN could optimized the channel utilization and CR throughput rate. 

Work in [15], [16] study the effects of the CR mobility on spectrum sensing in cognitive vehicular network has been 

investigated. It is seen that the PUs protection range, the CR mobility model, the network region size and the PU activity 

affect the detection capacity and the maximum achievable channel access probability. In [17] introduce spatial false alarm 

to consider the performance of spatial sensing while [18] proposed a spatial temporal sensing method to identify the 

channel opportunities in mobile CRN.  

Note that spectrum opportunity in time and frequency domain will be determined by spectrum sensing operation. 

The CR can perform handoff once it confirms that it will not interfere any of the PU receivers at that time and location. 

The QoS in CR transmission will be degraded if frequent handoff occurs where in handoff. In handoff operation, CR will 

access the available channels with a cost of several handoff delay  operations caused by spectrum sensing, spectrum 

decision, spectrum sharing, and spectrum mobility [19]. The incorrect identification of idle channel and any successive 

suboptimal channel selections could result in unnecessary delays and frequent handoffs. Hence, in [20]–[22] shows that 

proactive spectrum availability predictions will improve the channel selection process by minimizing the probability of 

inaccurate spectrum sensing.  

This paper proposes to implement HMM learning based spectrum selection process which exploits past PU activity 

pattern and CR previous movements. Then, the next channel selection will be based on the prediction of next location-

varying spectrum opportunity results. This work is extended from [22] where both PU activity and location information 

are used for channel selection. The work employs prediction strategy using PU activity modeling to improve its channel 

allocation in mobile CR scenario. It shows that their prediction strategy improves further when the location of CR is 

being considered. In [23], [24], described several issues due to localization estimation method where high localization 

operation delay occurs in return of higher accuracy. Therefore, this work intends to investigate the benefits of exploitation 

of the past CR user movements to estimate the future CR movements using HMM algorithm. This prediction method is 

expected to outperform the conventional random methods which depend on reactive localization and sensing. The 

simulation results will show the performance improvement of the proposed method in CR networks. The work 

specifically deals with CR performance for number of handoff and operation delays for mobile CR user. 

The rest of this paper is organized as follows. Section 2 describes the system model and proposed strategy 

formulation. Section 3 presents the performance comparisons and discussion of the Random with and without location 

information schemes. Finally, section 4 concludes this paper. 
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2. System Model and Problem Formulation 

In this section, we will describe our CRN network model. We consider a mobile CR network scenario consist of 1 

CR and 1 PU as shown in Fig. 1 to evaluate the performance of the proposed method 

 

 
Fig. 1 Example of Moving CR and PU Scenario 

. 

2.1 System Model Description 

In this paper, we consider a single PU base station with fixed location, 𝐿 = [𝑥, 𝑦] and a single CR moving randomly 

inside a network area, 𝐴. 𝐴 is assumed to be square shaped for simplicity. The CR network is considered as a time slotted 

system, 𝑡 =  {0, 1, . . , 𝑡 + 1, 𝑡 + 2, . . 𝑇}. CR is assume to move according to Random Way Point Mobility (RWPM) 

model [22]. The PU transmitter has a limited transmitting range which is defined as protection range, 𝑃𝑟   due to its fixed 

network policies and hardware constraints.  

As depicted in Fig 1, in mobile network scenario, whenever a CR is outside 𝑃𝑟  , it can use the licensed channel freely 

without interrupting the PUs. This is because PU has a specific transmitting range of 𝑃𝑟  only. It is seen that beyond the 

𝑃𝑟 , the PUs transmission signal is not reachable. While inside 𝑃𝑟  region, the CR can only use the licensed channels when 

PUs is idle similar as in static scenario in literatures. Thus, practically, the changing relative distances between PU 

transmitter and CR, the channel sensing and selection decision strategy can be defined to accommodate the exploitation 

of the extended spectrum opportunity. 

 

2.1.1 PU Activity Model 

This work assumes that the PU will accesses the licensed channel according to alternating renewal two state birth-

death model with birth rate, 𝛼 and death rate, 𝛽 [16]. An ON/OFF state, 𝑆 =  {0,1}, denotes the occupancy of a in the 

channel. The channel state will alternate between ON (busy) and OFF (idle) state. The CR user is allowed to transmit 

only during the OFF time slots. Each channel follows the exponential ON/OFF distribution [16]. The probability density 

function of the time intervals for the ON/OFF states respectively satisfies: 

 

𝑓𝑜𝑛(𝑡) = {
𝛽𝑒−𝛽𝑡 ,         𝑡 ≥ 0
0,                 𝑡 < 0

          (1) 

 

𝑓𝑜𝑓𝑓(𝑡) = {
𝛼𝑒−𝛼𝑡 ,        𝑡 ≥ 0
0,               𝑡 < 0

          (2) 

 

The probability of channel availability is the normalized period that is available for CR. Let 𝑃𝑜𝑛 and 𝑃𝑜𝑓𝑓  denote the 

probability of idle channel and busy channel respectively. Then: 

 

𝑃𝑜𝑛 =
𝛽

𝛼+𝛽
                (3) 

 

𝑃𝑜𝑓𝑓 =
𝛼

𝛼+𝛽
            (4) 
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PU state in the licensed channel is detected using spectrum sensing for sampling and decision operation. It is assumed 

that the CR is aware of its own location through GPS or other suitable localization methods [25]. Hence, this work 

assumes that the CR does not know the availability of a channel at each timeslot and location until they perform spectrum 

sensing and localization estimation. Thru spectrum sensing and localization method, the samples of previous PU state 

and CR locations are exploited as the samples sequence for the estimation of HMM parameters. HMM parameters 

estimation will be further explained in section 2.1.2. HMM training algorithm stipulates the coherency between the 

historical observation data which will produce the PU state model and CR movements’ model. These HMM model will 

be used to estimate the future prediction of the spectrum opportunity.  

 

2.1.2 Joint Location -Channel State Prediction 

In this section, we will show formulation of spectrum selection that corresponds to the prediction of CR location in 

PU network region (spatial opportunity) and channel state (temporal opportunity). Then, the channel selection is 

performed by developing Joint Location-Channel State Prediction Access (JL-CSPA). First the HMM algorithm will be 

explained to do channel modeling. 

HMM is a powerful statistical technique that has become increasingly popular over the last few decades. An HMM 

is described with respect to hidden states, observations and their model probabilities. Practically, the hidden states define 

the actual state of PU activity while the observation state is the data observe from the CR sensing or localization operation. 

Therefore, based on works [26]–[28],  show that a two-state HMM can accurately predict PU activity pattern. This model 

relies heavily on the accuracy of the historical observation data sequence. Thus, given the investigation by these studies, 

HMM is chosen to be used in this work for efficient learning and prediction in both location and channel state for channel 

handoff. 

The learning phase starts with the HMM algorithm is first fed with past observation sequence of data, 𝑂𝑘 (location 

or channel state) and trained to find the optimal HMM parameters, 𝜆. HMM parameters (𝜆 =  𝐴, 𝐵, 𝜋) consists of state 

transition matrix, 𝑎, state observation matrix, 𝑏 and initial state distribution, 𝜋. State transition matrix, 𝑎𝑖,𝑗  and state 

observation matrix, 𝑏𝑗(𝑂𝑘) is defined as: 

 

𝑎𝑖𝑗 = 𝑃[𝑞𝑡+1 = 𝑆𝑗|𝑞𝑡 = 𝑆𝑖].       1 ≤ 𝑖, 𝑗 ≤ 𝑁         (5) 

 

𝑏𝑗(𝑂𝑘) = 𝑃[𝑂𝑘|𝑞𝑡 = 𝑆𝑗].             1 ≤ 𝑗 ≤ 𝑁, 1 ≤ 𝑘 ≤ 𝑀        (6) 

 

Where 𝑁 and 𝑀 are the number of hidden states and observation state respectively. The goal of training is to adjust 

the HMM parameters, 𝜆, such that the PU observation sequence are best represented by the model, 𝑃(𝑂|𝜆). HMM 

training parameter is computed iteratively by using the well-known Baum-Welch Algorithm (BWA) by exploiting the 

coherency of the observation sequence. An HMM Prediction algorithm used in this work is similar in work [26]. 

 

2.1.3 CR User Location Prediction 

The most trivial task in a mobile CR network to determine the spatial opportunity is to find its relative distance with 

the PU transmitters. Next is to initiate its transmission whenever it is convinced that it will not cause any harmful 

interference to any PU transmission. Given the location information to CR, the optimal available channel can be acquired 

effectively and the maximum performance can be achieved. Consequently, it will prevent higher number of handoff and 

collisions to the PU. The delay caused by handoff process can also be reduced. A spectrum opportunity in spatial 

definition can be modeled in another hypothesis testing problem as defined in [22]: 

 

C0: 𝑃𝑟 < 𝑑𝑖 < 𝑃𝐶𝑅 .            (7) 

 

C1:0 < 𝑑𝑖 < 𝑃𝑅 .   

             (8) 

where the CR, 𝑖, distance from PU, 𝑗, is given by 𝑑𝑖 as computed as: 

 

𝑑𝑖 = ‖(𝑥𝑖 , 𝑦𝑖) − (𝑥𝑗 , 𝑦𝑗)‖ .          (9) 

 

and 𝑃𝐶𝑅  is the CR specified maximum transmission range. Equation (7) defines as hypothesis C0 when CR 𝑖, is located 

outside the 𝑃𝑅 but within the CR maximum transmission range and resulting the channel is idle. The hypothesis C1 in 

equation (8) denotes when CR is located inside the 𝑃𝑅 and is not allowed to transmit in that channel unless the channel 

is sensed idle. In this work, we assume that 𝑃𝐶𝑅 is within the simulation network area, 𝐴, specified. Thus, if a CR is 

located within 𝑃𝑅 of a busy PU on a channel, it cannot perform operation on the same channel. Spectrum sensing needs 
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to be done instead to avoid PU collision. Equation (9) defines the Euclidean distance calculation to calculate the distance 

between the PU and CR in the network. Therefore, it shows the relative distance between the two entities determine the 

allowable channel utilization for CR system. 

CR movement is assumed to be estimated at every timeslot and recorded in the database for HMM parameter 

training. The CR location coordinates, (𝑥(𝑡), 𝑦(𝑡)) will be quantized into grid points or as defined as location index, 𝑧(𝑡) 

in this work. 𝑧(𝑡) is used as observation sequence, (𝑂(𝑡)) to find the estimated HMM model, 𝜆𝑍 which describes the 

movement pattern of the CR. Then, by using 𝜆𝑍 , the predicted location index, �̇�(𝑡 + 1) of the CR and its location 

coordinates, (�̇�(𝑡 + 1), �̇�(𝑡 + 1)) can be determined from 

 

𝑧(𝑡 + 1) = 𝑎𝑞(𝑡),𝑞(𝑡+1) .                                   (10) 

 

and thus, 

 

�̇�(𝑡 + 1) = 𝑎𝑞(𝑡+1),𝑧(𝑡+1).                      (11) 

 

Following, the work will estimated, 𝑑𝑖, to find the so called predicted spatial state, 𝐿 = {0,1} representing spatial 

OFF or ON.  

 

2.1.4 Channel State Prediction 

 

In practical implementation of spectrum sensing, the sensing results will be imperfect due to various reasons such 

as hardware impact and noisy channels. The imperfect sensing may create errors in the form of false alarms and missed 

detections [29] causing misidentification of channel availability. Thus, the knowledge of the future channel states, the 

probability of a CR to successfully discover an idle channel is higher. Channel state estimation and prediction using 

HMM algorithm is proposed as in work [26] so that the CR able to sense and select target channel in an optimal order 

and to maximize spectrum utilization and handoff performance. HMM is chosen in this work due to [30] where it proves 

the validity of HMM algorithm in identifying and characterizing the pattern of observation sequence given.  Thus, HMM 

is seen to be efficient in producing future observation data. 

The method begins with the gathering of channel sensing data for a defined length of timeslot. These data are used 

as an observation sequence, Ot=1,2…T  where 𝑇 is the length of the sampling instant. At the learning stage, the CR will use 

the observation sequence and estimate the HMM model parameters, 𝜆𝑃. Then by using 𝜆𝑃, the CR will predict the PU 

appearance for time slot 𝑇 + 1. In order to prevent inaccuracy in state prediction, sensing operation will be done before 

transmission begins. 

The channel prediction will be done by finding the likelihood probabilities of 𝑃[𝑂𝑇+1 = 1|𝜆] and 𝑃[𝑂𝑇+1 = 0|𝜆]. 
This is done by computing iteratively forward variable in three states as given in equation (12) to (14). 

 

Initialization state: 

Φ1(𝑖) = 𝜋𝑖𝑏𝑖(𝑂1),                                          1 ≤ 𝑖 ≤ 𝑁                   (12) 

 

Induction state: 

Φ𝑡+1(𝑗) = [∑ 𝜑𝑡(𝑖)𝜋𝑖𝑗
𝑁
𝑖=1 ]𝑏𝑗(𝑂𝑡+1),           1 ≤ 𝑡 ≤ 𝑇, 1 ≤ 𝑗 ≤ 𝑀                  (13) 

 

Termination state: 

𝑃(𝑂𝑇+1|𝜆) = max[∑ 𝜑𝑇(𝑖)𝑏𝑗(𝑂𝑇+1)𝑁
𝑖=1 ]                    (14) 

 

The decision of channel state of future timeslot is determined by, 

 

𝑌(𝑇 + 1) = {
0, 𝑃[𝑂𝑇+1 = 1|𝜆] > 𝑃[𝑂𝑇+1 = 0|𝜆]

1, 𝑃[𝑂𝑇+1 = 0|𝜆] ≥ 𝑃[𝑂𝑇+1 = 1|𝜆]
                   (15) 

 

The idle channels will be arranged in decreasing order with the highest probability of being idle. 

 

2.1.5 JL-CSPA Method 

 

In this section, the proposed JL-CSPA scheme is presented. Since the CR may move out from PU protection range, 

the JL-CSPA will ensure the channel utilization will not be wasted. The CR able to detect more channel opportunities 

beforehand and avoid frequent handoff occurs with the ability to predict CR future movement and channel states. The 
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main problem addresses in this work is how the predicted CR future location and channel state can be used for channel 

selection. The CR will predict the channel occupancy for the next timeslot, 𝑡 + 1, by considering both location and PU 

activity. Thus, according to equation (5-6) and (14), the following hypotheses M0 and M1 are derived for the proposed 

problem as 

 

M0 ∶ 𝑥𝑖(𝑡) = {

𝑛𝑖(𝑡) ∗  𝑃(�̅�0)𝑖 ,          𝑑𝑖(𝑡) ≤ 𝐷𝑆

𝑃(�̅�0)𝑖 ∗ (ℎ𝑖𝑠𝑖(𝑡) + 𝑛𝑖(𝑡)) ∩ 𝐿𝑜,          𝐷𝑃𝑈 < 𝑑𝑖(𝑡) ≤ 𝐷𝑆

𝑃(�̅�1)𝑖 ∗ (ℎ𝑖𝑠𝑖(𝑡) + 𝑛𝑖(𝑡)) ∩ 𝐿𝑜,          𝐷𝑃𝑈 < 𝑑𝑖(𝑡) ≤ 𝐷𝑆

                (16) 

 

M1 ∶ 𝑥𝑖(𝑡) = 𝑃(�̅�1)𝑖 ∗ (ℎ𝑖𝑠𝑖(𝑡) + 𝑛𝑖(𝑡)) ∪ 𝐿𝑜 , 0 < 𝑑𝑖(𝑡) ≤ 𝐷𝑃𝑈                 (17) 

 

The CR continuous time received signal which is gained through spectrum sensing observation and is denoted as; 

 

𝑦(𝑡) = ℎ ∗ 𝑠(𝑡) + 𝑛(𝑡)                    (18) 

 

where 𝑦(𝑡) represents the continuous received signal; ℎ is the channel gain from the PU transmitter to the CR receiver; 

𝑠(𝑡) is the PU signal and 𝑛(𝑡) is the Additive White Gaussian Noise (AWGN) with variance 𝜎2 [29]. 

Referring to equation (16) and (17), M0 represents the channel is available for both temporally and spatially for CR 

and M1 as otherwise. M0 is achieved when it is either predicted idle or found that the CR is predicted moving outside 

 𝐷𝑝𝑢 (but within 𝐷𝑠). 𝑃(𝑌0̅)𝑖 and 𝑃(𝑌1̅)𝑖  is the probability that the channel, 𝑖 is predicted idle or busy respectively.  

 Thus, the algorithm for the proposed work can be seen as in Fig. 2. It will start with HMM parameter training for 

both 𝜆𝑍 and 𝜆𝑃. Then, using 𝜆𝑍, the �̇�(𝑡 + 1) is determined. The potential available channels will be rearranged with 

decreasing order of predicted idle probability of 𝑃(𝑌1̅)𝑖. Spectrum sensing is still required before handoff operation so 

that any miss prediction and sensing errors is reduced in the event. This had been showed to be beneficial as proved in 

work [26]. The highest potential channel will undergo sensing and allowed for handoff at the next timeslot.  

Next section, we will show that this proposed method will able to reduce significant number of handoff as opposed 

to the conventional method with the tradeoff of successful throughput rate. The delay caused by handoff process is also 

shown to be reduced. 

 

 Update HMM, 𝜆𝑍 and HMM, 𝜆𝑃 

At 𝑡 = 𝑛;  

Predict �̅� and 𝐿 for 𝑡 = 𝑛 + 1 

For n:N 

If 𝐿(𝑡)  =  1;// outside PU protection 

     CR user transmit 

else 𝐿(𝑡) =  0; // inside PU protection 

    for i=I, Find    𝑌𝑖(𝑡)̅̅ ̅̅ ̅̅  

     If 𝑌𝑖(𝑡)̅̅ ̅̅ ̅̅ = 0; // idle channel 

         Do sensing 𝑦(𝑡)  =  0; 

         If  𝑦(𝑡)  =  0;//idle channel 

            Transmit 

         end 

     end  

        Repeat 𝑌𝑖(𝑡)̅̅ ̅̅ ̅̅ ; 
     end 

end 

end 

 

Fig. 2 JL-CSPA Algorithm 

 

3. Performance Evaluation 

The method of a CR to perform channel selection for its transmission has a significant impact on the performance of 

a CRN. We propose a prediction method that simultaneously monitors PU channels and CR movements and then utilizes 

the channel occupancy and CR location model described in Section 2 to predict future channel availability. By following 

this method, a CR is able to find future idle channel more efficiently.  

The simulation system is using MATLAB. We investigate the effect of 𝐷𝑝𝑢 described in section 2. The first scenario 

will incorporate only 1 PU and 1 CR in the network area to show the improvement of JL-CSPA as 𝐷𝑝𝑢 increases. Next 

scenario will has 2 PUs and 1 CR to further evaluates its performance when there are 2 PUs in the network. The number 
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of PUs in the network brings a challenge for a mobile CR to select the best spectrum opportunity spatially and temporally. 

The overlapping of different PU protection range causes the CR system difficulties to find suitable channel to handoff. 

Moreover, CR movement may encounter different PU transmission protection, 𝐷𝑃𝑈 due to many licensed users in the 

network area. Thus, the JL-CSPA must able to detect each 𝐷𝑃𝑈 efficiently and in advance for better handoff to improve 

its performance. For this work, we compare the following 4 methods for channel selection:    

(i) Random; this is the conventional method for channel selection where channel is randomly selected for sensing before 

it decides its channel allocation. 

(ii) Random channel selection with location assisted (Random-LA); this method uses previous Random method but 

provided its location information using GPS or localization estimation (no location prediction)  

(iii) Channel Selection Prediction Access (CSPA) [22]; this method uses HMM prediction method based on the PU 

activity only.  

(iv) Proposed JL-CSPA;   

 

3.1 Simulation Setup 

For this work, simulation consists of 4 licensed channels in the network for CR use. The sample sensing data for 

HMM parameter modeling is recorded for 400 recent timeslots and simulation is done over 2000 timeslots. For the 

purpose of this work, the spectrum sensing and CR user localization estimation time delay are assumed as 1s each. The 

spectrum handoff time delay, δ is 1s. We will assume for low SNR of received PU signal of -20dB in order to investigate 

our framework. The threshold for spectrum sensing is set at Pf=0.1. We placed the size of the network area as 2000m 

x2000m. The protection range of the PU on its occupied channel is varied to prove the effectiveness of this proposed 

method. The CR user will move according to RWPM model in the network region with uniform speed in the interval of 

[5,10] m/s. This work also assumes that the CR system determines its relative position given by GPS or any other 

positional methods and can thereby recover all the area beyond the PU protection range. Using these mutual distances 

between the CR and PU calculated by the CR network, the decision to select a suitable channel is perform according to 

the proposed method. 

 

3.2 Results and Discussion 

It is mentioned before that the main issue in this work is the handoff delay and the numbers of handoff for the CR to 

perform its communication for higher QoS. Fig. 3 shows the number of handoff as a function of the normalized PU 

protection range,  𝐷𝑝𝑢 . It is shown that the PU protection range did not affect the performance curves of both Random 

and CSPA. This is because these methods do not incorporate any location information in their channel selection. 

However, CSPA shows lower number of handoff than Random method because of it can select the best channel available 

in advance. However, the Random-LA and JL-CSPA method which depends on location information are affected by the 

PU protection range. The number of handoff increases as the PU protection range is higher. The CR will always be inside 

the PU protection range as the normalized 𝐷𝑝𝑢 increases towards 1. Evidently, our proposed prediction method shows 

highest performance which jointly predicts both channel and location, JL-CSPA. 

Fig. 4 shows the average handoff delay with respect to normalized  𝐷𝑝𝑢 . Handoff operational delay in channel 

transmission operation often becomes an issue in high speed mobile applications. Evidently, the performance curve of 

the proposed method has shown lower average handoff delay compared to other methods. It is reasonable since in the 

proposed method, the CR does not need to perform spectrum sensing and localization estimation at every timeslot in 

order to find available channel since it already predicts its next timeslot location based on previous location and HMM 

parameters computed. The Random-LA observes to have the worst delay performance towards increasing 𝐷𝑝𝑢. This 

shows how localization estimation operation may impact the handoff delay. 

Fig. 5 depicts the successful channel detection with respect to PU protection range. It is seen in Fig. 5, the proposed 

method achieves higher successful channel detection that the Random method but obtain comparable results with CSPA. 

The advantages of channel state prediction with HMM learning is capable to find best available channel in any occurrence 

of CR user movement in the network.   

Next, we investigate the proposed method for two PU in the network assuming both have the same  𝐷𝑝𝑢. The speed 

will be varied uniformly (5m/s to 10m/s) in order to provide various conditions of changing CR locations. The normalized 

𝐷𝑃𝑈  is varied increasingly to provide overlapping protection range between the two PU users. Fig. 6 depicts the 

performance of average number of handoff. The performance of JL-CSPA is the best among all methods. Again, it shows 

the location information and learning method helps in efficient channel selection. Random and CSPA performance curves 

are constant throughout the simulation. 

In Fig. 7, JL-CSPA observes the best performance for handoff delay. When 𝐷𝑃𝑈 close to 1, the performance is close 

for both CSPA and JL-CSPA due to overlapping 𝐷𝑃𝑈 for both PUs.  Consequently, the Random method performs the 

worst while the Random-LA increases its handoff delay as the normalized 𝐷𝑃𝑈 increase. 

Fig. 8 illustrates the performance of normalized successful channel detection. As expected, the overall performance 

of the four methods increase as the normalized 𝐷𝑃𝑈 increased. However, we observed that each method show slight 
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difference between each other with JL-CSPA being the highest and Random only method the worst. As the normalized  

𝐷𝑃𝑈 increase above 0.7, the performance gap between the Random/Random-LA and CSPA/JL-CSPA increases. This 

shows that during this time, the spatial domain decreases and purely depends on PU activities itself. The HMM algorithm 

able to exploits the correlation of PU activities at each channel from the sensing data. This investigation also shows that 

with two PUs being available in the network area, the channel opportunity for Random method provides a decreasing 

performance curves as 𝐷𝑃𝑈  increase. On the contrarily, previous simulation with only one PU in the network, the 

successful transmission is constant regardless of 𝐷𝑃𝑈 range. 

 

 
Fig. 3 The Performance of Average Number of Handoff when Normalized  

PU Protection Range is varied 

 

 
 

 

Fig. 4 The Performance of Average Handoff Delay when 

Normalized PU Protection Range is varied. 
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Fig. 5 The Performance of Successful Channel Detection when Normalized 

PU Protection Range is varied 
 

 
Fig. 6 The Performance of Average Number of Handoff for Two PU  

with Increasing PU Protection Range 
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Fig. 7 The Performance of Average Handoff Delay for Two PU  

with Increasing PU Protection Range 
 

 
Fig. 8 The Performance of Normalized Successful Channel Detection for Two PU  

with Increasing PU Protection Range 

 

4. Conclusion 

In this paper, the JL-CSPA method is being described and investigated. The main issue of this work is to improve 

the CR performance in terms of operational delay and number of handoff when CR is mobile. The best available channel 

based on PU activity and CR location is determined in advance by using the HMM learning algorithm. The JL-CSPA has 

shown promising result to improve handoff operation performance by reducing the need to perform unnecessary sensing 

and localization in every timeslot. Hence, higher capacity and efficient bandwidth utilization can be achieved. We also 

have shown the benefits of HMM learning and prediction which able to estimate the future CR location and channel idle 

state in the network. Numerical results have evidently shown the efficiency of implementing the proposed method in 

mobile cognitive radio networks. Future work is to incorporate more mobile CR in the area network to evaluate the 

spectrum selection efficiency. 
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