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1. Introduction 

The term “biomass” signifies the total quantity or weight of organisms in a given area or volume. Biomass of fish 

and mammals is the key concern to the scientists, ecologists and people engaged with commercial fishery managements. 

As the term is intimately related to ecological balance, a slight change to it can bring a disaster to our existence. Fishes 

and mammals are key elements of marine ecology. For millennia, mankind has had a close tie with them because they 

supply us food and numerous necessities. Millions of people rely on fishing or fish breeding for livelihood. Living with 

an amazing diversity of fish species, marine mammals form a diverse group of 129 species that has depended on the 

ocean to survive [1-2]. 

Over thousands of years, too many fishes and mammals have been taken. Many fishing areas have been over-fished 

[3-5]. Lack of early knowledge about the population and diversity of species as well as haphazardly fishing can make the 

ecosystem imbalanced [6-7].  Hence, a proper estimation of their biomass is a mandatory task to maintain the ecological 

balance. Information about the distribution of a species is a critical component of understanding their ecology and 

extinction risks and is important for conservation of populations [8]. Not only for ecological purposes but also for 

commercial reasons an accurate estimation of the biomass of fishes is necessary. Billions of dollar business is conducted 

daily in numerous fish industries. Most importantly, they supply us our required protein daily as our preferred food. 

However, it is quite hard to estimate the exact biomass of fishes and mammals in any particular area of the ocean. The 

dynamics of their population and the harsh condition of the ocean represent the main difficulties in obtaining accurate 

data.  Numerous investigations were carried out to estimate their biomass. We have classified the approaches of these 

biomass estimation techniques in to two types, i.e., non-acoustic approaches of biomass estimation and acoustic 

approaches of biomass estimation.  

Abstract: In marine ecosystem management, estimating biomass of marine species is the most significant challenge 

to control the ecology and biodiversity of a specified marine area and commercial fishery management. Many top-

notch researches have been conducted for estimating the biomass of fishes and mammals. Most of the researches 

followed mainly two methods namely non-acoustics and acoustics techniques to estimate biomass. The non-acoustic 

technique is a very old terminology and many environmental conditions are to be considered as constant but in the 

acoustics method it is a much easier and error can be eliminated by different means of transforms. acoustic techniques 

can be classified in to two types, i.e., active acoustic techniques, and passive acoustic techniques. In this paper, we 

have reviewed the major acoustic and non-acoustic techniques for estimating biomass of fish and mammals. At the 

same time, performance analysis among these techniques has been discussed here. An introduction to the diversity 

in biomass estimation techniques of fishes and mammals is the aim of our investigation. 
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In the past, most of the techniques used non acoustic methods to estimate biomass. But lately, the researchers 

emphasize on acoustic methods and currently, copious researches are underway using acoustic methods for estimating 

biomass.  The non-acoustics methods used mainly mechanicals ways to estimate biomass in a certain area. Acoustic 

techniques of biomass estimation are classified in to two ways, i.e., active acoustic measurement of biomass estimation 

and passive acoustic measurement of biomass estimation. 

Active acoustic techniques use sound generated actively by transducers and the acoustic scattering properties of fish 

and mammals to image individual fish/mammal and biomass of fish and mammals [9]. Passive acoustic techniques rely 

on listening to the sounds produced by fish/mammals with a hydrophone to assume their distribution and behavior [9]. 

For passive acoustic techniques to be useful a fish must make a sound, thus, this technique is limited to species that 

produce sounds and to the times and places where they produce them. These techniques have typically been used 

independently, depending on the situation and goals of the study. In this paper, we have investigated the major non-

acoustic and acoustic methods for estimating the biomass of fishes and mammals. Firstly, we will review the conventional 

non acoustic methods of biomass estimation and then we will review active and passive acoustic methods of biomass 

estimation. Finally, a typical analysis on these three methods, i.e., non-acoustic, active acoustic and passive acoustic 

methods, will be conducted. However, an introduction with different techniques of conventional biomass estimation as 

well as recent researches on biomass estimation is the cardinal goal of this paper. 

 

2. Non-Acoustic Methods of Biomass Estimation 

Different types of non-acoustic methods were investigated in the past. Some of those are: visual sampling techniques, 

Raft and Floating Radio Frequency Identification (RFID) tag systems, minnow traps, removal method of population 

estimation, environmental DNA technique, prediction-based macro ecological theory etc. A discussion on major non 

acoustic methods for biomass estimation is conducted bellow. 

 

2.1 Biomass Estimation with Visual Census Techniques 

Visual census techniques are mainly used to estimate reef fish biomass [10-13]. It easily collects the data without 

disturbing inherent with compare with other destructive sampling techniques [14]. Visual census consists of many 

techniques used to estimate reef fish biomass. Belt transect method was first described by Brock [15], has been adopted 

by the LTMP to estimate reef fish biomass. In its simplest form, the belt transects method for visual census of fish biomass 

involves an observer, equipped with SCUBA gear, estimating the biomass of fish within a given area (the belt transect) 

[15]. A large number of factors, i.e., fish mobility and habitat complexity, etc., affected the estimation procedure [16]. 

Further errors in biomass estimations are likely to be introduced through observer bias. As a result, any program using 

more than one observer might ensure that differences in bias between observers were minimized, to allow comparisons 

of data collected by different observers. The following protocol has been adopted by the LTMP as the standard 

methodology for undertaking visual census. Strict adherence to this protocol, combined with annual inter-observer 

training and standardization ensures that the resulting data are of high quality with maximal power to detect change over 

time [17].  

However, at least of three people are required for the collection of visual census data using this technique [14]. One 

person conducts the surveys, while a second person lies a tape measure along the centre line of each transects. The third 

person should stay in the boat to give surface support [14]. The impact of observer presence; observer speed; and the 

impact that multiple surveys had on the number of counted fish in a visual census survey in a typical Mediterranean rocky 

habitat is illustrated in [18]. However, Willis (2001) found that Visual census underestimated the number of species 

present and the density of common species by up to 91% [19]. 

 

2.2 Environmental DNA (eDNA) Technique 

It investigates the potential of using meta-bar-coding of environmental DNA (eDNA) obtained directly from 

seawater samples to account for marine fish biodiversity [20-23]. This eDNA approach has recently been used 

successfully in freshwater environments, but never in marine settings. It was performed by isolating eDNA from ½-litre 

seawater samples collected in a temperate marine ecosystem in Denmark. Using next-generation DNA sequencing of 

PCR amp icons, eDNA was obtained from 15 different fish species where the species rarely or never recorded by 

conventional monitoring. eDNA was also detected from a rare vagrant species in the area; European pilchard (Sardina 

pilchardus) [21]. To investigate the efficiency of the eDNA approach, a comparison of its performance with 9 methods 

conventionally used in marine fish surveys was performed. Fig. 1 shows corresponding results from eDNA degradation 

experiment. 

Auspiciously, eDNA covered the fish diversity better than or equal to any of the applied conventional methods. Even 

small samples of seawater contain eDNA from a wide range of local fish species [20-21].  Although further studies are 

needed to validate the eDNA approach in varying environmental conditions, these findings provide a proof-of-concept 

with perspectives for future monitoring of marine biodiversity and resources [20-22]. A challenge in applying eDNA 

monitoring in flowing waters is that a species' DNA can be transported downstream [24-25]. Deiner & Altermatt (2014) 

tested for downstream detection of eDNA for two invertebrate species, Daphnia longispina and Unio tumidus [24]. 
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Eichmiller et al., (2015) evaluated the centrifugation and filtration eDNA capture methods and six commercially available 

DNA extraction kits for their ability to detect and quantify common carp (Cyprinus carpio) mitochondrial DNA using 

quantitative PCR [26]. On the other hand, Maruyama et al., (2014) examined the effect of fish developmental stage on 

eDNA release rate. Smart et al., (2015) claimed that eDNA techniques are more sensitive than traditional techniques [27].  

However, this technique can ensure accuracy but suffers from regulation complexity, high-cost and over sensitivity [28]. 

Since it is a sensitive technique, several regulations must be obeyed during its practical implementation [28]. 

 

Fig. 1 - Results from eDNA degradation experiment. eDNA concentration in seawater as a function of time for the 

two fish species; Platichthys flesus (circles) and Gasterosteus aculeatus (triangles), investigated in a 50 I aquarium 

[20]. 

 

2.3 Estimation of Fish Biomass using Minnow Traps 

The minnow trap is a popular practice to estimate fish biomass [29-31]. Minnow traps are normally consisting of 

two funnel-shaped entrances at either end of a mesh box or cylinder [29]. Minnow traps are a type of passive sampling 

gear because they rely on fish to willingly encounter and enter the trap [32]. They can be used to sample freshwater fish 

in a wide range of environments including lakes, wetlands, rivers and streams. The efficiency and selectivity of minnow 

traps is influenced by the probability that fish will encounter, enter and be retained within the trap until it is retrieved 

[33]. Bloom (1976) illustrated an evolution of minnow traps [34]. The size of fish captured in minnow traps is limited by 

the size of the entrances, which are normally very small (20–30 mm). Minnow traps are regarded as efficient for capturing 

small freshwater seals when baited unlike gill nets, most fish can be released alive after being captured in minnow traps 

and predation within the traps is probable to be less than with fyke nets [35]. Because of their small size, minnow traps 

can also be set amongst complex habitat and in very small and shallow pools of water [30]. The capture efficiency of 

minnow traps is primarily subjective to the diameter of the trap entrances and mesh size. Minnow traps can also be used 

to collect relative biomass data based on calculations of catch per unit effort (CPUE). Minnow trap CPUE, as with other 

passive netting methods, is usually expressed as number of fish caught per net per unit of time (e.g. hours or nights). The 

accuracy of CPUE as an index of biomass is primarily determined by whether catch efficiency, or catch ability, remains 

unaffected by other factors. Unvarying catch efficiency is one of the key assumptions made when assessing differences 

in relative biomass. In practice, a wide range of factors can influence catch efficiency when using minnow nets [36-37]. 

It is important to take a cautious approach and consider potential differences in catch efficiency when comparing relative 

abundance data over time and space. 

 

2.4 Biomass Estimation from Underwater Video Sequences using Blob Counting and Shape 

Analysis 

A method for biomass estimation from underwater video sequences (UWVS) using blob counting and shape analysis 

is described in [38-39] of which the system diagram is illustrated in Fig.2. The video sequences were obtained with a 
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moving camera resulting in rapid viewpoint changes thus making it difficult to employ motion detection schemes in 

extracting fish images from background [38]. 

 
Fig. 2 – System Flowchart 

 

Video preprocessing involved blackening out the corals from the underwater videos. This is done in order to 

effectively estimate fish biomass in the environment, though excluding those that are against a coral background [38]. A 

histogram comparison to initially blacken out the occlusions using blue and non-blue templates obtained randomly from 

the UWVS is then applied. An erasure procedure to further aid in removing the coral background for fish detection is 

then introduced. However, canny edge detection was applied to extract fish contours. After the latter have been delineated, 

blob counting is then employed in order to compute the fish biomass [38]. In this regard Morais et. al., (2005) emphasize 

on use of computer vision techniques for underwater visual tracking and counting of fishes in vivo [40]. Boom et al., 

(2013) presents a research tool that supports marine ecologists' research by allowing analysis of long-term and continuous 

fish monitoring video content [41]. 

 

2.5 Mark-Recapture Techniques for Biomass Estimation 

Mark-recapture data to estimate the biomass of fish has evolved significantly since the adoption 

of the single-census method [42-44]. Selecting a suitable model to ease optimal use of the available data is essential. 

Otis et al., (1978) suggested that the suitable model for biomass estimation is the simplest one, which does not contain 

assumptions that are not met [45]. The mark-and recapture method is generally favored over the depletion method and 

has been shown to be unbiased when more than 50% of a population is marked [46]. The mark and recapture method 

requires the following conditions: (a) Marked and unmarked fish have the same mortality rates; (b) Marked and unmarked 

fish are equally vulnerable to capture; (c) Marks are retained during the sampling period and all marks on recaptured fish 

are recognized; (d) Marked fish randomly mix with unmarked fish; (e) There is negligible immigration during the 

recapture period. Petersen’s estimations were obtained using the unbiased estimator suggested previously (for sampling 

without replacement [46]: 

𝑁 =
(𝑀+1)(𝐶+1)

(𝑅+1)
− 1                        (1) 

where, M = number of individuals marked during the tagging period, C = total number of individuals captured during the 

recapture period, R = number of marked individuals caught during the recapture period. 

However, after conducting an investigation on crayfish, Nowwicki et al., (2000) suggested that Taking into 

consideration higher male catchabilities and sex ratio being invariably 1:1, it also seems beneficial to estimate only male 

numbers and double them to achieve total population sizes [47]. 

 

2.6 Removal Method of Fish Population Estimation 

The removal method of population estimation has used for estimating small-mammal populations [48-50]. Certain 

number of kill traps is set for several trapping periods. Three Assumptions are taken for this method of estimation is:  
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i. The population must be essentially stationary  

ii. The probability of capture during a trapping is the same for each animal exposed to capture.  

iii. The probability of capture remains constant from trapping to tricking. 

In these methods, same number of traps are set over several nights of trapping, following the assumptions listed 

above, the number caught and removed the first night is greater than the number caught and removed the second night. 

So we can say that as the population becomes depleted the size of catch will reduce from night to night [48]. There are 

several ways in which actual observed catches may be treated in order to obtain estimates of the original population size, 

Hayne (1958) suggested drawing a graph that plots the size of catch during a given trapping against the total number of 

animals previously captured [51]. A straight line drawn by eye through the plotted points will cut the horizontal axis at a 

point that represents the estimate of population size. A second method, which fits the line to the points, the method of 

least squares has been shown by Zippin (1958), proposed a formula, for 2 trappings [48],  

𝑁 =
𝑦1
2

𝑦1−𝑦2
                      (2) 

To obtain the proper estimation using (2), N is the estimate of population size, y1 and y2 are the numbers of animals 

captured during the first and second trappings, respectively. 

 

2.7 The Two-Catch Methods 

The two-catch method is another method to estimate fish population [52-53]. The usual Leslie (or De Lury) estimates 

of total original populations depend upon a large series of data on catch and fishing effort; each individual unit of fishing 

effort has, by itself, little effect upon the population and is considered to be independent of the others. The errors are 

considered to be of the Poisson type and population estimates are usually made by fitting a regression line to data of 

catch-per-unit-effort plotted against accumulated catch [53]. Where the individual fishing’s catch a significant proportion 

of the population, however, binomial statistics are more appropriate [53]. Let, n = the population size to be estimated. 

The method depends upon the following conditions:  

a) Probability is large enough to have a significant effect upon n,  

b) that Probability is constant, or, in other words, that the fishing effort is the same for the two catches and the fish 

remaining after the first fishing are as vulnerable to capture as were those that were caught in the first fishing, 

c) there is no recruitment, mortality, immigration or emigration between the times of the two fishing’s,  

d) the first catch is removed from the population or, if returned alive, the individuals are marked so that they can 

be ignored in counting the second catch. In electrical fishing, it is possible that probability may vary with the 

size of fish 

 

3. Acoustic Techniques of Biomass Estimation 

Acoustic techniques of biomass estimation are burgeoning. However, we previously knew that estimation of biomass 

using acoustics can be categorized in to two types, i.e., active and passive acoustic techniques. A review on active acoustic 

techniques is illustrated below: 

 

3.1 Active Acoustic Techniques 

Through the field of fisheries acoustics has its own roots in this history, scientific management and applications of 

acoustics for biomass estimation was possible after the improvements in computer and electronic technology. Active 

acoustic techniques generally rely on transmitting sound pulses and receiving echoes. Rallier du Baty (1927) was one of 

the first to attribute echoes to Atlantic cod (Gadus morhua) [54], and Kimura (1929) performed experiments that 

confirmed fish could be responsible for these echoes [55]. Commercial fishers began using echo sounders to locate many 

species of fish, and the use of echo sounders revolutionized commercial fishing [56-57]. 

At first, an electrical impulse from a transmitter is converted into a sound wave by an underwater transducer, called 

hydrophones. This sound wave is then sent underwater. When the wave hits a fish, it is reflected back and displays size, 

composition, and shape of the fish. The frequency and the power of the transmitted pulses play the key role here. If we 

know the speed of the wave in the water, the distance to the fish that reflected the wave can be measured. Generally, the 

speed of sound through the water column depends on the temperature, pressure and salinity.  

This can be calculated from the following equation 

𝑐 = 1404.85 + 4.618𝑇 − 0.0523𝑇2 + 1.25𝑆 + 0.017𝐷                                      (3) 

where c = sound speed (m/s), T = temperature (degrees Celsius), S = salinity (per mile) and D = depth [58]. In 

commercial fishery estimation, the typical value of c is 1500m/s. Fig. 3 shows a scientific echo sounder. 
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Fig. 3 - Schematic cartoon showing the major components of a scientific echosounder and acoustic beam 

 

Generally, the process is repeated up to 40 times per second which results in the bottom of the ocean being displayed 

versus time. However, it is easier to achieve more detail at screen when the frequency is high. Commercial fishery 

estimators normally use low-frequency which is in between 50-200 KHz [57]. On the other hand, modern fishery 

estimators use multiple frequencies to find a split screen result. A review on conventional fish estimation techniques 

using active acoustic methods is illustrated below. 

 

3.1.1 Echo Counting Techniques 

Fisheries scientists use active acoustics to estimate fish biomass; evaluate spatial and temporal distributions; and 

measure size distributions and biomass structure. In addition, these methods can also be used to characterize habitats and 

study behaviors such as migration, spawning, feeding, and schooling [59]. Scientific echo-sounders operate similarly to 

commercially available “fish finders” by producing a brief, focused pulse of sound and listening for echoes. When the 

sound encounters objects that are of different acoustic impedance than the surrounding water, such as fish or the seafloor, 

some of the sound energy is reflected back to the transducer and translated into a digital output on a monitor (echogram). 

An echogram can include images of both single objects and groups of objects [60]. 
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Target strength is a measure of how much a fish, plankton, or other object in the water column scatters sound towards 

a transducer. When individual targets are spaced far enough apart, the number of fish can be estimated by counting the 

number of individual targets.  This is called echo-counting and is the historical way to estimate fisheries biomass [61-

65]. However, the pelagic fishes aggregate most often. This makes the echo-counting technique very difficult. To solve 

the problem, echo integration technique was introduced [66]. 

 

3.1.2 Echo Integration Technique 

To overcome the limitation of echo counting technique, echo integration technique was introduced to estimate 

biomass [67-70]. Echo-integration uses the total backscattered acoustic energy, divided by a previously determined 

volume backscattering coefficient in order to estimate fish biomass [71]. An echo‐integrator equation relates fish biomass 

to echo energy integrated over a time gate corresponding to the depth channel of interest. Parameters include the 

equivalent beam angle, the expected backscattering cross section per fish, equipment sensitivity, and a time‐varied‐gain 

correction factor [72]. However, the choice of frequency plays the most important role in this technique [73]. 

 

 
 

Fig. 4 – Block diagram of echo integrator 

 

Fig. 4 shows the block diagram of echo integrator. Generally, Lower frequencies have longer transmission ranges 

and sampling volumes than higher frequencies.  But, higher frequencies have higher resolution. Similarly, higher 

frequencies are able of detecting smaller targets [74]. 

 

3.1.3 Dual-frequency Identification Sonar (DIDSON) Techniques 

Dual-frequency identification sonar (DIDSON) has been used in environmental management for a decade [75-80]. 

It was first designed for military purposes [75-76].  In this technique, acoustic camera uses higher frequencies and more 

sub‐beams than common hydro-acoustic tools, which improves image resolution and then enables observation of fish 

morphology and swimming behavior. The ability to subtract static echoes from echograms and directly measure fish 

length improve species‐identification process. Generally, DIDSON provides an automated fish counting and sizing tool. 

Han et al., (2009) investigated a fully automated acoustic method to count and size farmed fish during fish transfer by 

using DIDSON imaging [78]. However, performance analysis of this technique was conducted in several researches [81-

83]. Analysis pathways implemented in echo-view is shown in Fig. 5. 
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Fig. 5 - Analysis pathways implemented in echo-view (version 4.1). Four parallel processes are presented that 

provide similar outcomes even though they are used to optimize analyses under various conditions [75]. 

 

3.1.4 Other Techniques 

De Rosny and Roux, (2001) proposed technique which is renowned as multiple scattering in a reflecting cavity 

technique to locate fish biomass [85]. A pulse was transmitted in the tank using a single source; the echoes from the 

reverberations into the tank were recorded on receivers simultaneously. The recorded echoes have been reverberated by 

boundaries of the tank, and scattered by fish [85]. For these experiments, the pulses consisted of 50 ms long chirps 

between 60 and 130 kHz, transmitted every other second. The process is in details in [85]. σ t is estimated from the slope 

of R(t) in logarithmic domain. From the exponential decay of R(t). From R(t), we easily found the number of fish 

abundance. This is defined as: 

( )
tN tc

vR t e

−

=
                                                             (4) 

Where, R(t) is the total scattering cross section of one fish, N the number of fish in the tank, V the volume of the 

tank, c the sound speed in water, σt can be estimated from the exponential decay of the ratio of the measured coherent 

and incoherent intensities in the tank. However, these techniques need large number of fish to be captured, so these 

directly affects inhabits of the fish and mammals. 

Biomass estimation using analysis of echo peak pdf from single-transducer sonar is described in [86]. However, with 

numerous advantages, active acoustic methods have some limitations, such as, harming the inhabitation of marine species.  
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Two active acoustic methods are: backscatter from individual targets, and volume backscatter. When organisms are 

discrete, it is possible to obtain echoes from individuals. In this case, the method of echo counting can be used to derive 

a numeric density [no. m-3] estimate [87], as well as measure the acoustic backscattering cross-sectional area bs m2 and 

target strength TS = 10 log10 bs dB) of the individuals [88]. Abundance is estimated by multiplying the numeric density 

by the volume of water in the survey area 

 

3.1.5 Echo Sounders 

Echo-sounders have progressed from single-beam systems developed after World War II to the multi-frequency [89-

92], multi-beam systems in use today [93]. Multi-beam echo-sounders, originally developed for mapping the seafloor, 

project a fan of narrow sound beams outward into the water and record echoes in each beam [89-92].  This system covers 

a wide swath at high resolution [91]. Split-beam echo-sounders, operating in a frequency range of 12 to 200 KHz, are the 

standard equipment for hydro-acoustic fisheries assessments [94-95]. On the other hand, Split-beam echo-sounders 

receive echoes in four quadrants on the transducer face, allowing the position of the target or the depth and range of a 

layer to be determined in three dimensions [94-95].  Split-beam echo-sounders can sample to water depths of 100 m to 

greater than 500 m [96]. Generally, Conventional echo sounders operate at discrete frequencies ranging from 38 to 420 

kHz [97]. Horne and Jech, (1999) investigated the applicability and accuracy of length-based population estimates using 

commercially available acoustic frequencies and the inverse approach under ideal conditions [1]. However, multi 

frequency echo sounder estimation techniques are quite familiar in this perspective [98-99].  Multi-Frequency System is 

a dynamic, digital split-beam and single-beam hydro-acoustic system. It is a combination of powerful digital signal 

processing hardware with a user interface [98].  

To overcome different lacking of non-acoustic methods of biomass estimation, fishery research and commercial 

activities rely on active acoustic techniques. These techniques have potential to overcome mechanical complexities but 

sometimes suffer from protocol complexities 

 

3.2 Passive Acoustic Techniques 

Passive acoustic techniques depend on the sounds produced by fish and mammals to eavesdrop on their behavior. 

Generally, fish acoustics are generated by aggression, courtship, and spawning. The robust study on fish acoustics was 

firstly introduced by Fish and Mowbray (1970) [100]. To become familiar with passive acoustics methods, one should 

be familiar with acoustic behaviors in the fish and mammals. 

 

3.2.1 Mechanisms of Sound Production among Fishes and Mammals 

There is diversity in the mechanisms of sound production among fish and mammals. In some fish species, the swim 

bladder is used as a sound-generating organ. A muscle attached to the swim bladder (the sonic muscle) contracts and 

relaxes in a rapid sequence. This action causes the swim bladder to vibrate and produce a low-pitched drumming sound 

[102]. Another way in which fish produce sounds is by stridulating [102]; a process in which hard body parts like bones 

or teeth hit each other. Body movements that create water currents or splashes are also used to create sounds for 

communication [103]. Cavitation sounds are produced during the feeding of the fish with a piece of food. A rapid drop 

of the pressure inside of the oral cavity can lead to the appearance of small cavitation bubbles. Reduction of their volume 

occurs for a short time, and it is accompanied by a sound pulse [104]. 

 

3.2.2 Diversity of Acoustic in Fish and Mammals 

Vocalizations of different species are different with respect to special parameters like, frequency, amplitude etc. 

Different sound types are categorized in different names. Some of the common types of sounds are chirps, pops, grunts, 

growls, hoots, whistles, clicks, etc. 

However, croaker kinds of fish produce a sound, which is akin to a chirp signal. Likewise, some species of whale 

including humpback whales (Megaptera novaeangliae) [107], some dolphin species, including bottelnose dolphins [108], 

some mammals species like dugongs (Dugong dugon) [109] etc. can produce chirp like sound. From a sound analysis of 

Plectroglyphidodon lacrymatus and Dascyllus aruanus species of damselfish, it was found that their generated chirps 

consisted of trains of 12–42 short pulses of three to six cycles, with a duration from 0·6 to 1·27 ms; and the peak frequency 

varied from 3400 to 4100 Hz [110]. 

Northern searobin (Prionotus carolinus), Southern striped searobin (P. evolans) [111-114], Black Sea gurnard [115], 

etc. can produce cluck like sound. The cluck, generated by Northern searobin (Prionotus carolinus) has a frequency range 

of 40-2400 Hz with duration of 100 ms [111-114]. 

Japanese gurnard (Chelidonichthys kumu) [116], Grey gurnard (Eutrigla gurnardus) [117], the oyster toadfish 

Opsanus tau [118-119], gulf toadfish O. beta [120-121], Porichthys notatus nesting males [122] etc. species can produce 

a grunt like sound. The haddocks emit grunts lasted less than 75 ms and comprised 3–4 pulses whereas the grunts 

produced by codfish had durations were typically smaller than 150 ms and consisted of around 9 pulses. Grunts are 

broadband (up to 3 kHz) pulsed sounds which have a lasting of 300 ms approximately. Pollimyrus adspersus, Cichlasoma 
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centrarchu [123] etc. produce a growl like sound. The growls are broadband (100 Hz – 2 kHz) pulsed sounds, variable 

in duration, and with the typical pulse repetition rate of 25 pps (pulses per second) [124]. 

 

 
 

Fig. 6 - Diversity of sound generating mechanisms in fish and sonograms of sounds produced by these mechanisms 

(a) SMi attached to both SL in the Lusitanian toadfish Halobatrachus didactylus, (b) SMe originating at the 2R 

and inserting on a BT ventrally of the swim bladder in the black piranha Serrasalmus rhombeus, (c) in the 

stridulatory mechanism in catfish a ridged DP of the PS rubs in a groove of the SG, (d) ETs are plucked similar 

to guitar strings in the croaking gourami Trichopsisvittata, (e) PT stridulation in damselfish, sunfish, among 

others, and pectoral girdle vibration in sculpins by a SM originating at the skull and inserting at the dorsal part 

of the pectoral girdle. All sonagrams show sounds produced in agonistic contexts. 

 

Besides, Hydrodynamic mechanisms of sound production are also prominent ones among fish and mammals. They 

are called swimming sound also because their origin is connected both with the movement of water against the external 

surface of the fish and with the movement of internal structures of the fish [105]. On the other hand, the sounds produced 

by respiratory mechanisms are similar to claps and knocks. Most of the cases, they belong to unspecialized sounds [106]. 

However, forced flow through a small orifice mechanism, percussion on a substrate mechanism, etc., are also known as 

major sound producing strategies among fish and mammals. Sonograms of sounds produced by different mechanisms in 

fishes is shown in Fig. 6. 

Hoots and pops are sounds heard exclusively in aggressive interactions. Hoots are made by P. isidori [125], P. ballayi 

[126] and P. adspersus [127], etc. and are relatively short sounds (30 ms), with frequencies lower than 1 kHz, and made 

up of nearly sinusoidal waveforms. Pops are made by species of Chromis chromis [128], Pollimyrus and by Gnathonemus 

petersii [128] etc., and consist of a series of pulse emissions with focal energies up to 2–3 kHz. Cod (Gadus morhua) can 

produce click like sound with peak frequency 55.95   2.22 kHz; peak-to-peak duration 50.70  60.45 ms [129-130]. 

Beluga (Delphinapterus leucas), bottlenose dolphin (Tursiops truncatus) [131], Sperm whale [132], etc. fish and 

mammals can produce similar sound-signal. Whistle is common among the Killer whale (Orcinus orca) [133], some 

species of dolphin like (tursiops truncatus) [134] and various species of mammals. 

Fig. 7 shows simulated form of fish chirp signal where (a) represents a simple form of chirp with duration of 1s and 

(b) represents a chirp with linear instantaneous frequency deviation where the chirp is sampled at 1 KHz for 2 seconds. 

The instantaneous frequency is 0 at t = 0 and crosses 200 Hz at t = 1 second. 
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(a) 

 
(b) 

Fig. 7 - Chirp signal from simulation, (a) a simple simulated form and (b) spectrogram of chirp with linear 

instantaneous frequency deviation. 

 

 
(a)                                                                                  (b) 

 
(c) 

Fig. 8 - Pulse train representation of acoustics of fish and mammals (a)10 KHz fish signal with 10 ms duration and 

(b) 5 KHz fish signal with 5 ms duration (c) 3 KHz. Fish signal with 100 ms duration. 
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In Figs. 8(a), 8(b) and 8(c), the pulse repetition frequency is 1 KHz; sample rate is 50 KHz and the repetition 

amplitude should attenuate by 0.9 each time. Figs. 8 (a) and 8(b) has 80% bandwidth and Fig. 8 (c) has 90% bandwidth. 

 

3.2.3 Different Algorithms used in Passive Acoustic Technique 

Passive acoustic technique is a rising area in the ecological research. Estimation of fish biomass using passive 

acoustics technique is upgrading lately. From the discussion above, we can understand that different fish and mammals 

produce detectable sounds. In passive acoustic techniques, the fish acoustics are recorded by hydrophones (sometimes 

called acoustic sensors) and implement different algorithms to estimate biomass. Such algorithms are illustrated in [135-

138]. 

Important aspects to choose an algorithm are structure of signal, variation of sounds in that particular area, nature of 

that sound, etc. By using hydrophone, different surveys were conducted to know the number, location, and inhabitation 

of fishes [139-142].  Rodney et al., (2006) investigated several developments in the study of passive acoustic measures 

[143]. In this addition, Luczkovich et al., (1999) conducted nocturnal hydrophone surveys at 12 locations in Pamlico 

Sound in May of 1996 and 1997 [144]. They found that passive hydroacoustic surveys can be used to delimit spawning 

areas for conservation and management purposes. Luczkovich et al., (1999) investigated prey behaviors with respect to 

predators by using passive acoustic techniques [145]. Gannon (2008) reviews passive acoustics in fisheries [146]. Van 

Parijs et al. (2009) present an overview of research and management applications of passive acoustics at sea [147]. 

Blumstein et al. (2011) assess the potential of acoustic monitoring in terrestrial habitats, noting its possible application 

for abundance estimation [148]. However, canonical density estimator for estimation of biomass is illustrated in [149-

150]. A canonical density estimator equation for passive acoustic surveys can be written [150]:  

(1 )n f
D

par

−
=

                                                                       (5) 

where n is the number of detected ‘objects’ (vocalizations, groups, etc.), f is the proportion of detections that are 

false positives, p is the probability of detecting an object within the area a, and r represents the multiplier(s) that converts 

object density to biomass. 

Moretti et al. (2010) investigated a method which is based on counting dives of Blainville's beaked whale 

(Mesoplodon densirostris) to estimate their biomass at the Tongue of the Ocean, Bahamas, using 82 bottom‐mounted 

hydrophones [151]. However, von Benda‐Beckmann et al. (2010) improved a towed system for beaked whale detection 

[152]. Similarly, Li et al. (2009) suggest that their acoustic system could be used to estimate freshwater cetacean densities 

using nearly similar method as described by Benda‐Beckmann et al. (2010) [153]. George et al. (2004) investigated a 

procedure in which acoustic detections were used to estimate the proportion of whales available for detection by visual 

observers [154]. Marques et al. (2011) presented an example of standard point transect sampling, in particular a cue‐

counting approach, to estimate right whale Eubalaena japonica density in the Bering Sea [155]. Given nu detected right 

whale calls in T hours, animal density was estimated by  

(1 )u p

c

n f
D

a PTr

−
=

                                                                       (6) 

Where ac is the size of the covered area, r the estimated call rate (in calls per hour), P the estimated detection 

probability of a call produced within area ac, and fp the estimated proportion of false positives (assumed to be zero in 

their example). Note that nu(1-fp)/Tr corresponds to n in equation (2), i.e. the number of detected calls must be ‘corrected’ 

to represent the biomass [155]. Sometimes, individual identification was also investigated by capturing acoustics, stated 

in [156]. This approach can be analogous with conventional mark recapture techniques. 

Borchers and Efford (2008) capture–recapture models that use the capture locations to estimate animal locations and 

spatially referenced capture probability [157]. If the same sounds are detected at sensors array then Spatially explicit 

capture-recapture (SECR) technique has been applied. Marques et al. (2012) considered SECR to estimate the biomass 

of mink whales (Balaenoptera acutorostrata) [158]. McCauley & Jenner (2010) estimated the biomass of pygmy blue 

whales (Balaenoptera musculus brevicauda) using calibration technique described in [159]. Similarly, U.S. Navy SOSUS 

arrays of sensors, which were designed for military purposes, can be used to detect marine species that produce low 

frequency sounds [160-161]. However, to implement a passive acoustic technique, the most important task is to deploy 

a passive acoustic system. Fixed passive acoustic systems are elaborately described in [162]. Most autonomous sound 

recorders of the passive acoustic systems are developed by navy and different private companies [163-165]. 

A typical scenario of passive acoustic system is illustrated in Fig. 9. Normally, these systems are effectively deployed 

on boat or sometimes under the ocean to record not only bioacoustics but also ambient noise or surrounding information 

[166].  However, a typical passive acoustic technique procedure is described below which is known as cross-correlation 

based biomass estimation technique [167-168]. 
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Fig. 9 – A typical scenario of passive acoustic system where the three pluses (+++) indicates a triangular 

hydrophone array and the dots indicates fish and mammals. 

 

3.2.4 Cross-correlation Based Passive Acoustic Technique of Biomass Estimation 

In this technique, a 3D estimation area is considered where vocalizing fish and mammals produce acoustic signals 

as a consequence of their acoustic activities. Transmitted acoustic signals from N fish and mammals are received by two 

acoustic sensors at different delay differences and summed at each sensor location forming composite signals. These two 

composite signals are then cross-correlated to formulate Cross-correlation function (CCF) that results a series of delta 

functions stated in [167-168]. Such an acquisition of CCF is shown bellow for 100 fish and mammals. 

 

 
Fig. 10 - Bins, b in the cross-correlation function [167]. 

 

Bins, b in the CCF (as shown in Fig. 10) is defined as a place occupied by a delta inside a space of a width twice the 

distance between acoustic sensors and that place is determined by the delay difference of the signals coming to the 

acoustic sensors. The deltas of equal delay differences are placed in that particular bin. Number of bins, b is achieved 

from the sampling rate, SR, distance between sensors, dDBS, and speed of chirp propagation, SP which all are predefined 

described in [169-174]. 

𝑏 =
2×𝑑𝐷𝐵𝑆×𝑆𝑅

𝑆𝑃
− 1                                                   (7) 

In cross-correlation based biomass estimation technique, we can use different estimation parameters (sum, mean 

[167], standard deviation, ratio of standard deviation to the mean [168] and ratio of mean to standard deviation) of CCF. 
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Direct calculation of these estimation parameters using statistical expression is convoluted. Hence, cross-correlation 

problem is reframed to a probability problem using the renowned occupancy problem that follows the binomial 

probability distribution, where the parameters are biomass of fish and mammals, N and 1/b [172]. By reframing, we can 

find the estimation parameter, i.e., ratio of standard deviation to mean, R as [172]. 

𝑅 =
𝜎

𝜇
=

√𝑁×
1

𝑏
×(1−

1

𝑏
)

𝑁

𝑏

= √
𝑏−1

𝑁
                                             (8) 

where, σ is the standard deviation of CCF and µ is the mean of CCF. 

Similarly, we can find the estimation parameter µ as [29] 

b

N
=

                                                                       (3) 

Thus, from equations (7) or (8), we can calculate N since we know b and R or   can be calculated from CCF. 

 

 
Fig. 11 - Simplified block diagram of cross-correlation based biomass estimation technique. 

 

Fig. 11 shows the simplified block diagram of cross-correlation based passive acoustic technique of biomass 

estimation. However, the estimation results of cross-correlation based passive acoustic technique of biomass estimation 

are illustrated below [167]. A tabular representation of the estimation for exponential distribution of damselfish using 

this technique is illustrated bellow [167]. We can see that, for 90 damselfish, the simulated estimation shows 91.12 

damselfish. The error is only 1.24%. This can signify the efficiency of this technique [167]. By the way, this method has 

some limitations like negligence of multipath interference and assuming the delays to be integer. However, the efficiency 

of a passive acoustic technique is depended on the acoustic behavior of fishes, nature of acoustics and strength of 

computing algorithms. 
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(a) 

 
(b) 

Fig. 12 - Corresponding estimation results from Hossain et al. (2018) for exponential distribution of Damselfish, 

(a) Number of damselfish vs. mean of CCF, and (b) Variation of estimated number of damselfishes from the actual 

quantity [167]. 

Table 1 - Experimental & theoretical data of CCF and percentage of error for exponential distribution [167] 

Actual 

number of 

dam selfish, 

aN  

Mean of CCF 

from 

simulation 

Estimated 

number of 

damselfish, 

eN  

Percentage of error 

%100
−

a

ea

N

NN
 

0 0 0 0 

10 0.237 9.23 7.7% 

20 0.538 20.93 4.65% 

30 0.745 29.17 2.77% 

40 1.091 42.56 6.4% 

50 1.208 47.12 5.76% 

60 1.478 57.65 3.92% 

70 1.881 73.34 4.77% 

80 1.963 76.57 4.25% 

90 2.336 91.12 1.24% 

100 2.621 102.23 2.33% 

 

4. Analysis and Discussions 

Mechanical equipment based non acoustic methods of biomass estimations were suffered from various drawbacks 

like poor accuracy, mechanical complexity, mostly human interaction, low efficiency, etc. Hence, after arrival of acoustic 
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techniques of biomass estimation, the researchers and modern commercial fishery managers began to use these. While 

active sonar’s have been widely adopted in the past 20 years for estimating fish biomass, passive acoustics has not seen 

widespread adoption. The reason can be a scarcity of commercial passive acoustic technologies in the market [175]. 

Similarly, vast researches on passive acoustic based biomass estimation are underway. Auspiciously, it is expected that 

diverse commercial passive acoustic techniques will be available in the near future. A relative features and analysis of 

non-acoustic, active acoustic and passive acoustic techniques in conducted in Table 2. 

Table 2 - Features of non-acoustic non acoustic, active acoustic and passive acoustic techniques 

Features Non acoustic techniques Active acoustic 

techniques 

Passive acoustic 

techniques 

Beginning periods From ancient ages Middle of 20th century 

[56-57] 

Recently developing 

Efficiency  Poor Better Better 

Complexity Mainly high mechanical 

complexities 

Protocol complexities Relatively low 

complexities  

Human interaction Human interactive Lower human interactive Lower human interactive 

Commercial availability Available Available Unavailable [175] 

Applicability Most types of fishes Most types of fishes Only vocalizing fishes 

Impact on ecology Sometimes harms the 

inhabitation of fishes 

Sometimes harms the 

inhabitation of fishes 

Eco friendly (167) 

Cost Depends on mechanical 

equipments 

Depends of fishery 

abundance and electronic 

equipments 

Depends of acoustic 

sensors electronic systems 

 

It can be said that, the diversity of different methods of biomass estimation techniques aids ecological research and 

commercial fishery managements immensely. New researches are underway lately, of which most is on acoustic 

technique-based biomass estimation techniques. 

 

5. Conclusions 

Biomass estimation techniques in the past were mechanical based, called non acoustic technique based. Recently, 

with the development of electronic and computing technologies, a huge implementation of acoustic techniques is 

observed. Copious researches and investigations are underway using both acoustics methods, i.e., active and passive 

acoustic methods. We have reviewed the major techniques regarding biomass estimation as well as analyzed their features 

in this paper. A good knowledge on different biomass estimation techniques can boost the researches and commercial 

activities. Therefore, this paper will aid immensely to the marine researchers, commercial fishery managers, ecology 

researchers, occasional fishery associates, and ocean communities. 
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