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1. Introduction 

In general, there are two feature reduction methods: feature extraction [1, 2, 3, 4, 5, 6, 7, 8] and feature selection [9, 

3, 10, 11, 12, 13, 14, 15, 16, 17,18]. In the former method, a fraction of features is selected as effective features, whereas 

in the latter technique, a number of effective features, each one as a function of one or more features, are produced. One 

of the feature extraction methods is principle component analysis (PCA) [1]. In this method, the best extracted feature is 

a feature with the maximal variance and a feature with a variance close to zero will be regarded as a trivial feature or 

noise. Another feature extraction method is locally linear embedding (LLE) [4] which consists of two phases: In the first 

phase, each data is written as a linear combination of other data, and the coefficients of this linear combination are stored. 

After that, low-dimensional data are produced in a way that each low-dimension data can be written as linear combination 

of the other low-dimensional data with the same coefficients stored in the previous phase. Simultaneous Orthogonal basis 

Clustering Feature Selection (SOCFS) [9] is a regularized regression based formulation with a new type of target matrix 

for unsupervised feature selection method. The mentioned target matrix captures latent cluster centers of the projected 

data by performing the orthogonal basis clustering, and then leads the projection matrix to select some discriminative 

features.  

The aim of feature reduction is reduction of the size of data file, elimination of irrelevant features, and discovery of 

the effective data features for data analysis. Irrelevant features can skew data analysis. Those features are effective 

Abstract: The aim of feature reduction is reduction of the size of data file, elimination of irrelevant features, and 

discovery of the effective data features for data analysis. Irrelevant data features can skew data analysis such as data 

clustering. Therefore, maintaining the data structure or data clusters must be taken into consideration in feature 

reduction. In this article, with regard to the success of k-means-based clustering methods, a feature reduction method 

is presented based on weighted k-means (wk-means). More specifically, firstly, data features are weighted using wk-

means method. A feature with a high weight is not a better feature for clustering than a feature with a low weight, 

necessarily, and the weight of a feature only change feature range for better clustering. Then, by using a novel 

mathematical model, a group of weighted features with the least effect on data clusters are eliminated and the 

remaining features are selected. Contrary to sparse k-means method, the number of selected features can be 

determined explicitly by the user in our proposed method. Experimental results on four real datasets show that the 

accuracy of clusters obtained by wk-means after feature reduction by the proposed method is better than that of 

sparse k-means, PCA and LLE. 
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features which can properly maintain the structure of the data such as the existing data clusters. Data structure or data 

clusters must not change during feature reduction. In sparse k-means [10, 15], in order to maintain data clusters as more 

as possible, those features are selected which decrease intra-cluster distance of the data compared to pair-wise distance 

between pairs of data. Unfortunately, the number of selected features can not be determined explicitly by the user in this 

method. 

In this article, with regard to the success of k-means-based clustering methods [19, 20, 21], a feature reduction 

method is presented based on wk-means [22]. More specifically, firstly, data features are weighted using wk-means 

method. A feature with a high weight is not a better feature for clustering than a feature with a low weight, necessarily, 

and the weight of a feature only change feature range for better clustering. Then, by using a novel mathematical model, 

a group of weighted features with the least effect on data clusters are eliminated and the remaining features are selected 

as the output of the proposed feature reduction method. Contrary to sparse k-means, the number of selected features is 

explicitly determined by the user in our proposed method. Experimental results on four real datasets show that the 

accuracy of clustering by wk-means after feature reduction by the proposed method is better than that of sparse k-means, 

PCA and LLE. 

In continue, the prerequisites of the research are explained in section 2. The proposed feature reduction method is 

presented in section 3. By using four real datasets, the proposed method is compared experimentally with three related 

feature reduction methods in section 4. Finally, in section 5, conclusion is drawn. 

 

2. Prerequisites 

2.1 K-means 

Consider training data set X = {x1, x2, … , xn} which must be grouped into c clusters, where xi ∈ R
m, and m is data 

dimension. K-means clustering model is as follows:  

min
u,z

∑ ∑ uik‖xi − zk‖2
2n

i=1
c
k=1

subject to {
∑ uik
c
k=1 = 1,   i = 1,2, … , n;

uik ∈ {0,1},   i = 1,2, … , n; k = 1,2, … , c.

  (1) 

 

where zk  is k -th cluster center, uik  is the membership degree of i -th data to k -th cluster, and ‖xi − zk‖2
2 =

∑ (xij − zkj)
2m

j=1 . The aim of the k-means model is determination of cluster centers in a way that the summation of 

distance between each data cluster and its corresponding cluster center is minimized. The first constraint of the k-means 

model states that each data must belong only to one cluster. Clustering is NP-Complete. Algorithm 1 is an iterative 

algorithm which tries to obtain a local optimum of the k-means model.  

 

Algorithm 1: k-means algorithm. 

1. Initialize cluster centers (𝑧). 

2. Fix cluster centers (𝑧), and then obtain the optimal membership values (𝑢) of k-means model. 

3. Fix membership values (𝑢), and then obtain the optimal cluster centers (𝑧) of k-means model. 

4. Repeat steps 2 and 3 until convergence condition is met. 

 

2.2 Wk-Means 

The wk-means model is as follows:  

min
u,z,w

∑ ∑ uik ∑ wkj
βm

j=1 (xij − zkj)
2c

k=1
n
i=1

subject to 

{
 
 

 
 ∑ uik = 1,   i = 1,2, … , n;

c
k=1

∑ wkj = 1m
j=1 ,   k = 1,2, … , c;

uik ∈ {0,1},   i = 1,2, … , n; k = 1,2, … , c;
wkj ≥ 0,   k = 1,2, … , c; j = 1,2, … ,m.

 (2) 

 

where wkj is the weight of j-th feature of k-th cluster which is determined during the clustering or optimization process. 

Indeed, the optimization model (2) assigns a higher weight to a feature with smaller range. In other words, this model 

changes the feature ranges or the clusters shapes by feature weighting such that data to be clustered better. The hyper-

parameter β controls the relation between feature weight wkj and the term (xij − zkj)
2
. If β = 1, only the weight of one 

feature of each data cluster becomes non-zero. Algorithm 2 is an iterative algorithm which tries to obtain a local optimum 

of the wk-means model. 
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Algorithm 2: wk-means algorithm. 

1. Initialize cluster centers (𝑧) and weights (𝑤). 

2. Fix cluster centers (𝑧) and weights (𝑤), and then obtain the optimal membership values (𝑢) of wk-means model by 

using the following equation: 

𝑢𝑖𝑘 = {
1 𝑖𝑓 ∀𝑙:∑𝑤𝑘𝑗

𝛽

𝑚

𝑗=1 

(𝑥𝑖𝑗 − 𝑧𝑘𝑗)
2
≤ ∑𝑤𝑙𝑗

𝛽

𝑚

𝑗=1 

(𝑥𝑖𝑗 − 𝑧𝑙𝑗)
2

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 

 

3. Fix cluster centers (𝑧) and membership values (𝑢), and then obtain the optimal weights (𝑤) of wk-means model by 

using the following equation: 

𝑤𝑘𝑗 =

{
 
 
 
 
 

 
 
 
 
 1

𝑚𝑖

𝑖𝑓∑ 𝑢𝑖𝑘(𝑥𝑖𝑗 − 𝑧𝑘𝑗)
2
= 0 𝑎𝑛𝑑 𝑚𝑖 = |{𝑡:∑ 𝑢𝑖𝑘(𝑥𝑖𝑡 − 𝑧𝑘𝑡)

2 = 0

𝑛

𝑖=1 

}| ;

𝑛

𝑖=1 

0 𝑖𝑓∑ 𝑢𝑖𝑘(𝑥𝑖𝑗 − 𝑧𝑘𝑗)
2
≠ 0 𝑎𝑛𝑑

𝑛

𝑖=1 

 ∑ 𝑢𝑖𝑘(𝑥𝑖𝑡 − 𝑧𝑘𝑡)
2 = 0

𝑛

𝑖=1 

 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑡;

1

∑ [
∑ 𝑢𝑖𝑘(𝑥𝑖𝑗 − 𝑧𝑘𝑗)

2𝑛
𝑖=1 

∑ 𝑢𝑖𝑘(𝑥𝑖𝑡 − 𝑧𝑘𝑡)
2𝑛

𝑖=1 
]

1
𝛽−1

𝑚
𝑡=1

𝑖𝑓∑𝑢𝑖𝑘(𝑥𝑖𝑡 − 𝑧𝑘𝑡)
2 = 0

𝑛

𝑖=1 

 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡.

 

4. Fix membership values (𝑢) and weights (𝑤), and then obtain the optimal cluster centers (𝑧) of wk-means model by 

using the following equation: 

𝑧𝑘𝑗 =
∑ 𝑢𝑖𝑘𝑥𝑖𝑗
𝑛
𝑖=1 

∑ 𝑢𝑖𝑘
𝑛
𝑖=1 

. 

5. Repeat steps 2-4 until convergence condition is met. 

 
 

3. Our proposed method 

Our proposed feature reduction method has two phases. In the first phase, the data are clustered using wk-means 

method. Wk-means assigns a different weight to different cluster features. Therefore, it changes the range of cluster 

features or the cluster shapes for better clustering. In the second phase and after determining the optimal weight of each 

cluster feature, S features of data clusters are selected using the following model in a way that the minimum amount of 

change occurs in clustering or in the objective function of wk-means model: 

min
𝑢,𝑧,�̃�

𝐹 = ∑ ∑ 𝑢𝑖𝑘 ∑ �̃�𝑘𝑗𝑤𝑘𝑗
𝛽𝑚

𝑗=1 (𝑥𝑖𝑗 − 𝑧𝑘𝑗)
2𝑐

𝑘=1
𝑛
𝑖=1

subject to 

{
 
 

 
 ∑ �̃�𝑘𝑗 = 𝑆,   𝑘 = 1,2, … , 𝑐;

𝑚
𝑗=1

∑ 𝑢𝑖𝑘
𝑐
𝑘=1 = 1, 𝑖 = 1,2, … , 𝑛;

�̃�𝑘𝑗 ∈ {0,1},   𝑘 = 1,2, … , 𝑐; 𝑗 = 1,2, … ,𝑚;

𝑢𝑖𝑘 ∈ {0,1},   𝑖 = 1,2, … , 𝑛;  𝑘 = 1,2, … , 𝑐.

   (3) 

 

where 𝑤𝑘𝑗  is the 𝑗-th feature of k-th cluster which was previously obtained by wk-means model. �̃�𝑘𝑗 is a feature selection 

variable. If �̃�𝑘𝑗 = 1, j-th feature of k-th cluster is selected, otherwise it is eliminated. Algorithm 3 is proposed for solving 

the model (3). 

 

Algorithm 3: our proposed algorithm. 

1. Initialize cluster centers (𝑧) and feature selection variables (�̃�). 

2. Fix cluster centers (𝑧) and feature selection variables (�̃�), and then obtain the optimal membership values (𝑢) of the 

model (3) by using the following equation: 

𝑢𝑖𝑘 = {
1 𝑖𝑓 ∀𝑙: 𝑔𝑖𝑘 ≤ 𝑔𝑖𝑙 ,
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

 (4) 

where 

𝑔𝑖𝑙 = ∑ �̃�𝑙𝑗𝑤𝑙𝑗
𝛽
(𝑥𝑖𝑗 − 𝑧𝑙𝑗)

2𝑚
𝑗=1 . (5) 
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3. Fix cluster centers (𝑧) and membership values (𝑢), and then obtain the optimal feature selection variables (�̃�) of the 

model (3) by using the following equation:  
 

�̃�𝑘𝑗 = {
1 𝑓𝑘𝑗 ≤ 𝑆min

𝑙
{𝑓𝑘𝑙};

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 (6) 

where 

𝑓𝑘𝑙 = ∑ 𝑢𝑖𝑤𝑖𝑘
𝛽 (𝑥𝑖𝑙 − 𝑧𝑘𝑙)

2𝑛
𝑖=1 ,  (7) 

and Smin is S-th smallest value. 

4. Fix feature selection variables (�̃�) and membership values (𝑢), and then obtain the optimal cluster centers (𝑧) of the 

model (3) by using the following equation: 

𝑧𝑘𝑗 =
∑ 𝑢𝑖𝑘𝑥𝑖𝑗
𝑛
𝑖=1 

∑ 𝑢𝑖𝑘
𝑛
𝑖=1 

.  (8) 

5. Repeat steps 2-4 until convergence condition is met. 

 

Each of the algorithms 1-3 terminates when cluster centers do not change. In continue, the correctness of each step 

of algorithm 3 is proved.  

 

Theorem 1. If cluster centers (z) and feature selection variables (�̃�) are fixed, the optimal solution of the model (3), i.e. 

the optimal membership values (𝑢), can be obtained by using Eq. (4). 

Proof. 

If cluster centers (z) and feature selection variables (�̃�) are fixed, the model (3) is transformed into the following 

model: 

min
𝑢
∑ ∑ 𝑢𝑖𝑘 ∑ �̃�𝑘𝑗𝑤𝑘𝑗

𝛽𝑚
𝑗=1 (𝑥𝑖𝑗 − 𝑧𝑘𝑗)

2𝑐
𝑘=1

𝑛
𝑖=1

subject to {
∑ 𝑢𝑖𝑘
𝑐
𝑘=1 = 1, 𝑖 = 1,2, … , 𝑛;

𝑢𝑖𝑘 ∈ {0,1},   𝑖 = 1,2, … , 𝑛;  𝑘 = 1,2, … , 𝑐.

  (9) 

The model (9) can be written as the summation of n sub-models, i.e. as follows: 

∑ (

min
𝑢
∑ 𝑢𝑖𝑘 ∑ �̃�𝑘𝑗𝑤𝑘𝑗

𝛽𝑚
𝑗=1 (𝑥𝑖𝑗 − 𝑧𝑘𝑗)

2𝑐
𝑘=1

subject to {
∑ 𝑢𝑖𝑘
𝑐
𝑘=1 = 1;

𝑢𝑖𝑘 ∈ {0,1},   𝑘 = 1,2,… , 𝑐.

)𝑛
𝑖=1   (10) 

Consider the 𝑖-th sub-model: 

min
𝑢
∑ 𝑢𝑖𝑘 ∑ �̃�𝑘𝑗𝑤𝑘𝑗

𝛽𝑚
𝑗=1 (𝑥𝑖𝑗 − 𝑧𝑘𝑗)

2𝑐
𝑘=1

subject to {
∑ 𝑢𝑖𝑘
𝑐
𝑘=1 = 1;

𝑢𝑖𝑘 ∈ {0,1},   𝑘 = 1,2, … , 𝑐.

 (11) 

According to the constraints of this sub-model, only and only one member of the set {𝑢𝑖𝑘}𝑘=1
𝑐  is equal to 1 and all 

others are zero. Therefore, in order to minimize the objective function of the model (11), 𝑢𝑖𝑘 = 1 if its coefficient in the 

objective function of the model, i.e. 𝑔𝑖𝑘 = ∑ �̃�𝑘𝑗𝑤𝑘𝑗
𝛽𝑚

𝑗=1 (𝑥1𝑗 − 𝑧𝑘𝑗)
2
, is the minimum of the set {𝑔𝑖𝑙}𝑙=1

𝑐 .  

End of proof.  

 
Theorem 2. If cluster centers (z) and membership values (𝑢) are fixed, the optimal solution of the model (3), i.e. the 

optimal values of feature selection variables (�̃�), can be obtained by using Eq. (6). 

Proof. 

If cluster centers (z) and membership values (𝑢) are fixed, the model (3) is transformed into the following model:  

min
�̃�
∑ ∑ �̃�𝑘𝑗 ∑ 𝑢𝑖𝑘𝑤𝑘𝑗

𝛽𝑛
𝑖=1

𝑚
𝑗=1 (𝑥𝑖𝑗 − 𝑧𝑘𝑗)

2𝑐
𝑘=1

subject to {
∑ �̃�𝑘𝑗 = 𝑆,   𝑘 = 1,2, … , 𝑐;𝑚
𝑗=1

�̃�𝑘𝑗 ∈ {0,1},   𝑘 = 1,2, … , 𝑐; 𝑗 = 1,2, … ,𝑚;

  (12) 

The model (12) can be written as the summation of c sub-models, i.e. as follows: 

∑ (

min
�̃�
∑ �̃�𝑘𝑗 ∑ 𝑢𝑖𝑘

𝑛
𝑖=1 𝑤𝑘𝑗

𝛽𝑚
𝑗=1 (𝑥𝑖𝑗 − 𝑧𝑘𝑗)

2

subject to {
∑ �̃�𝑘𝑗 = 𝑆;
𝑚
𝑗=1

�̃�𝑘𝑗 ∈ {0,1},   𝑗 = 1,2, … ,𝑚;

)𝑐
𝑘=1    (13) 

Consider the k-th sub-model: 

min
�̃�
∑ �̃�𝑘𝑗 ∑ 𝑢𝑖𝑘

𝑛
𝑖=1 𝑤𝑘𝑗

𝛽𝑚
𝑗=1 (𝑥𝑖𝑗 − 𝑧𝑘𝑗)

2

subject to {
∑ �̃�𝑘𝑗 = 𝑆;
𝑚
𝑗=1

�̃�𝑘𝑗 ∈ {0,1},   𝑗 = 1,2, … ,𝑚;

  (14) 
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According to the constraints of this sub-model, only and only S member of the set {�̃�𝑘𝑗}𝑗=1
𝑚

 is equal to 1 and all 

others are zero. Therefore, in order to minimize the objective function of the model (14), �̃�𝑘𝑗 = 1 if its coefficient in the 

objective function of the model, i.e. 𝑓𝑘𝑗 = ∑ 𝑢𝑖𝑤𝑖𝑘
𝛽
(𝑥𝑖𝑗 − 𝑧𝑘𝑗)

2𝑛
𝑖=1 , is one of the S minimum values of the set {𝑓𝑘𝑙}𝑙=1

𝑚 . 

End of Proof. 

 

Theorem 3. If feature selection variables (�̃�) and membership values (𝑢) are fixed, the optimal solution of the model 

(3), i.e. the optimal cluster centers (𝑧), can be obtained by using Eq. (8). 

Proof. 

If feature selection variables (�̃�) and membership values (𝑢) are fixed, the model (3) is transformed into the 

following unconstrained model: 

min
𝑢
 𝐹 = ∑ ∑ 𝑢𝑖𝑘 ∑ �̃�𝑘𝑗𝑤𝑘𝑗

𝛽𝑚
𝑗=1 (𝑥𝑖𝑗 − 𝑧𝑘𝑗)

2𝑐
𝑘=1

𝑛
𝑖=1   (15) 

We have at the optimal solution of the model (15): 
𝜕𝐹

𝜕𝑧𝑘𝑗
= 0 → ∑ −2𝑢𝑖𝑘𝑤𝑘𝑗

𝛽
�̃�𝑘𝑗(𝑥𝑖𝑗 − 𝑧𝑘𝑗) = 0𝑛

𝑖=1 ; 

→ 2𝑤𝑘𝑗
𝛽
�̃�𝑘𝑗 ∑ 𝑢𝑖𝑘𝑥𝑖𝑗

𝑛
𝑖=1 = 2𝑤𝑘𝑗

𝛽
�̃�𝑘𝑗𝑧𝑘𝑗 ∑ 𝑢𝑖𝑘

𝑛
𝑖=1 ; 

→ 𝑧𝑘𝑗 =
∑ 𝑢𝑖𝑘𝑥𝑖𝑗
𝑛
𝑖=1 

∑ 𝑢𝑖𝑘
𝑛
𝑖=1 

. 

End of Proof. 

 

4. Experimental results 

In this section, the proposed feature reduction method is compared with sparse k-means, LLE and PCA by using the 

following real dataset of UCI repository: 

 Wine: contains 3 clusters, 178 data and 13 features.  

 Vertebral 2: contains 2 clusters, 310 data and 6 features. 

 Vertebral 3: contains 3 clusters, 310 data and 6 features. 

 Parkinson: contains 2 clusters, 195 data and 22 features. 

In each experiment, one of the mentioned feature reduction methods was applied on a real datasets, then the obtained 

dataset was clustered using wk-means method, and finally its accuracy was reported. The hyper-parameter 𝛽 of wk-

means model was set to 6.  

Clustering and clustering based feature reduction results depend severely to initial cluster centers which are selected 

randomly. Therefore, each experiment was repeated 20 times, and mean and standard deviation of accuracy was reported 

in Table 1. The best feature reduction method for each dataset was bolded in Table 1. Table 2 shows the clustering 

accuracy without the feature reduction phase. 

Table 1 Accuracy of clustering by using wk-means after feature reduction by using LLE, PCA, sparse K-means, 
and the proposed method (%). 

#of features after 

feature reduction 

Feature reduction 

algorithm Wine Parkinsons Vertebral3 Vertebral2 

D = 2 

Proposed 0.6510±0.055 0.7153±0.050 0.4935±0.008 0.6260±0.030 

Sparse K-means 

[15] 

0.5618±0.010 0.6153±0.010 0.6294±0.010 0.5355±0.060 

LLE [4] 0.5438±0.010 0.6213±0.010 0.5416±0.013 0.6202±0.022 

PCA 0.6492±0.023 0.4821±0.011 0.4895±0.034 0.5648±0.010 

D = 3 

Proposed 0.6089±0.086 0.7476±0.023 0.5335±0.030 0.6106±0.016 

Sparse K-means 

[15] 

0.4965±0.010 0.7133±0.020 0.3957±0.020 0.6710±0.020 

LLE [4] 0.4045±0.011 0.7228±0.010 0.3960±0.010 0.6883±0.042 

PCA 0.8202±0.021 0.7430±0.011 0.3383±0.023 0.6961±0.030 

D = 4 

Proposed 0.6915±0.053 0.7676±0.020 0.5580±0.015 0.6334±0.011 

Sparse K-means 

[15] 

0.6740±0.042 0.7133±0.020 0.5330±0.030 0.6870±0.030 

LLE [4] 0.6817±0.043 0.7535±0.014 0.5065±0.010 0.6625±0.020 

PCA 0.6792±0.023 0.7430±0.009 0.5230±0.013 0.6355±0.020 

D = 5 

Proposed 0.6314±0.093 0.7917±0.034 0.5183±0.018 0.6464±0.011 

Sparse K-means 

[15] 
0.7542±0.020 0.7233±0.010 0.5577±0.010 0. 6990±0.030 
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LLE [4] 0.6604±0.010 0.7635±0.020 0.5065±0.010 0.6645±0.020 

PCA 0.6567±0.020 0.7438±0.010 0.5452±0.010 0.6355±0.020 

D = 6 

Proposed 0.6679±0.054 0.7184±0.033 - - 

Sparse K-means 

[15] 

0.6516±0.026 0.6390±0.018 - - 

LLE [4] 0.4921±0.035 0.6902±0.037 - - 

PCA 0.5430±0.050 0.5530±0.035 - - 

  

Table 2 Accuracy of clustering by using wk-means with no feature reduction (%). 

Wine Parkinsons Vertebral3 Vertebral2 

0.8998±0.030 0.6615±0.010 0.4859±0.030 0.6537±0.010 

 

Table 3 Running time of different feature reduction methods (s). 

#of features after 

feature reduction 

Feature reduction 

algorithm Wine Parkinsons Vertebral3 Vertebral2 

D = 2 

Proposed 0.058 0.077 0.048 0.040 

Sparse K-means [15] 0.025 0.036 0.038 0.027 

LLE [4] 0.080 0.168 0.111 0.094 

PCA 0.004 0.004 0.004 0.004 

D = 3 

Proposed 0.055 0.077 0.045 0.040 

Sparse K-means [15] 0.021 0.036 0.031 0.028 

LLE [4] 0.080 0.153 0.111 0.111 

PCA 0.004 0.003 0.006 0.005 

D = 4 

Proposed 0.061 0.094 0.048 0.040 

Sparse K-means [15] 0.025 0.036 0.036 0.033 

LLE [4] 0.075 0.170 0.0108 0.111 

PCA 0.004 0.003 0.006 0.005 

D = 5 

Proposed 0.057 0.097 0.049 0.040 

Sparse K-means [15] 0.026 0.045 0.039 0.035 

LLE [4] 0.070 0.172 0.096 0.116 

PCA 0.006 0.001 0.007 0.008 

D = 6 

Proposed 0.064 0.094 - - 

Sparse K-means [15] 0.027 0.045 - - 

LLE [4] 0.073 0.172 - - 

PCA 0.006 0.004 - - 

 

According to Table 1, the clustering accuracy depends on the number of selected features, feature reduction method, and 

dataset. According to Table 1 and 2, feature reduction could sometimes enhance the clustering accuracy of Parkinson, 

Verteberal2 and Verteberal3 datasets. As mentioned earlier, feature reduction can enhance data analysis if there are 

irrelevant feature in data. Using the mean of clustering accuracies of different datasets as a criterion for comparison of 

different data mining methods is incorrect [23], and the ranking criterion must be used for comparison [24] as follows: 

According to Table 1, the accuracy of the proposed method is better than PCA, LLE and sparse k-means for 13, 13 and 

12 cases out of 18 cases, respectively. Therefore, the proposed method is more accurate than the three other methods. 

The mentioned experiments were performed using 64-bit 2.5GHz Core i5 CPU with 6GB RAM. Table 3 shows the 

running time of the mentioned feature reduction methods. According to Table 3, it can be stated that the speed of the 

proposed method is better than that of LLE, whereas it is worse than that of PCA and sparse k-means. 

 

5. Conclusion 

In this article, with regard to the success of k-means-based clustering methods, a feature reduction method is 

presented based on wk-means. Contrary to related method such as sparse k-means and sparse fuzzy c-means methods, 

the number of selected features is explicitly determined by the user in our proposed method. Experimental results on four 

real datasets showed that:  

• Feature reduction could sometimes enhance the clustering accuracy of Parkinson, Verteberal2 and Verteberal3 

datasets. Indeed, feature reduction can enhance data analysis if there are irrelevant feature in data. 
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• The accuracy of the proposed method is better than that of PCA, LLE and sparse k-means for 13, 13 and 12 

scenarios out of 18 scenarios, respectively. Therefore, the proposed method is more accurate than the three other methods. 

• The speed of the proposed method is better than that of LLE, whereas it is worse than that of PCA and sparse k-

means. 

Our proposed model is based on k-means clustering not a fuzzy clustering model. In future, the fuzzy version of our 

proposed model is studied. 
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