
International Journal of Integrated Engineering:
Special Issue 2018: Data Information Engineering, Vol. 10 No. 6 (2018) p. 106-112.
© Penerbit UTHM DOI: https://doi.org/10.30880/ijie.2018.10.06.014

Comparison Study of Sorting Techniques in Static Data
Structure
Anwar Naser Frak1, Mohd Zainuri Saringat1*, Yuli Adam Prasetyo2, Aida
Mustapha1, Hannani Aman1, Noraini Ibrahim1

1Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia, 86400, Johor,
Malaysia
2School of Computing, Telkom University, 40257 Bandung, West Java, Indonesia

Received 28 June 2018; accepted 5August 2018, available online 24 August 2018

1. Introduction
Data structure is important to systematically

organize large data in a computer system. A correct
selection of data structures drives towards efficient
implementation, making it suitable for various
applications [1]. In addition, data structure is considered
as a key and essential factor when designing effective
and efficient algorithms [2, 3]. In the realm of software
design, there are several studies that have attested the
importance of data structures. Data structures are
generally based on the ability of a computer to fetch and
store data at any place in its memory, specified by a
pointer with a bit stringer presenting a memory address.
Thus, data structures concern on computation of the
data item addresses via arithmetic operations. To date,
there are various studies that demonstrate the
importance of data structures in software design [4, 5].

Given a specific data structure, data management
needs to involve a certain sorting process [6]. Sorting
refers to ordering data in an increasing or decreasing
fashion according to some linear relationship among the
data items in a particular data structure. Sorting
techniques have attracted a great deal of research for
efficiency, practicality, performance, complexity and
types of data structures [7, 8]. Rigorous efforts have
been taken to improve sorting techniques like merge
sort, bubble sort, insertion sort, quick sort, selection
sort, and each of them has a different mechanism to
reorder elements which increase the performance and

efficiency of the practical applications as well as
reducing the time complexity for each one.

Nonetheless, while many research focused on
improving the sorting algorithms, very little effort
focuses on the types of data structure used on the
sorting algorithms. Finding the most efficient sorting
technique involves examining and testing these
techniques to finish the main task as soon as possible
and identifying the most suitable structure for sorting in
shortest time. It is worth noting that when various
sorting algorithms are being compared, there are a few
parameters that must be taken into consideration, such
as complexity, and execution time [9, 10]. The
complexity is determined by the time taken for
executing the algorithm [11]. In general, the time
complexity of an algorithm is written in the form of Big
O(n) notation, where O represents the complexity of the
algorithm and the value n represents the number of
elementary operations performed by the algorithm.
Thus, the aim is to evaluate the efficiency of different
sorting algorithms and study the factors that affect the
practical performance of each algorithm in terms of its
overall run time.

This paper investigates the efficiency of five
sorting techniques; selection, insertion, bubble, quick
and merge sort, as well as their behaviours on small and
large data set. To accomplish these tasks, this research
proposed a methodology that comprises of three phases,
which are (1) implementation of sorting technique, (2)

Abstract: To manage and organize large data is imperative in order to formulate the data analysis and data
processing efficiency. Therefore, this paper investigates the set of sorting techniques to observe which technique to
provide better efficiency. Five types of sorting techniques of static data structure, Bubble, Insertion, Selection with
O(n2) complexity and Merge, Quick with O(n log n) complexity have been used and tested on four groups between
(100–30000) of dataset. To validate the performance of sorting techniques, three performance metrics which are
time complexity, execution time and size of dataset were used. All experimental setups were accomplished using
simple linear regression. The experimental results illustrate that Quick sort is more efficiency than other sorting
and Selection sort is more efficient than Bubble and Insertion in large data size using array. In addition, Bubble,
Insertion and Selection have good performance for small data size using array thus, sorting technique with
behaviour O(n log n) is more efficient than sorting technique with behaviour O(n2) using array.
Keywords: Array data structure; Sorting; Quick sort; Insertion sort; Selection sort; Merge sort; Bubble sort

*Corresponding author: zainuri@uthm.edu.my
2018 UTHM Publisher. All right reserved.
penerbit.uthm.edu.my/ojs/index.php/ijie

106

https://doi.org/10.30880/ijie.xx.xx.xxxx.xx.xxxx

M.Z. Saringat et al., Int. J. Of Integrated Engineering:Special Issue 2018: Data Information Engineering: Vol. 10 No. 6 (2018) p. 106-112

calculation of their complexity, and finally (3)
comparative analysis. Each phase contains different
steps and delivers useful results to be used in the next
phase. Finally, performance of all five sorting
techniques were evaluated by three performance
measures which are time complexity, execution or run
time and size of dataset used.

The remainder of this paper proceeds as follows.
Section 2 presents the related work pertaining to sorting
algorithms. Section 3 presents the research
methodology, Section 4 discusses the comparative
analysis and finally Section 5 concludes with some
indication for future work.

2. Related Work

A considerable amount of literature has been

published on sorting techniques. While looking into
large and growing body of literature, it is appeared that
sorting techniques have been proven to be successful
for data structures. Thus, the data structures have an
impact on the efficiency of these sorting techniques. [5]
discussed and reviewed the performance of sorting
techniques where comparisons of the algorithms were
based on the time of implementation. It was found that
for small data, the six techniques perform well, but for
large input data, only quick sort and grouping
comparison sort (GCS) are considered fast. [10]
examined several sorting algorithms and discussed the
performance analysis of these sorting algorithms based
on their complexity while testing them with list data
structure. It was found that the merge sort and quick
sort have high complexity but faster in large lists.

In the work of [1], four techniques which are
insertion sort, quick sort, heap sort and bubble sort were
compared. Although all these techniques are of O(n2)
complexity, it was found that they produced different
results in execution time with quick sorting technique
being the most efficient in terms of execution time. [14]
proposed a new sorting algorithm named “index sort”
and evaluate its performance by making comparison
with other four sorting techniques; insertion sort, bubble
sort, selection sort and merge sort, based on their
running time. The research found that the proposed
index sort is faster than the other sorting algorithms.

In general, bubble sort is a simple and the slowest
sorting algorithm which works by comparing each
element in the list with progress elements and swapping
them if they are in undesirable order. The algorithm
continues this operation until it makes a pass right
through the list without swapping any elements, which
shows that the list is sorted. This process takes a lot of
time and especially slow when the algorithm works
with a large data size. Therefore, it is considered to be
the most inefficient sorting algorithm with large dataset
[5]. Insertion sort is a simple and efficient sorting
algorithm, beneficial for small size of data. It works by
inserting each element into its suitable position in the
final sorted list. For each insertion, it takes one element
and finds the suitable position in the sorted list by
comparing with contiguous elements and inserts it in
that position [6].

Quick sort uses divide and conquer method for
solving problems. It works by partitioning an array into
two parts, then sorting the parts independently. It finds
the elements called pivot which divides the array into
halves in such a way that elements in the left half are
smaller than the pivot, and elements in the right half are
greater than pivot [5]. Selection sort works by selecting
the highest element needed to compare all n elements in
the list at first iteration and swapping them if required.
Likewise, to select the next highest element it needs to
compare n elements in the list and so on. Hence it
requires O(n2) comparisons and n-1 swaps to sort the
list of n elements. Since it has the worst case running
time of O(n2) [11].

Finally, merge sort works by dividing and
conquering the Merge sort, dividing the array in two
halves at each stage, which gives it lg(n) component
and the other N component derived from its
comparisons that are made at each stage. Therefore
combining it becomes nearly O(n log n) which in the
worst case, merge sort requires O(n log n) time to sort
an array with n elements [5].

3. Methodology

The objective of this paper is to analyse the

performance of five sorting algorithms in a static data
structure, which is array. An array is the arrangement of
data in the form of rows and columns that is used to
represent different elements through a single name but
different indicators, thus, it can be accessed by any
element through the index [4]. Arrays are useful in
supplying an orderly structure which allows users to
store large amounts of data efficiently. For example, the
content of an array may be changed during runtime
whereas the internal structure and the number of the
elements are fixed and stable. An array could be called
fixed array because they are not changed structurally
after they are created. This means that the user cannot
add or delete to its memory locations (making the array
having less or more cells), but can modify the data it
contains because it is not change structurally. The
research framework in three phases is shown in Fig. 1.

Fig. 1 Research framework

 107

M.Z. Saringat et al., Int. J. Of Integrated Engineering:Special Issue 2018: Data Information Engineering: Vol. 10 No. 6 (2018) p. 106-112

The first phase is implementation of the sorting

algorithms, which are bubble sort, insertion sort,
selection sort with O(n2) complexity, as well as merge
sort and quick sort with O(log n) complexity. The
second phase is calculating the complexity of these five
sorting algorithms. According to [12], the time
complexity of an algorithm quantifies the amount of
time taken by an algorithm to run as a function with the
length of a string representing the input. Execution time
is the time taken to hold processes during the running of
a program. The speed of the implementation of any
program depends on the complexity of a technique or
algorithm. If the complexity is low, then the
implementation is faster, whereas when the complexity
is high then the implementation is slow [13]. The time
complexity of an algorithm is commonly expressed
using Big(O) notation, which excludes coefficients and
lower order terms. The time complexity is commonly
estimated by counting the number of elementary
operations performed by the algorithm, where an
elementary operation takes a fixed amount of time to
perform.

The third phase is comparing and analysing these
sorting algorithms with performance measurement
execution time per second, and size of the dataset, based
on simple linear regression. Regression analysis is a
statistical function used to find the estimated value
between variable groups, which includes many of the
techniques that are used in special preparation analysed
to determine the relationship between the dependent and
independent variable.

In this experiment, a least square estimator of a linear
regression model with a single explanatory variable was
used. In this model, there exists a simple straight line
which passes through a series of dots that make total
residuum any distance between the real point and the
estimated point. Regression analysis used to predict or
find a relationship between the independent variable
and dependent variable moreover, its impact on the
dependent variable. Thus regression analysis finds a
causal relationship between the variables [8]. The linear
regression equation is shown in Equation 1.

𝑌𝑌 = 𝑎𝑎 + 𝑏𝑏 × 𝑋𝑋 (1)

where Y is the dependent variable, X is the independent
variable, a is the constant (or intercept), and b is the
slope of the regression line. The equation of squares
regression is shown in Equation 2.

𝑆𝑆𝑆𝑆 =
�1
𝑁𝑁
�× ∑(𝑥𝑥𝑖𝑖 − 𝑥𝑥)(𝑦𝑦𝑖𝑖 − 𝑦𝑦)

�𝜎𝜎𝑥𝑥 × 𝜎𝜎𝑦𝑦�

(2)

𝜎𝜎𝑥𝑥 = ��
(𝑥𝑥𝑖𝑖 − 𝑥𝑥)2

𝑁𝑁

𝜎𝜎𝑦𝑦 = ��
(𝑦𝑦𝑖𝑖 − 𝑦𝑦)2

𝑁𝑁

where N is the number of observations used to fit the
model, Xi is the x value of observation i, Yi is the yvalue

of observation i, Y is the mean y value, 𝜎𝜎𝑥𝑥 is the
standard deviation of x, and 𝜎𝜎𝑦𝑦 is the standard deviation
of y. Following [9], a ratio is a relationship between two
numbers indicating how many times the first number
contains the second number. The equation of ratio is
shown in Equation 3.

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≈
estimated value for algorithm 1

𝑠𝑠𝑠𝑠𝑒𝑒𝑖𝑖𝑒𝑒𝑎𝑎𝑒𝑒𝑠𝑠𝑠𝑠 𝑣𝑣𝑎𝑎𝑣𝑣𝑣𝑣𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓 𝑎𝑎𝑣𝑣𝑎𝑎𝑓𝑓𝑓𝑓𝑖𝑖𝑒𝑒ℎ𝑒𝑒 2
(3)

4. Experiments and Results

During the implementation phase, all the sorting

algorithms were implemented to sort four groups of
datasets between 100 to 30,000 lines. The hardware
requirements included C++ programming language, an
Intel (R) Core (TM) 2 Duo CPU E8400 operating
system at 3.00 GHz (2 CPUs), along with installed
memory (RAM) of 2,038 MB. In this study, static data
structure was used. The instance of the array structure is
fixed and remain static throughout the program run time.
The content of the array used may be changed during
the execution, but the internal structure and the number
of elements in the structure remain unchanged. Table 1
to Table 4 show the experimental result of execution
time for four groups.

Table 1: Results of Execution Time for Group 1 n=

(100 to 1000)

n

O(n2) Group O(n log n) Group
Bubbl
e

Insertio
n

Selectio
n

Merge Quick

100 0 0 0 0 0
200 0 0 0 0 0
300 0.001 0 0.001 0 0
400 0.001 0 0.001 0 0
500 0.001 0.001 0.001 0 0
600 0.001 0.001 0.001 0 0
700 0.002 0.001 0.001 0 0
800 0.002 0.001 0.001 0 0
900 0.002 0.001 0.002 0 0
1000 0.003 0.002 0.002 0 0
Est.
Value

0.001

35

0.0007

0.00103

0

0

Table 2: Results of Execution Time for Group 2 n=

(2000 to 10,000)

n

O(n2) Group O(n log n) Group
Bubble Insert

ion
Selecti
on

Merge Quick

2000 0.015 0.006 0.008 0 0
3000 0.028 0.014 0.017 0.001 0
4000 0.053 0.026 0.031 0.001 0
5000 0.087 0.04 0.047 0.001 0
6000 0.131 0.058 0.069 0.001 0.001
7000 0.205 0.079 0.100 0.001 0.001
8000 0.257 0.105 0.131 0.001 0.001
9000 0.346 0.136 0.166 0.002 0.001
10000 0.454 0.177 0.217 0.002 0.001
Est.
Value

0.1265

0.056

0.0987

0.0011

0.0011

 108

M.Z. Saringat et al., Int. J. Of Integrated Engineering:Special Issue 2018: Data Information Engineering: Vol. 10 No. 6 (2018) p. 106-112

5 1

Table 3: Results of Execution Time for Group 3 n=
(11000 to 20000)

n

O(n2) Group O(n log n) Group
Bubbl
e

Insertio
n

Select
ion

Merge Quick

11000 0.527 0.227 0.252 0.002 0.001
12000 0.635 0.241 0.295 0.003 0.002
13000 0.752 0.278 0.352 0.003 0.002
14000 0.868 0.343 0.41 0.003 0.002
15000 1.043 0.386 0.483 0.003 0.003
16000 1.178 0.454 0.541 0.003 0.003
17000 1.351 0.557 0.604 0.004 0.003
18000 1.501 0.564 0.712 0.004 0.003
19000 1.659 0.633 0.757 0.004 0.003
20000 1.862 0.697 0.845 0.005 0.003
Est.
Value

0.5757

0.5118

0.385

0.00515

0.0037

Table 4: Results of Execution Time for Group 4 n=
(21000 to 30000

n

O(n2) Group O(n log n) Group
Bubble Inserti

on
Selectio
n

Merge Quick

21000 2.105 0.786 0.944 0.005 0.003
22000 2.244 0.859 1.014 0.005 0.004
23000 2.428 0.962 1.122 0.005 0.004
24000 2.668 1.012 1.22 0.006 0.004
25000 2.937 1.096 1.297 0.006 0.004
26000 3.203 1.197 1.473 0.006 0.005
27000 3.502 1.297 1.538 0.007 0.005
28000 3.958 1.384 1.683 0.007 0.005
29000 4.089 1.506 1.855 0.007 0.005
30000 4.22 1.703 2.027 0.007 0.005
Est.
Value

4.2376

1.281

0.943

0.00855

0.006

5. Comparative Analysis

Five sorting techniques were compared in a series
of four-group experiments using dataset of different
sizes. The dataset was implemented as array. To
appraise the obtained results, linear regression was used.
The linear regression method is used to generate
estimators and other statistics in regression analysis.
Besides, the method of linear regression is a standard
approach in regression analysis to approximate solution.
The estimated value and ratio value for each
measurement is considered as comparison criteria in
this study.

A minimum estimated value (constant factors)
indicates a fitting linear and the best fit in the linear
regression. A minimum percentage of the ratio indicates
that the execution time is not affected when size of data
is increased [9]. The comparative analysis is based on
theestimated value of execution time per second for

each sorting technique according to each group as
shown in Table 5.

Table 5: Experimental Results for Four Groups

Based on Estimated Value
Sorting
Algorith
m

Estimated Value Avg.
Est.

Value
Grou
p 1

Group
2

Grou
p 3

Group
4

Bubble
Sort

0.001 0.127 0.576 4.238 1.235

Insertion
Sort

0.001 0.0565 0.512 1.281 0.463

Selection
Sort

0.001 0.099 0.385 0.943 0.357

Merge
Sort

0.000 0.001 0.005 0.009 0.004

Quick
Sort

0.000 0.001 0.004 0.006 0.003

Based on the experimental results, the analysis

include (1) comparison of estimated value for each
sorting algorithm in each group based on Equation [1],
(2) comparison of average estimation value for each
sorting algorithm, (3) comparison of average ratio
between sorting algorithms within the same group as
based on Equation [2], and finally (4) comparison of
average ratio speed for every sorting algorithms
between the group based on Equation [2].

A. Estimated Value for Each Sorting Algorithm

Comparison of the compared estimated value of

Group 1 to Group 4 datasets (100-30000) for five
sorting algorithms are shown in Fig. 2 to Fig. 5.

Fig. 2 Estimated value for Group 1

Fig. 3 Estimated value for Group 2

 109

M.Z. Saringat et al., Int. J. Of Integrated Engineering:Special Issue 2018: Data Information Engineering: Vol. 10 No. 6 (2018) p. 106-112

Fig. 4 Estimated value for Group 3

Fig. 5 Estimated value for Group 4

B. Average Estimation Value for All Sorting

Algorithms

The comparisons on the average estimated value
for all groups data set of five sorting techniques are
shown in Fig. 6. It is evident that there is a difference in
efficiency between sorting techniques in terms of
measurement of the data size and sorting time per
second using array. The merge and quick sort have a
minimum average for estimation value across all groups
data set. Thus, it can be concluded that merge and quick
sort are more efficient compared to bubble, insertion
and selection sort. However, the selection sort is more
efficient than bubble and insertion sort.

Fig. 6 Comparison of average estimated value of five
sorting algorithms

C. Average Ration between Two Sorting Algorithms

To determine the ratio of the variation between the

speeds of the five sorting techniques, comparisons have
been made by calculating the average of ratio of a
sorting technique and compare it with other sorting
technique in the same group. based on Equation 2. The
results are shown in Table 6.

Table 6: Comparison of Ration of Variation Between
Sorting Speed

Group 1 Group 2 Group 3 Group 4 Avg.
Est.

Bubble is
1.9×
slower
than
Insertion

Bubble is
2.2×
slower
than
Insertion

Bubble is
1.1×
slower
than
Insertion

Bubble is
3.3×
slower
than
Insertion

2.12
5

Bubble is
1.3×
slower
than
Selection

Bubble is
1.2×
slower
than
Selection

Bubble
1.4×
slower
than
Selection

Bubble is
4.4×
slower
than
Selection

2.07
5

Selection
is 1.4×
slower
than
Insertion

Selection
is 1.7×
slower
than
Insertion

Insertion
is 1.3×
slower
than
Selection

Insertion
is 1.3×
slower
than
Selection

1.40
0

Merge is
equally
slow as
Quick

Merge is
1.0×
slower
than
Quick

Merge is
1.3×
slower
than
Quick

Merge is
1.4×
slower
than
Quick

0.92
5

Fig. 7 shows the comparison of the variation between

the five sorting techniques.

Fig. 7 Comparison of average ration between five

sorting algorithms

Fig. 7 implies that there is a variation between the
ratios of the five techniques in terms of measurement
ratio. The merge sort and quick sort have a minimum
average of ratio for variation in speed among five
sorting techniques. This indicates that merge sort and
quick sort are most e fficient in ter
using array. On the other hands, the bubble sort,
insertion sort and selection sort have the maximum
average ratio. This indicates that bubble sort, insertion
sort and selection sort are less e fficient in ter
sorting data using array.

D. Average Speed Ratio for Each Algorithm

Finally, comparison has been made among five

sorting techniques based on the calculated average
sorting speed ratio as stated in Equation 2. Table 7
shows the speed ratio between the techniques for
di fferent data sizes.

Table 7: Comparison of Ration of Variation Between
Sorting Speed

Sorting
Algorithm

Ratio
group2/

Ratio
group3/

Ratio
group4/

Avg.
Ratio

 110

M.Z. Saringat et al., Int. J. Of Integrated Engineering:Special Issue 2018: Data Information Engineering: Vol. 10 No. 6 (2018) p. 106-112

group1 group2 group3 between

group
Bubble 9.30 4.55 7.36 7.07
Insertion 8.01 9.05 2.50 6.52
Selection 9.50 3.90 2.45 5.28
Merge 0.00 4.63 1.66 2.10
Quick 0.00 3.36 1.62 1.66

Based on Table 7, the comparison of average
sorting speed ratio between groups has been made for
five techniques as shown in Fig. 8. It demonstrates that
there is a difference in percentage between sorting
techniques in terms of measuring the average ratio
sorting speed between the groups.

Fig. 8 Comparison of the average speed ratio between

sorting algorithms

6. Conclusions

Based on the comparative analysis, quick sort has
the smallest average ratio sorting speed that indicates
that it is highly efficient when working with different
data sizes implemented as arrays. Whereas, bubble sort,
insertion sort and selection sort have maximum average
ratio sorting speed between the groups which indicates
that they are less efficient in terms of execution time.

On the whole, the comparative analysis signify that
the variation was clear between groups of data and
sorting techniques at different sizes of data set as well
as sorting time per second. Merge sort and quick sort
are more efficient in terms of minimum average
estimation value and minimum average ratio sorting
speed as compared to the remainder of the sorting
techniques. On the contrary, bubble sort, insertion sort
and selection sort have maximum average estimation
value and maximum average ratio speed which means
that they have poor efficiency when working with large
datasets. It can be concluded that sorting techniques that
have complexity of O(n log n) is more efficient than
sorting techniques of complexity O(n2).

Acknowledgement

This project is sponsored by Universiti Tun
Hussein Onn Malaysia.

References

[1] N. Chhajed, I. Uddin and S. S. Bhatia, “A
comparison based analysis of four different types
of sorting algorithms in data structures with their
performances”, International Journal of Advance
Research in Computer Science and Software
Engineering, 3(2): 373-381, 2013.

[2] V. Okun, A. Delaitre and P. E. Black, “Report on
the third static analysis tool exposition”, SATE,
500, 283, 2011.

[3] P. E. Black, “Dictionary of algorithms and data
structures”, US National Institute of Standards and
Technology, 2009.

[4] B. Andres, U. Koethe, T. Kroeger and F . A.
Hamprecht, “Runtime-flexible multi -dimensional
arrays and views for C ++ 98 and C++”, 0x. arXiv
preprint arXiv:1008.2909, 2010.

[5] K. S. Al-Kharabsheh, I. M. Al-Turani, A. M. I. Al-
Turani and N. I. Zanoon, “Review on Sorting
Algorithms A Comparative Study”, International
Journal of Computer Science and Security,
7(3):120, 2013.

[6] Y. Liu and Y. Yang, “Quick-merge sort algorithm
based on Multi-core linux”, in Proceedings of the
International Conference in Mechatronic Sciences,
Electric Engineering and Computer, 1578-1583,
2013.

[7] A. A. Voevoda and D. O. Romannikov, “A Binary
Array Asynchronous Sorting Algorithm with
Using Petri Nets”, Journal of Physics: Conference
Series, 803(1):012178, 2017.

[8] A. J. Umbarkar, U. T. Balande and P. D. Seth,
“Performance evaluation of firefly algorithm with
variation in sorting for non-linear benchmark
problems”, in Proceedings of the AIP Conference
Proceedings, 1836(1):020032, 2017.

[9] D. Rajagopal and K. Thilakavalli, “Different
Sorting Algorithm’s Comparison based Upon the
Time Complexity”, International Journal of u-and
e-Service, Science and Technology, 9(8):287—296,
2016.

[10] N. Chowdhury, “A Java Based Tool to Monitor
Execution Time of Different Sorting Algorithms”,
Doctoral dissertation, East West University (2016).

[11] M. Goodrich, R. Tamassia and D . Mount, “Data
structures and algorithms in C ++”, John Wiley &
Sons, 2007.

[12] W. Waegeman, B. D. Baets and L. Boullart, “ROC
analysis in ordinal regression learning”, Pattern
Recognition Letters Pattern Recognition Letters,
29(1):1-9, 2008.

[13] C. K. Shene, “A Comparative Study of Linkedlist
Sorting Algorithms”, Department of Computer
Science, Michigan Technological University,
Houghton, 1996.

[14] P. K. Chhatwani and S. S. Jayashree,
“Comparative Analysis and Performance of
Different Sorting Algorithm in Data Structure”,
Information Technology, Hirani Institute of
Polytechnic. Pusad, Maharashtra, India, 2013.

 111

M.Z. Saringat et al., Int. J. Of Integrated Engineering:Special Issue 2018: Data Information Engineering: Vol. 10 No. 6 (2018) p. 106-112

[15] S. Abdel-Hafeez and A. Gordon-Ross, “An
Efficient O(N) Comparison-Free Sorting
Algorithm”, in Proceedings of the IEEE
Transactions on Very Large Scale Integration
(VLSI) Systems, 25(6): 1930-1942, 2017.

[16] A. R. Estakhr, “Physics of string of information at
high speeds, time complexity and time dilation”,
Bulletin of the American Physical Society , 58,
 .2013

[17] P. P. Puschner and C. Koza, “Calculating the
maximum execution time of realtime programs”,
Real-Time Systems, 1(2):159-176, 1989.

[18] A. Bharadwaj and S. Mishra, “Comparison of
Sorting Algorithms based on Input Sequences”,
International Journal of Computer Applications,
78(14), 2013.

 112

