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1. Introduction

Failure in such mechanical components as vehicle 

suspension systems is widely used in the automotive 

industry. Several researchers have studied suspension 

systems and analysed the compression of coil spring 

fracture at the transition position for the bearing coil. 

Radiation ridges have been observed to emanate from 

wear scars [1]. Several researchers investigated the 

fatigue behaviour of springs and found short surface 

fatigue cracks from the origin [2]. In the literature on 

fatigue assessment, many researchers have developed 

techniques for identify the fatigue life and preventing 

fatigue failure [3]. Fatigue life assessment in retain 

signal to summarises fatigue data by removing low-

amplitude cycles to reduce the duration time test. Two 

factors have been suggested to ensure that fatigue 

performance achieves efficient design and 

modification processes. DuQuesnay mentioned that the 

component test should be as short as possible for 

maximum accuracy [4]. Several techniques, such as 

short-time Fourier transform (STFT) and wavelet 

transform, have been developed for time and time-

frequency analyses [5]. Then, Mahdavi et al. [6] was 

analysed the features extraction based on Wavelet 

transform and following with Jamaluddin et al. [7] 

doing the detection using two electrodes system device 

with Wavelet analysis.  Some of the techniques 

developed were used for removing low-amplitude 

cycles to retain high-amplitude cycles [8]. 

Random variable help is used to characterise stress 

or strain behaviour and thus classify fatigue data [9]. 

Putra et al. [10] used clustering analysis to study the 

segment behaviours of fatigue data, and the segment 

extraction of clustering optimised the data signal. In 

signal processing, fatigue extraction analysis 

contributes to scattered data signal and behaviour. In 

fatigue-based reliability assessment, the Weibull 

distribution is suitable for this case and can describe 

the mean stress effect [11]. This distribution helps in 

the observation of component age until failure. 

Knowing the failure rate is important in the contexts of 

style of uses and maintenance of components. The 

Weibull distribution is well known in predicting the 

lifetime uses of components, especially in the 

automotive industry [12], and several researchers have 

used this distribution. Tinga used the Weibull 

distribution to manage usage on the basis of 

maintenance and the system, thereby increasing 

prediction accuracy [13]. Jiang and Murthy observed 

that the effect of the shape parameter on the failure rate 

can improve the reliability and maintenance of the 

component [14] in the same distribution. The Weibull 

distribution has also been used in reliability and stress 

Abstract: This work aimed to analyse fatigue-based reliability for automobile suspension on the basis of the strain 

load signal from an automobile under operating conditions. Fatigue life was used to ensure the aging of the 

component, and it was suitable for use for longer than the standard age given. The damage behaviour patterns for 

each retained edited signal from 100% to 85% were used to predict the fatigue durability of the suspension with a 

sampling frequency of 500 Hz for various road conditions. The extended global statistics were computed to 

determine the behaviour of the signal. Accelerated durability analysis was used to remove the low-amplitude 

cycles, which contributed minimally toward the total damage, by considering the effects of mean stresses. The 

reliability assessment, hazard rate function and mean time-to-failure (MTTF) based on the retention signal were 

predicted through fatigue strain data analysis. Changes were observed from a range of below 15% and above 60% 

of the length of the actual original signals due to the low amplitude. Extended global statistics showed scale 

parameter of 75 and 94 with an MTTF of 1.25×10
3
 and 1.27×10

3
 cycles. The retention signal loads provide an 

accurate signal editing technique for predicting fatigue life with good reliability characteristic understanding for 

the suspension part. 

Keywords: damage, fatigue, hazard rate, reliability, Gumbel distribution 



N. N. M. Nasir et al., Int. J. of Integrated Engineering Vol. 10 No. 5 (2018) p. 49-58 

 

 

 50

distribution, in which a high value of the shape 

parameter shown strength [15].  

Gumbel distribution or extreme value distribution 

is used in engineering and comprises two distributions, 

namely, log-Weibull and exponential distributions. 

This reliability model (Gumbel) is used to model the 

distribution of the maximum or minimum of a number 

sample to various distributions and to estimate the 

strength of materials and predict the lifetime of 

components. This distribution has been used in the 

marine pitting corrosion of steel to estimate the aging 

of a pipe [16]. Asadi and Melchers [17] used the 

Gumbel distribution to present the statistics of 

maximum pit depth and estimate the probability of 

pipe wall perforation.  

In this work, we study the reliability through 

fatigue-based retention signal which are selected 

interval range with 5% between 100% until 85% 

retention signal. These retention signals help improve 

lifetime prediction for shortened time signals and can 

estimate the aging of components. From the original 

signal, the low-amplitude cycle is eliminated, and the 

high-amplitude cycle is retained by producing a new 

signal. The original and retained signals can potentially 

produce the extended statistics and show minimal 

difference in the fatigue life value with each model. 

The reliability of the retention signal is determined in 

the reliability assessment. Therefore, the relationship 

of location and scale parameter with life prediction is 

important for reliability assessment because it 

describes the characteristics of the data. 

 

2. Methodology 

Fatigue data was measured from the coil spring of 

suspension of a sedan car. The highest stress area of 

coil spring for suspension system was in the red circle 

shown in Fig. 1(a) [18]. In previous studies, Putra et al. 

were obtained the stress concentration experienced 

through the FEA (Finite Element Analysis). He finds 

that the highest stress area on coil spring was provided 

with colour contour which the area occurs with 1.4 kPa 

of maximum pressure [18]. A 2 mm strain gauge was 

placed on the most critical part which has the highest 

stress location on the suspension coil spring shows in 

Fig. 1(b) and Fig. 1(c). This work used two types of 

roads, rural and urban, as shown in Fig. 2. The car was 

driven at velocities of 30 and 70 km/h on the rural and 

urban roads, respectively. The signals were 120 s in 

length, comprised 60,000 data points. From data 

acquisition system the sampling rate can adjust with 

some sample rate values, 500 or 1000 Hz and the 

sampling rate was selected 500 Hz because it more 

appropriate for the on-site of data collection [18]. 

The detailed steps of this work are illustrated in 

Fig. 2. This study consisted of five steps. Step 1 was 

related to the time histories and performance of the 

strain signal. The strain signals used were collected on 

the test road. Step 2 represented the signal retention 

with 5% interval between 100% to 85%. Step 3 

involved the strain–life model, which can predict the 

fatigue life and the cumulative damage of signals 

through calculation. In Step 4, statistical parameters, 

such as content mean, standard deviation, skewness 

variance and kurtosis, were calculated. The last step, 

Step 5, involved the reliability analysis of the aging 

component. The probability density function (PDF), 

cumulative distribution function (CDF), reliability 

function, hazard rate function and mean-time-to-failure 

(MTTF) were determined in this step. 

 

 
(a) 

(b) (c) 

Fig. 1 Road test of automobile; (a) stress concentration 

at coil spring, (b) strain gauge attached to coil spring, 

(c) strain data collection equipment. 

 

 
(a) 

 
(b) 

Fig. 1 Signal collected; (a) rural (b) urban. 

 

2.1 Damage retention form signal retention 

technique 
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The signal underwent fatigue data editing for the 

removal of low-amplitude cycles. The technique 

approached the high-amplitude event where most 

damages were retained to produce a shortened loading 

for the time series, and the relevance to fatigue 

analysis contained information. Time-domain editing 

techniques were developed to move the time segments, 

which used time-correlated fatigue damage analysis. 

This method was used to remove the non-damaging 

sections of the time history on the basis of the fatigue 

damage windows of the input signal. The techniques 

approached the damage signal to divide it into several 

time segments. Each time window contained a short 

segment of time calculated by the fatigue damage. The 

minimal-damage windows were removed to retain 

most of the fatigue damage. These windows were 

assembled to produce a shortened signal for the 

durability analysis, and this process is shown in Fig. 3. 

Using this approach, 100% until 85% damage retention 

was set as the editing target to maintain the phase and 

amplitude of the original signal.  

 
Fig. 2 Flowchart of methodology 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 3 Retention process; (a) original signal, (b) 

segment with non-damaging sections removed, (c) 

retained signal after 90% retention. 

 

The strain life approach is sufficiently accurate for 

fatigue life assessment because it considers plastic 

forming events existing in local areas to determine the 

strength of components. The strain life approach is 

usually applied to ductile materials because the low 

fatigue cycles of small components, which are within 

only 10
3
 cycles, do not require high operating costs and 

do need extensive crack observation where the failure 

occurs [18].  

The Coffin–Manson (CM), Morrow (M) and 

Smith–Watson–Topper (SWT) strain life models are 

applied with strain life fatigue damage models in 

fatigue life prediction. The Morrow model is a 

reasonable approach for steel, whereas SWT provides 

satisfactory results in a wide range of materials and is 

thus an appropriate choice for general use. Meanwhile, 

the relationship for Coffin-Manson is as follows: 

( ) ( )
'

2 ' 2
b cf

a f f fN N
E

σ
ε ε= +   (1) 
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The M strain life model is mathematically defined as 

follows: 

( ) ( )
'

1 2 ' 2
'

b cf m
a f f f

f

N N
E

σ σ
ε ε

σ

 
= − +  

 
  (2) 

The SWT strain life model is defined according to the 

following formula: 

( ) ( )2

max

'
2 ' ' 2

b cf

a f f f fN N
E

σ
σ ε σ ε= +   (3) 

where E is the material modulus of elasticity, aε  is a 

true strain amplitude, 2 fN  is the number of reversals 

to failure, b is the fatigue strength exponent, c is the 

fatigue ductility exponent, ' fε  is the fatigue ductility 

coefficient and ' fσ  is the fatigue strength coefficient. 

Meanwhile, mσ  is the mean stress and maxσ  is the 

maximum stress, represented in Equations (2) and (3). 

The fatigue damage for each loading cycle D can be 

calculated as follows: 

1

f

D
N

=   (4) 

The Palmgren–Miner’s linear damage rule is used to 

calculate the cumulative fatigue damage for a variable 

amplitude loading cycle as follows: 

i

f

n
D

N

 
=   

 
∑   (5) 

where in  is the number of cycles at stress level. 

 

2.2 Statistical signal analysis 

Statistical signal parameter is used for random 

signal classification to retain the originality of the 

signal behaviour [19]. For signal, F with the number of 

data n, the mean value x  is given by the following: 

1

1
n

j

x F
n

=

= ∑   (6) 

The standard deviation (SD) measures the distribution 

of the data set on the basis of the mean value and is 

expressed as follows: 

( )2
1

1
n

j

SD F x
n

=

= −∑   (7) 

The third statistical moment is skewness, which 

measures the symmetry of a data distribution on the 

basis of the mean value. The signal F can be expressed 

by the following skewness (Skew) equation: 

( )
( )3

3
1

1
n

j

Skew F x
n SD =

= −∑   (8) 

The kurtosis is the fourth statistical moment; it is 

sensitive to spikes and represents a continuation of 

peaks in a time series loading. The kurtosis (K) can be 

expressed as follows: 

( )4

4
1

1

( )

n

j

j

K x x
n SD =

= −∑   (9) 

 

2.3 Reliability prediction of the suspension  

The Gumbel distribution illustrates the stochastic 

data behaviour of extreme events found at the tails of 

probability distributions. Gumbel distribution (Type I) 

or extreme value distribution can be a model used with 

a situation of randomness process. This distribution 

aims to predict probabilities for rare events greater or 

smaller than previously recorded events. Gumbel 

distribution is a unimodal distribution with PDF, CDF, 

reliability function, hazard rate function and MTTF. 

The PDF and CDF of the Gumbel distribution are 

represented as follows [20]: 

PDF: 

( )1
( ) exp exp

f

f f

N
f N N

 −  
= − −  

   

µ
µ

β β
          (10) 

CDF: 

( ) exp exp
f

f

N
F N

  −   
= − −        

µ

β
                    (11) 

The standard Gumbel distribution also has the 

reliability function, which serves as a survival 

component, and hazard rate function, which is the 

number of failures per unit time that can occur for the 

product. These functions are represented as follows: 

Reliability function: 

( ) 1 exp exp
f

f

N
R N

µ

β

 −  
= − − −  

   
                    (12) 

Hazard rate function: 

( ) 1
exp

f

f

N
h N

µ

β β

− 
= − 

 
                                   (13) 

The mean-time-to-failure (MTTF) is the average time 

of failure-free operation up to a failure event calculated 

from a homogeneous lot component under operation.  

The MTTF is represented as follows: 

0.5776MTTF µ= −                                                (14) 

where β  is a scale parameter and µ  is a location 

parameter. The random variable for the Gumbel 

distribution with location parameter is µ−∞< <∞ , 

and the scale parameter is 0β > .  

 

Table 1 Retention percentage and time values retained 
Road Retention 

(%) 

Time 

(seconds) 

Reduction 

(%) 

Retention 

(%) 

Rural Original 120.0 - - 

 100% 72.0 40.0 60.0 

 95% 18.9 84.3 15.8 

 90% 14.8 87.7 12.3 

 85% 11.3 90.6 9.4 

Urban Original 120.0 - - 

 100% 60.0 50.0 50.0 
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 95% 13.6 88.7 11.3 

 90% 9.8 91.8 8.2 

 85% 7.4 93.8 6.2 

 

3. Result and discussions 

This section presents and discusses the results and 

analysis of fatigue life and cumulative damage on the 

basis of strain data of automobile components. The 

collected strain signals from the rural and urban test 

roads were used in this analysis. The signals were 

collected from the coil spring of a suspension system. 

The original signal underwent several percentages with 

5% interval for each road. The signal retention was 

between 100% and 85% in the next subsection. 

 

 

  

 Rural Urban 

Original 

  
100% 

  
95% 

  
90% 

  
85% 

  
Fig. 4 Differences of retention signals for both roads 

 

 

Table 1 The total damage and fatigue life predictions during the analysis 

Road Signal Number 

of cycles 

Coffin-Manson Morrow SWT 

Fatigue 

life (cycle) 

Total 

damage 

(/cycle) 

Fatigue 

life (cycle) 

Total 

damage 

(/cycle) 

Fatigue 

life (cycle) 

Total 

damage 

(/cycle) 

Rural Original 11302 1090 9.16x10
-4

 757 1.32x10
-3

 638 1.57x10
-3

 

 100% 6354 1090 9.16x10
-4

 757 1.32x10
-3

 639 1.57x10
-3

 

 95% 1581 1150 8.72x10
-4

 817 1.22x10
-3

 702 1.43x10
-3

 

 90% 1196 1200 8.34x10
-4

 855 1.17x10
-3

 734 1.36x10
-3

 

 85% 922 1300 7.70x10
-4

 943 1.06x10
-3

 813 1.23x10
-3

 

Urban Original 11435 1110 9.04x10
-4

 837 1.19x10
-3

 733 1.36x10
-3

 

 100% 5474 1110 9.04x10
-4

 838 1.19x10
-3

 733 1.36x10
-3

 

 95% 1057 1170 8.58x10
-4

 891 1.12x10
-3

 786 1.27x10
-3

 

 90% 681 1210 8.34x10
-4

 926 1.08x10
-3

 818 1.22x10
-3

 

 85% 558 1240 8.17x10
-4

 947 1.06x10
-3

 899 1.20x10
-3
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3.1 Signal retention analysis from various 

road profiles 

The results of the retention signal from the rural 

and urban roads are shown in Fig 5. These findings 

represent the percentage of the retention signal from 

the original signal until the 5% interval retention 

(100%, 95%, 90% and 85%). The retention of all 

signals will change the minimum value of the total 

fatigue damage. This condition helps improve fatigue 

life by removing the low amplitude that appears in the 

original signal. And this does not significantly affect 

the original signal because it removes only the minimal 

fatigue damage potential [5]. 

Table 1 states the different values for time 

retention and the percentage of reducing and retaining 

signals for both road conditions after the signal 

retention process. The 100% retention retain time to 

72.0 and 60.0 seconds for rural and urban. It was 

reduced 40.0%, 50.0% seconds duration of the signal 

and retained to 60.0%, 50.0% seconds time signal for 

rural and urban respectively. While, the lowest 

retention percent, 85% retention, reduced until 90.6%, 

93.8 %, and retained signal to 9.4%, 6.2%-time 

duration of signals for rural and urban road. 

 

 
(a) 

 
(b) 

Fig. 5 Differences in damage for both roads: (a) rural, 

(b) urban 

 

The fatigue damage for all signals of both roads 

were calculated to study the efficiency on the basis of 

fatigue damage retention. The fatigue damage was 

calculated through the strain life model, which applied 

the Coffin-Manson, Morrow and SWT strain life 

relationship. The optimum retained signal was 

determined to be the shortest signal with the minimal 

fatigue damage deviation when it was compared with 

the original signal and its retained behaviour. The 

predicted coil spring fatigue life is shown in Table 2. 

In the table, the fatigue life calculated by the Coffin-

Manson, Morrow and SWT models for the original 

signal and 100% damage retention for the rural road 

have nearly the same value as in the original strain 

signal except for the fatigue life obtained by SWT, 

which is 639 cycles. The difference between the 

original signal and the 100% retention is small at only 

one cycle higher than the original strain signal. The 

fatigue life for the urban road shows that Morrow has 

the same difference as that for the rural road, in which 

the 100% retention has 838 cycles and the original has 

837 cycles. The 100% retention is one cycle higher 

than the original signal. While in Fig. 6 show the 

difference of total damage for each fatigue damage 

model (Coffin-Manson, Morrow and SWT). 

 

Table 2 Statistical values for each signal 

Type Signal K Skew Mean SD Var 

Rural Original 5.68 0.33 39.59 27.54 758.29 

 100% 5.29 0.32 40.47 31.25 976.27 

 95% 5.72 0.26 39.86 36.18 1309.33 

 90% 5.99 0.33 40.75 36.99 1368.32 

 85% 6.54 0.12 38.46 34.94 1220.85 

Urban Original 5.54 0.20 37.37 25.55 652.88 

 100% 5.56 0.21 38.22 29.10 846.84 

 95% 5.93 0.12 37.17 35.38 1251.99 

 90% 6.93 0.23 35.0404 35.95 1292.06 

 85% 7.69 0.36 35.13 35.64 1269.97 

 

 
(a) 
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(b) 

Fig. 6 Correlation between original and retention 

signals with risk assessment based on fatigue damage: 

(a) rural road condition, and (b) urban road condition 

 

3.2 Statistical parameters 

The signals were statistically analysed and are 

listed in Table 3. The statistical parameters are 

approximately similar to those in the original signal 

and the retention for kurtosis. The other parameters, 

namely, mean, standard deviation and variance, 

differed by up to 10% from the original signal [21]. 

In the graphs shown in Fig. 7, was the correlation 

between the relationship of total damage with 

differences of fatigue damage model, Coffin-Manson, 

Morrow and SWT. The total damage for both roads 

(Fig. 7(a) for rural road and Fig. 7(b) for urban road) 

with difference of fatigue damage models were 

distributed between 1:2 or 2:1 correlation. Original and 

retained signals were extracted on the basis of their 

own range of total damage. The behaviour of the total 

damage values for the retained signal with the three 

fatigue damage models is similar with that for the 

original signal. The life of retention for all strain life 

models is between 1:2 and 2:1 boundary when 

correlated with the life of the original signal. 

 

3.3 Reliability prediction for risk 

assessment 

Fig. 7 shows that the reliability distribution of the 

Gumbel model can take different shapes. The PDF in 

Fig. 7(a) is skewed to the left and thus depicts negative 

skewness, in which the left tail is elongated. The 

Gumbel distribution governs the load as a 

measurement of the duration in failure processes. The 

estimation of the scale parameter β  is based on the 

Gumbel distribution characterisation.  

  

Rural Urban 

  
(a) 

  
(b) 

Fig. 7 (a) PDF and (b) CDF for both roads. 

 

Some of the specific characteristics of the Gumbel 

distribution that relate with the PDF graph in Fig. 7 are 

as follows [22]. 

i. The shape of the Gumbel distribution is skewed 

to the left. The PDF of this distribution has no 

shape parameter and has only one shape, which 

does not change. 

ii. The PDF of the Gumbel distribution has a 

location parameter µ , which is equal to the 
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mode but differs from the median and the mean. 

This condition is because the Gumbel model is 

not symmetrical about it .   

iii. As µ  decreases, the PDF shifts to the left. As 

µ  increases, the PDF shifts to the right. 

In Fig. 8(b), the CDF accumulates the probability and 

shows an increasing function for both roads (rural and 

urban) of each fatigue life prediction model (Coffin-

Manson, Morrow and SWT) from 0 to 1. The 0 values 

are less than the least value for the random variable 

and 1 for the highest value of the random variable. 

The reliability function show in Fig. 9(a) that the 

reliability for rural 586, 700 and 1025 cycles as Coffin-

Manson, Morrow and SWT respectively with 

proportion surviving in 0.97 (97%). While, survival for 

the urban road was proportion surviving for Coffin-

Manson, Morrow and SWT more than 750, 875 and 

1125 cycle in 0.97 (97%), same as rural road 

condition. Failure rate of the hazard rate function graph 

for rural road in Fig. 9(b) increase with time which the 

Coffin-Manson failure ratio at 0.72, Morrow at 0.76 

and SWT 0.85 failure per unit cycle. Meanwhile, urban 

road condition also shows the increasing of failure 

ratio at 0.53, 0.83 and 0.98 failure per unit cycle for 

Coffin-Manson, Morrow and SWT respectively. The 

hazard rate function curve was nearly to the wareout 

life because the failure rate was increasing with time 

cycles. 

 

  

Rural Urban 

  
(a) 

  
(b) 

Fig. 8 Reliability assessment for both roads; (a) reliability function, (b) hazard rate function. 

 

Table 3 Statistical moment comparison between risk 

assessment and fatigue life model 

Road Coffin-

Manson 

Morrow SWT 

 β MTTF 

(cycle) 

β MTTF 

(cycle) 

β MTTF 

(cycle) 

Rural 75 1.25×103 66 9.05×102 61 7.79×102 

Urban 94 1.27×103 62 9.58×102 51 8.41×102 

 

In prediction of desired reliability life, 

understanding the physics and failure mechanism of 

components during operation is important. The 

statistical moment of the original and retention signals 

among the fatigue damage models of the two roads is 

shown in Table 4. This observed that the MTTF values 

for two parameter of Gumbel distribution occur earlier 

as predicted. MTTF prediction is essential in reducing 

the failure rate of the components. The MTTF provides 

essential failure estimation, which assists in the 

µ
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development of maintenance schedules and manners of 

usage. The mean life of the component based on the 

number of cycles to failure is equal to life. The 

different values of the fatigue life prediction models 

(Coffin-Manson, Morrow and SWT) are caused by the 

mean stress within the data signal. 

 

4. Conclusions 

A signal retention technique based on time domain 

on correlated fatigue damage was used to remove low-

amplitude signal cycles. This technique approaches the 

high amplitude, which produces damage that is 

retained in the shortened time of the new signal. They 

were retained from the original signal with times of 

120 s to 72 and 60 s for 100% retention, and the rest of 

the retention percentages (95% to 85%) were retained 

between 15 and 7.4 s. The original and retained signals 

produced the statistical parameters of mean, kurtosis, 

skewness, standard deviation and variance values. The 

retention signal helped improve the life and extraction 

but did not affect the content and behaviour between 

the original and retention signals because it only 

removed the minimum fatigue damage potential. The 

total damage for the original signal of the rural road 

and 100% retention was the same at 9.16×10
−4

, 

1.32×10
−3

 and 1.57×10
−3

 for Coffin-Manson, Morrow 

and SWT, respectively. The same was observed for the 

total damage for the urban road between the original 

and 100%, 9.04×10
−4

, 1.19×10
−3

 and 1.36×10
−3

 for 

Coffin-Manson, Morrow and SWT, respectively. 

For life prediction component in reliability, 

Gumbel distribution was used to evaluate the scale 

parameter of different fatigue life prediction models. 

The different pattern parameters and MTTF were 

relevant in the contexts of failure replacement and 

component aging. The scale parameter showed that the 

component underwent positive aging, which indicated 

that the wear condition decreased to increasing failure 

over time component; the rural failure ratios were 0.72, 

0.76 and 0.85 and those for the urban road were 0.53, 

0.83 and 0.98 under Coffin-Manson, Morrow and 

SWT, respectively. 
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