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1. Introduction

Ethanol Fatigue lifetime estimation is one of the most 

influential field in engineering. Predicting system lifetime 

is significant to ensure the safety, reliability and 

availability of the system are maintained [1]. Many 

researchers have predicted fatigue to evaluate lifetime of 

concrete structures such as dams and bridges, cement 

plants [2], wind turbines [3], steel rebar [4] and welded 

structure [5]. This maintenance operation helps improves 

people’s lives and assures customer satisfaction [6]. 

However, the estimation of fatigue lifetime and 

observation of physical degradation can be very difficult 

to assess, especially when real-time observations are 

required [7].  

Fatigue crack growth modeling attempts to 

characterize the evolution of the state. A complete fatigue 

crack growth problem is the process of a material from a 

beginning state to a complete failure state [7]. Accuracy, 

durability and fatigue strength are the important factors to 

guarantee the structural safety. In this light, the behaviors 

of the cracks are elusive [8]. Modeling is difficult as 

fatigue phenomenon is characterized by high complexity. 

The fatigue crack growth process is an integrates of 

random factors such as  inhomogeneity of real material, 

manufacturing processes, load spectrum, the geometry of 

component, randomness or cracking process and 

condition of technological such as quality of 

manufacturing and environmental conditions [9,10]. 

These random factors explained the influencing of the 

uncertainty factors to the fatigue crack growth process, 

and it contributes to the scattering of the crack size. There 

is significant number of research works that have focused 

on fatigue crack growth models: these include models 

presented in [11-15]. Many of these models rely on the 

experiment. The data provided by the experiment are 

needed to run the model where data and analysis can be 

applied statistically as the fatigue crack growth data have 

a statistical nature [16].  

Many random factors have been considered to describe 

the fatigue crack growth problem as a whole. 

Probabilistic method has garnered great attention in the 

research area as an alternative for  the deterministic 

method in determining fatigue life prediction [16,17]. 

Stochastically, there are two types of the crack growth 
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models: randomization of the deterministic model with 

fatigue crack growth model by providing the distribution 

of random time and randomization of the Paris–Erdogan 

equation [9,18].  

One important use of fatigue crack growth modeling 

is to predict the lifetime of the material in the field. A 

Markov Chain approach is introduced to evaluate and 

model the stochastic behaviors of fatigue crack growth 

data. Although many studies used Markov Chain 

approach, very few focused on the studies of the initial 

distribution. This study proposes the integration between 

the probability distribution of initial crack length and the 

deterministic Paris law equation. Probability distribution 

of initial crack length was introduced to explain the initial 

probability distribution while deterministic Paris law 

equation was used to explain the fatigue crack growth 

process. The aim of this paper is to study a new approach 

of calculating the initial probability distribution based on 

statistical distribution of initial crack length. 

 

2. Markov Chain Modeling 

The Markov Chain model is defined as a 

mathematical model for predicting the future state 

depending only on the current state. For a given system, 

the Markov model consists of the number of possible 

states, the possible transition paths between these states, 

and the probability values of these transitions. Fig. 1 

explains the transition probabilities change from one state 

to the next. This process is known as the Markov Chain 

model. Each circle represents a state and arrows denote 

the transition path between each state. 

 

Fig. 1: Markov Chain model with a circle represents a 

state.  and  are probabilities in a particular state and 

changing state, respectively [17]. 

In the Markov model, a duty cycle (DC) is an 

important element to introduce as a time to reach crack 

growth or as the group of the number of cycles 

accumulated to make a transition to next crack length 

[18]. In relation to this, the growth process of fatigue 

crack length is defined as a discrete both in time and 

states stochastic process. Markov model has two 

important elements: determining the initial distribution 

and the transition probability matrix. This study proposes 

that initial probability distribution was using lognormal 

probability distribution which is the best distribution to 

describe the initial crack length distribution. The 

lognormal probability distribution is as follows: 

 

     (1) 

Where,  is a shape parameter and  is a scale 

parameter of the length of the initial crack. The lognormal 

distribution was chosen as the best distribution through 

the comparison of Kolmogorov Smirnov value from all 

three distributions (lognormal, normal and Weibull) [19]. 

Meanwhile, the transition probability matrix values were 

computed to show the process of fatigue crack growth 

happened. Classical Paris law equation was applied to 

compute the probability values. The whole procedures of 

estimating the probability distribution of the states are as 

in following steps. Initially, defining the time, 

 is measured by the number of duty cycles. 

Then, number of damage states,  where the 

state  denotes a failure state. The duty cycle is specified 

in a  probability transition matrix,  as  

            (2) 

Where 
 

 

Next, the number of states was determined with the 

crack length increment acting as a state. The states are 

assumed to be discrete with the states, , 

where  corresponds to a failure state. In the Markov 

chain model, it is assumed that crack length  increases 

by stage. The calculation of each state as in Equation (3).  

     (3) 

where,  is crack length in state , and  is the 

initial crack length .  

Then, the estimation of the initial probability  

row vector based on the distribution of initial crack length 

was conducted using the lognormal distribution.  The 

probability of being in state  at the time  is given in 

Equation (4).  

    (4) 

where  

   

and . 

It is assumed that,  means that no component is 

in the failed state  at the initial state.  

The transition probabilities matrix  was 
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computed. In this study, transient probability  can be 

obtained by applying a Paris law equation into the model 

to represent the physical meaning of fatigue damage. The 

probability of changing into the next state,  can be 

defined as stress intensity factor function as shown in 

Equation (5) which was derived from Equation (6). 

      (5) 

Paris law equation:     (6) 

where = crack length increment (mm), = number 

of cycles increment, = material constant, and = 

stress intensity factor range . Then, system 

differential equation was solved where  

 where  and 

. 

Meanwhile, the crack did not propagate during duty 

cycle , where the probability value was . 

However, when the duty cycle , the crack 

propagated and the probability value was . Thus, the 

probability distribution followed the geometric 

distribution as follows:  

 
    (7) 

Lastly, Markov property value was computed by using 

Equation (8).  

      (8) 

 
Equation (8) explains the probability is changing due 

to change in time. A comparison can be made for several 

times in order to know the probability in the future in any 

time (duty cycle), . This study focuses on the 

performance of the Markov Chain model to estimate the 

probability distribution of damage state. 

 

3. Fatigue crack growth data 

Fatigue crack growth data are required to explain the 

applicability of the probabilistic models. The 

methodology was demonstrated using the experimental 

observations from a material of Aluminium alloy A7075-

T6. Ten specimens were tested in the experiment; the 

dimensions of the specimens are 160.0 mm wide and 60.0 

mm thick. The experiment was tested at room 

temperature under constant amplitude loading of 45kN 

stress load and 0.1 fixed stress ratios in order to observe 

the fatigue crack growth on the surface of the material. 

The use of 45kN ensures that it exceeded the endurance 

limit load which is to affirm that fatigue occurs for the 

dimension of this material. The length of the crack 

growth of the ten specimens was measured using the 

digital calliper and the length taken is the average of five 

times measurement. The results from the experiment as in 

Fig. 2 shows there were five stages of fatigue crack 

growth starting from initial crack length and end with 

failure part.  

 
 

 

Fig. 2: Material surface of the aluminium alloy 7075-T6 

from the experiment 

 
Fig. 3 depicts the crack lengths  against the number 

of cycles  for ten specimens from the experiments. It 

shows scattering for the initial crack lengths from 

specimen to specimen variability. The probability 

distribution for the initial crack was determined to 

represent the scatter of the data. 

 

Fig. 3: Crack length  versus number of cycles  

 

4. Results and discussion 

In this paper, probability distribution for damage state 

was demonstrated by using Markov property. Markov 

Chain model was constructed with duty cycles are 2000 

cycles and . The probability distribution of 

initial state and transition probability matrix were 

discussed as follows. Fig. 4 explains the probability 

values of initial state,  which was derived from the 

lognormal distribution with parameter estimation = 4.34 

and = 10.525. States are defined as the crack length 

increment. The state starts with initial crack length part 

and ends with failure part. The highest probability value 

of initial crack length implies logically at the first and 

second state, that is 66% and 33%, respectively. Then, the 

values decrease gradually through the states with all of 

the values are approximately 0%. It can be concluded that 

Initial crack 

Failure 

Crack growth 
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the initial crack length could occur in other states, except 

at the first and second state.  

 

 

Fig. 4: Initial probability values for each state 

 

The transition probabilities matrix was calculated 

from the classical Paris law equation. The resulting 

matrix  was used to determine the probability 

distributions for interesting fatigue crack lengths. A 

simple example was given as an illustration of the 

Markov Chain model. It is assumed that the number of 

damage states is 50 and the state of damage was 

considered after 10 duty cycles. 

 

 

Fig. 5: Probability distribution of the states 

 

The probability distribution was computed using 

Equation 6. Since the values of initial state vector are 

similar, it is possible to present a comparison between the 

probability distributions of the state damage. The results 

shown in Fig. 4 and Fig. 5 indicate the probability of 

being in a state, e.g. state 1, after 10 duty cycles depends 

on the transition probability, for instance, the probability 

of being in state 1 is changing from the initial value 33% 

to only 8.7%.  

Lastly, the performance of the model is shown in Figs. 

6 and 7. The model has a good agreement with the 

empirical data and the results show that the proposed 

model is excellent at the beginning of number of cycles 

due to the probability distribution of the initial crack 

length was considered . No random factor was integrated 

in the probability transition matrix. The random factor 

only considered for initial probability distribution.   
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Fig. 6: Comparison of MC model and ECDF for life 

estimation of 9mm 
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Fig. 7: Comparison of MC model and ECDF for life 

estimation of 16mm 
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Fig. 8: Comparison of MC model and ECDF for life 

estimation of 12mm, 16mm and 20mm, respectively. 

To see the consistency of the Markov Chain model, 

the model was applied in Lu and Liu [20] and the results 

shown in Fig. 8. The fatigue lifetime for the crack length 

12mm, 16mm and 20mm were compared. The results 

show the model are found to be agreed well with the 
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empirical cumulative distribution function. Thus, the 

Markov Chain model is a good model in predicting the 

fatigue lifetime of Aluminum Alloy A7075-T6 even 

under different environment of experiment. 

 

5. Conclusion 

The probability distribution of the damage state of the 

material aluminium alloy, A7075-T6 was analyzed using 

Markov Chain model. The factors that contribute to the 

fatigue are the probability distribution of initial crack 

length and the stress intensity factor that includes the 

width and the length on the specimen, the number of 

loading cycles and the stress ratio. The probability 

distribution of the initial crack length is important to 

determine probability distribution for interesting fatigue 

crack length due to the uncertainty factors for this 

variable. This study only focuses on the deterministic 

factor for calculating the transition probability matrix. It 

is suggested that random factors are included in the 

model to calculate the transition probability matrix and 

analyze the performance of the model for capturing 

fatigue life prediction. One of the advantages of the 

Markov Chain model is the capability of the model in 

capturing the results. By using the Markov property 

where all the parameter values are determined, the 

probability of state of damage in the given structure is 

available at any time, .  
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