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1. Introduction

Laminated rubber bearing is a device that isolates a

structure from seismic loads. It is made up of a 

combination of rubber layer and steel plate that are 

laminated together alternately. Rubber layer is an almost 

incompressible material that has high horizontal 

flexibility while steel plate is a solid material that has 

high vertical stiffness [1,2]. Therefore, the laminated 

rubber bearing provides a very high vertical stiffness, 

while still maintaining its high flexibility in the horizontal 

direction which is required to lengthen the time period of 

a structure during seismic event. The combination of 

rubber and steel plates in alternate layers will make the 

laminated rubber bearing a complex material, thus the 

measurement of damping for the laminated rubber 

bearing is difficult in practice. 

Damping is one of the most important aspects to 

make sure the system remains stable and undamaged. 

Talbot and Woodhouse [3] stated that damping is 

important in structural engineering since it controls the 

amplitude of resonant vibration response. When a 

structure is excited with a force vibration near its natural 

frequency, the small force will exert a high stress on the 

structure which can lead to the failure of the structure. 

However, with sufficient amount of damping, the stress 

can be reduced [4, 5]. Damping is a dissipation of energy 

or energy losses in a vibration system [6].  

The understanding of damping mechanism in 

vibration analysis is still an issue although a lot of 

literature related to this mechanism is available. The 

determination of damping, C in the equation of motion 

that contains mass, M and stiffness, K is still less 

comprehensive as compared to the determination of mass 
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and stiffness. This is because predicting vibration 

parameters with respect to damping is difficult in 

practice. 

 The importance of laminated rubber bearing in 

seismic isolated structure has led many researchers in 

trying to understand the behavior and to improve the 

design of laminated rubber bearing. The key point in the 

design of an effective base isolation system is the 

understanding of the isolator characteristics. Thus, the 

main objectives of this research are to determine the 

natural frequencies, mode shapes, Rayleigh’s damping 

coefficients, α and β and to evaluate the performance of 

the laminated rubber bearing components i.e. steel and 

rubber plates using finite element and experimental 

modal analysis. 

 

2. Rayleigh Damping 

Rayleigh damping is a damping that is proportional 

to mass and stiffness. It is also known as proportional 

damping [7,8] and is a type of viscous damping. The 

concept of Rayleigh damping was introduced by Lord 

Rayleigh to solve the damping problem in a vibrating 

system numerically and the concept is commonly used in 

finite element method [9]. The formulation of Rayleigh 

damping is given by [10]:  

 

  C = α M + β K                                                       (1) 

 

where M and K are mass and stiffness respectively while 

α is mass coefficient and β is stiffness coefficient. With 

this formulation, the damping ratio is the same for axial, 

bending and torsional response. Alpha, α and beta, β are 

calculated from the following equation [10]:  

 

                                             (2) 
 

where ζ is damping ratio and ω is natural frequency. This 

damping ratio, ζ and natural frequency, ω value can be 

determined from the modal analysis method. In relation 

to Equation (2) and Equation (1), it is important to note 

that if β = 0, as the natural frequencies increase, the 

damping ratio will decrease and if α = 0, as the natural 

frequencies increase, the damping ratio will also increase. 

This means that mass proportional term gives inverse 

damping ratio proportional to the response frequency 

while stiffness proportional term gives linear damping 

ratio proportional to the response frequency [11]. Fig. 1 

shows the relationship of mass proportional term and 

stiffness proportional term related to damping ratio and 

the natural frequency of the structure. Thus, it is 

important to select the appropriate values of α and β to 

determine the Rayleigh damping value in a structure for 

dynamic analysis.  

 

 

 

 

 

 

Fig. 1: Relationship of Mass and Stiffness Proportional 

Term with Damping Ratio and Natural Frequencies [10]. 

 

3. Modal Analysis 

Modal analysis is a process of determining the 

dynamic characteristic of a system in term of its natural 

frequencies, mode shapes and damping [12]. Dynamic 

characteristic helps to better understand how the systems 

behave and how to adjust or improve the design of the 

system. Modal analysis consists of both theoretical and 

experimental technique [12,13]. In the theoretical modal 

analysis, the dynamic characteristics of a system are 

determined by using analytical or numerical process such 

as formulation or finite element analysis. For 

experimental modal analysis, the dynamic characteristics 

of a system are determined by using real physical system 

and field measurements.  

As far as this research concerns, both finite element 

and experimental modal analysis are used to determine 

the dynamic properties of steel and rubber plate from 

laminated rubber bearing. One steel plate and one rubber 

plate were used. “Hard” rubber is the type of rubber used 

for the rubber materials. For the steel and rubber plates, 

the dimension is 200mmx230mm. The thickness of the 

rubber plate is 10mm meanwhile the thickness of the steel 

plate is 3mm. Table 1 shows the details of the steel and 

rubber plate used for this research. 

 

Table 1: Details of steel plate and rubber plate 

Materials Young’s 

Modulus (Pa) 

Poisson’s 

Ratio  

Density 

(kg/m
3
) 

Steel Plate 2.1e11 0.3 7850 

Rubber Plate 5e7 0.49 1100 

 

3.1 Finite Element Modal Analysis 

Finite Element is an effective numerical way in 

solving complex differential equations. In finite element 

modal analysis, only linear elements and linear material 

properties are considered. Any nonlinearity is ignored 

even if it is defined. External excitation and damping are 

also ignored in this analysis. Free vibration Equation of 

Motion for single degree of freedom (SDoF) system 

without damping can be written as [13]: 

 

[M]{ẍ} + [K]{x} = {0}                                (3) 
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Free vibration solution is mathematically non-trivial 

solution. It should take the form as: 

 

{x} = {X} sin ωt                                (4) 

 

By substituting Equation (4) into Equation (3), a simple 

algebraic matrix equation can be expressed as below: 

 

([K] – ω
2 
[M]) {X} = {0}                            (5) 

 

In Equation (5), {X} cannot be 0, thus: 

 

ǀ[K]–ω
2
[M]ǀ={0}                                                     (6) 

 

where [K] and [M] are the stiffness and mass matrix of 

the systems and ω
2
 is the eigenvalue that determines the 

natural frequency of the system and {X} is the 

eigenvector that determines the mode shape of the 

system.  

In this research, steel and rubber plate were modeled 

and analyzed using ANSYS workbench 14.0. Modal 

analysis was chosen as the type of analysis used to 

analyze this plate. For steel plate, it was assigned to be 

linear elastic material properties (Young’s modulus 210 

GPa; Poisson’s ratio of 0.3; Density of 7850 kg/m3). 

Rubber is a hyperplastic material with low shear modulus 

and very high bulk modulus. The Poison’s ratio of rubber 

is close to 0.5 and is considered almost incompressible. 

The Young’s modulus of 50 MPa, Poisson’s ratio of 0.49 

and density of 1100 kg/m3 were assigned for the material 

properties of rubber plate. The materials were meshed 

using SOLID 185 elements and the meshing size was 2.5 

mm. Fig. 2 shows the example of mashed steel plate 

model in finite element modal analysis. 

 

 
Fig. 2: Meshed Steel Plate Model 

 

3.2 Experimental Modal Analysis 

 In experimental modal analysis, the steel and rubber 

plate were tested in a free-free boundary condition. To 

stimulate the free-free condition for both plates, every 

corner of the steel and rubber plate were hanged by nylon 

string and rubber bands. Then, the rubber bands were 

connected to springs and the springs were then connected 

to a fixed place. Four rubber bands, four nylon strings and 

four numbers of springs were used to hang the steel and 

rubber plates in a horizontal direction. Before hanging, a 

few points were marked on the steel and rubber plates to 

place the accelerometers and to excite the impact 

hammer. For this testing, 15 points in total were picked 

based on the nodes from the finite element model. One 

PCB Piezotronics Impact Hammer Model 086C03 with a 

medium plastic tip was used for excitation while three 

accelerometers were used to record the responses. The 

excitation was based on ‘fixed hammer, roving 

accelerometers’ which means the excitation of impact 

hammer was fixed at one point while the accelerometer 

roving at every points except at the reference 

accelerometer. One accelerometer was fixed at point 2 as 

a reference point but the opposite direction from the other 

point and two other accelerometers roving at other points. 

The force was excited by the impact hammer at point 2 

which was at the same direction as the reference point as 

shown in Fig. 3. A total of 15 points was measured and 

the responses were recorded by the accelerometer. An 

average of three responses was recorded for every 

excitation to reduce the differences between the 

excitations. All responses were then transferred to the 

B&K Data Acquisition to get the Frequency Response 

Function (FRF). From the FRF, the dynamic properties 

which were the natural frequencies, the mode shapes, and 

the damping ratio of steel and rubber plates were 

determined using the PULSE Reflex software. 

 

 
Fig. 3: Full Diagram of Steel and Rubber Plates Testing 

 

3.3 Determination and Evaluation of 

Rayleigh Damping Coefficients 

Natural frequencies and damping ratio from the 

experimental modal analysis were used in determining 

the Rayleigh damping coefficients α and β. The formula 

used in determining α and β is: 

 

α = 2ω1ωi (ζ1ωi – ζiω1) / (ωi2 - ω12)                  (7) 

 

and 

 

β = 2 (ζiωi – ζ1ω1) / (ωi2 – ω12)                 (8) 

 

The values of α and β were determined for all modes 

and the graph of damping factor versus frequency were 

plotted to select the best values of α and β. Noted that the 

values of natural frequencies must be in radian. After 

determining the coefficients for steel and rubber plates, 

the values of α and β from both plates were inserted back 

into the finite element modal analysis to observe the 
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changing of natural frequencies, mode shapes, minimum 

and maximum displacement with consideration of 

Rayleigh damping in the analysis. The results were then 

compared. 

 

4. Results and Discussions 

The results for steel and rubber plate are extracted 

from both the finite element modal analysis and the 

experimental modal analysis. The results of natural 

frequencies and damping ratio from the experimental 

modal analysis are used in determining the Rayleigh’s 

damping coefficients, α and β for the steel and rubber 

plates as shown in Table 2, Fig. 4 and Fig. 5. The 

coefficients are then inserted in the finite element modal 

analysis and the performances of the steel and rubber 

plates with the addition of Rayleigh’s damping 

coefficients are evaluated as shown in Table 3 and Table 

4. First and foremost, the patterns of the mode shapes 

from both methods are compared. The mode shapes from 

the experimental modal analysis must be as close as 

possible to the finite element modal analysis. The value 

of the natural frequencies is then compared if the mode 

shapes from both methods are similar. Then, the relative 

error of the natural frequencies and minimum and 

maximum displacement between both methods is 

calculated as shown in Table 6, Table 7, Table 8 and 

Table  9. 

 

Table 2: Natural Frequencies and Damping Ratio from 

Experimental Modal Analysis 

Mode 

No. 

Steel Plate Rubber Plate 

Natural 

Frequency 

(rad/sec) 

Damping 

Ratio 

(%) 

Natural 

Frequency 

(rad/sec) 

Damping 

Ratio 

(%) 

E1 1818.103 0.16 132.5124 6.78 

E2 2584.588 0.18 170.023 2.65 

E3 5214.039 0.11 263.9566 4.58 

   322.3902 2.13 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3: Comparison of Results for Steel Plate 

 
Table 4: Comparison of Results for Rubber Plate 
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Fig. 4: Graph from First Mode of Damping Ratio for 

Steel Plate 

 

Fig. 5: Graph from First Mode of Damping Ratio for 

Rubber Plate 

 

Table 6: Relative Error between Experimental and Finite 

Element with and without Rayleigh Damping 

Coefficients for Steel Plate 

Relative Error of Natural Frequency (%) 

Mode 

No. 

Without 

Damping 

Coefficients 

Mode 

No. 

With Damping 

Coefficients 

F7 2.49 FD7 1.20 

F8 2.72 FD8 1.68 

F9 4.16 FD9 2.76 

 

Table 7: Minimum and Maximum Displacement for Steel 

Plate 

Minimum Displacement (mm) Maximum Displacement (mm) 

Mode 

No. 

Without 

Damping 

Coefficients 

Mode 

No. 

With 

Damping 

Coefficients 

Mode 

No. 

Without 

Damping 

Coefficients 

Mode 

No. 

With 

Damping 

Coefficients 

F7 0.95272 FD7 0.030128 F7 2187.5 FD7 69.173 

F8 0.017326 FD8 0.00054771 F8 2470.1 FD8 78.113 

F9 2.7341e-6 FD9 4.3185e-7 F9 2385.1 FD9 75.424 

 
 

 

 

 

Table 8: Relative Error between Experimental and Finite 

Element with and without Rayleigh Damping 

Coefficients for Rubber Plate 

Relative Error of Natural Frequency (%) 

Mode 

No. 

Without Damping 

Coefficients 

Mode 

No. 

With Damping 

Coefficients 

F7 31.01 FD7 10.72 

F8 46.64 FD8 27.24 

F9 50.27 FD9 40.13 

F10 51.08 FD10 42.74 

 

Table 9: Minimum and Maximum Displacement for 

Rubber Plate 

Minimum Displacement (mm) Maximum Displacement (mm) 

Mode 

No. 

Without 

Damping 

Coefficients 

Mode 

No. 

With 

Damping 

Coefficients 

Mode 

No. 

Without 

Damping 

Coefficients 

Mode 

No. 

With 

Damping 

Coefficients 

F7 8.7044e-9 FD7 8.7044e-9 F7 122.13 FD7 122.13 

F8 0.015022 FD8 0.015022 F8 103.64 FD8 103.64 

F9 0.0014 FD9 0.0014 F9 126.4 FD9 126.4 

F11 3.3812e-8 FD10 3.3812e-8 F11 113.46 FD10 113.46 

 
 

 

In general, the entire mode shapes of steel and rubber 

plates produced by the finite element modal analysis 

show a good agreement and a similar pattern with the 

experimental modal analysis. All the vibration patterns 

contain both twisting and bending modes. The relative 

error of natural frequencies between the experimental 

modal analysis and the finite element modal analysis for 

steel plate shows a small discrepancy but for rubber plate, 

it shows a very large discrepancy of around 30% in 

average. This is highly due to the hyperplastic material of 

rubber that contains high nonlinearity and high damping 

capacity. 

Damping ratio produced in the experimental modal 

analysis also shows a good agreement between both 

plates. Rubber plate has a large damping ratio as 

compared to steel plate. It is well known that rubber 

material has high damping capacity which is always used 

in the absorption of energy during vibration of a structure. 

In the finite element modal analysis, damping ratio is an 

input but not an output. Thus, the only way to get 

damping ratio is from assumption or experimental modal 

analysis. In this research, the first mode was used in 

determining the Rayleigh damping coefficients α and β. 

The first mode was chosen because in modal analysis, the 

first mode is very crucial. It determines how the first 

shape pattern will produce when the external frequency is 

excited with the same natural frequency as the first mode. 

It is also called as resonance.  

In general, the entire mode shapes produced in the 

finite element modal analysis with the added Rayleigh 

damping coefficients for both materials show a good 

agreement with the experimental and the finite element 
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modal analysis without the addition of Rayleigh damping 

coefficients. 

Theoretically, after the Rayleigh damping 

coefficients was added in the finite element modal 

analysis, the values of natural frequencies will reduce as 

close as possible to the natural frequencies from the 

experimental modal analysis. The reduction in the value 

of natural frequencies can be seen in Table 3 for steel 

plate and Table 4 for rubber plate. 

The values of minimum and maximum displacement 

show some reductions for the steel plate after the 

Rayleigh damping coefficients were added in the finite 

element modal analysis but for the rubber plate, the 

values remain the same. Hence, the Rayleigh damping 

coefficients does not affect the minimum and maximum 

displacement of the rubber plate. 

 

5. Conclusion 

Both finite element and experimental modal analyses 

were applied and compared to one another, thus making 

the results more convincing. The two sets of results were 

carefully compared and proved that they fit each other 

quite well. Although the natural frequencies have shown 

quite a large discrepancy for rubber plate but the mode 

shapes produced by both methods have shown a good 

agreement between each other.  

The Rayleigh’s damping coefficients α and β were 

successfully determined using the results of natural 

frequencies and damping ratio from experimental modal 

analysis. The first mode of damping ratio which is 0.16% 

was used for steel plate and the coefficients produced is 

431.375 for α and 0.0000455 for β. For rubber plate, the 

first damping ratio which is 6.78% was used and the 

coefficients produced is 1273.443 for α and 0.029809 for 

β. The relative errors of natural frequencies between 

finite element and experimental modal analyses reduced 

after the coefficients were included in the finite element 

modal analysis. It can be concluded that the first mode of 

damping ratio from the experimental modal analysis can 

be used in determining the Rayleigh damping coefficients 

for the steel and rubber plate. 

The performance of steel and rubber plates with 

Rayleigh damping coefficients using finite element modal 

analysis was successfully evaluated.  The mode shapes of 

the both plates with the addition of Rayleigh damping 

showed a good agreement with the experimental modal 

analysis. The value of natural frequencies also was 

reduced closer to the value of natural frequencies from 

the experimental modal analysis. This study also shows 

that the Rayleigh damping coefficients do not affect the 

minimum and maximum displacement of the rubber plate. 
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