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1. Introduction

The suspension is an important component in a ground 

vehicle system. Generally, the suspension system has 

several types, they are classified as passive, semi-active, 

active and divers between systems [1-4]. Its physical 

features relate to the required energy and actuator 

characteristic frequencies [5]. The most common type is 

passive system, It uses several types of springs combined 

with hydraulic or pneumatic shock absorber [3,4]. There 

are several commonly used types of springs such as 

helices, leaves, coils, etc. Based on the spring type, various 

designs of passive suspension systems have been 

developed. This type only has the ability to store and 

dispose of energy in a predetermined manner. This will be 

a compromise between comfort factor, handling, and the 

suspension stroke over the range of operation [1,2].  

The handling of road, carrying of load and comfort of 

the passenger are three intention elements on the system of 

a car suspension. These requirements should be a 

compromise of all three factors to get a good system 

dynamics of a car suspension. To fulfill requirements, the 

suspension system should be analyzed and controlled 

comprehensively. For the car suspension system controller 

designing and analyzing, its realistc dynamic model is 

required.  

The best strategy to prescribe the system model is 

applying system identification approach. The system 

identification method is a modelling technique that is 

needed for the interpretation of observations and 

measurements obtained from some systems of study [6,7]. 

As models constitute the necessary link between 

experiments and decision making (for example, prediction, 

learning new rules, and data compression), modeling and 

identification are very important for all applied science and 

engineering. 

One of the major issues in system identification is a 

model structure to be the candidate model. Fidelity of a 

model formed via the method of the system identification 

is dependent on the formation of the candidate model that 

fits the dynamics of the real system. An artificial neural 

networks have many advantages, among others requiring 

less formal statistical training, capability to detect 

implicitly non-linear links between independent and 

dependent variables, capability to predict all possible 

interactions between predicted variables, and the 

availability of various training algorithms. Here, it is 

assumed that the car suspension system has a model as a 

quarter car model and has mathematical model structure as 

a neural network structure and it is called a neuro model. 

Currently, the use of four independent suspensions in 

a car is a trend, therefore a quarter car system provides a 

Abstract: The system model is neccessery to be determined in control systems engineering which is generally 

represented in mathematical form. The mathematical model can be utilized for analysing the system’s characteristics 

or designing the controller parameters of the system. The model should have a realistic dynamics and provides 

maximally informatives. With the ability of neural networks to model the non-linear and complex relationships 

between inputs and outputs of the system, therefore it is used to model the passive suspension system of light cars 

and it is called neuro models. The categories of the light cars here is a passenger car with five maximum number of 

passengers. The candidate structure of the neuro model is contructed from non-linear system of passive suspension 

of a quarter car mathematical model. Weights estimation of neuro model is conducted by applying iterative weighted 

least square algorithm. Actual input output data of a test car for training process are acquired by driving the test 

vehicle on an artificial surface of road. An artificial surface of road is a kind of real road surface imitation. 

Experimental findings show that the proposed model is able to imitate sucessfully the dynamic properties of the 

passive suspension system of the light  car. The model response shows similar trend and has smallest error. 

Keywords: Mathematical model, light car, passive suspension, neuro model, artificial road surface 



D. Hanafi et al., Int. J. of Integrated Engineering Vol. 10 No. 4 (2018) p. 73-80 

 

 

 74 

quite rational for representing the real suspension system 

dynamics [2,8]. On most cases, a quarter car model offen 

uses for analysis of ride and the controller design of  

suspension [1,3-12]. 

 

2. Neuro Model Approach  

In The passive suspension system uses several types 

of springs in the combination of pneumatic shock 

absorbers or hydraulic with the dynamic model as in Fig.1. 

 
Fig. 1: Model of a quarter car system dynamics. 

 

where Ms is sprung mass, Mus is unsprung mass, Ks is 

spring coefficient of suspension, Cs is damping coefficient 

of suspension, Kus is coefficient of tire spring, Cus is 

damping coefficient of tire, Zs is vertical displacement of 

sprung mass, Zus is vertical displacement of unsprung mass 

and Z0 is elevation of road surface. 

 

Model of Tire  

The point contact type of tire model is used. This tire 

model type is compatible for car with few forces transmit 

from tires and identical composition. Type of a point 

contact tire model contains of spring stiffness and damping 

element as described in Fig. 2 [13]. The tire dynamic 

system is assumed linear and formulated as Eq.( 1). 

Fig. 2: Tire model for point contact type. 

 

𝐹𝑡 = 𝐶𝑢𝑠�̇�𝑜 + 𝐾𝑢𝑠𝑍𝑜                                                                   (1) 

 

where: Ft is tire force, Cus is coefficient of the tire damping, 

Kus is coefficient of the tire spring stiffness and 𝑍𝑜  is 

elevation of the road surface.  

Passive Suspension System Non-linear Dynamics  

For a non-linear spring, its stiffness can be broken up 

in to two parts as given by Fig.3 [13]. 

 

 
Fig.3. Coefficients of non-linear spring. 

 

The coefficients of non-linear spring stiffness are 

presented by Eq.( 2). 

 

𝐾 = 𝐾𝑜 + 𝐾𝑛𝑥                                                                         (2) 

 

where: 𝐾𝑜 is linear part, 𝐾𝑛 is non-linear part and 

function of x and x is displacement of the suspension. 

The equation of nonlinear dynamic of spring is written 

down as the following: 

 

𝐹 = 𝐾𝑥 = (𝐾𝑜 + 𝐾𝑛𝑥) = 𝐾𝑜𝑥 + 𝐾𝑛𝑥2                      (3)  

                                        

The characteristics of non-linear damping is 

represents by Fig.4. It consists of linear and non-linear part 

as below: 

 

𝐶 = 𝐶 + 𝐶𝑛�̇�                                                                      (4) 

 

where: 𝐶𝑜 is linear part, 𝐶𝑛 is non-linear part and function 

of velocity and x is displacement of the suspension. 

Fig.4. Coefficients of non-linear damping. 

 

Non-linear force formula of the damper dynamics is 

as Eq.(5). 

 

𝐹 = 𝐶�̇� = (𝐶𝑜 + 𝐶𝑛�̇�)�̇� = 𝐶𝑜�̇� + 𝐶𝑛�̇�2                (5) 

       

By using the second Law of Newton, linear models of 

a quarter car are as Eq.(6) and (7). 

 

𝑀𝑠�̈�𝑠 = −𝐶𝑠(�̇�𝑠 − �̇�𝑢𝑠) − 𝐾𝑠(𝑍𝑠 − 𝑍𝑢𝑠)                           (6)   

                                                                                  

𝑀𝑢𝑠�̈�𝑢𝑠 = 𝐶𝑠(�̇�𝑠 − �̇�𝑢𝑠) + 𝐾𝑠(𝑍𝑠 − 𝑍𝑢𝑠) − 𝐶𝑢𝑠(�̇�𝑢𝑠 −

                     𝑍̇
𝑜) − 𝐾𝑢𝑠(𝑍𝑢𝑠 − 𝑍𝑜)                                       (7) 
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Assumed 𝐶𝑠 and 𝐾𝑠 are non-linear as below: 

 

𝐶𝑠 = 𝐶𝑠𝑜 + 𝐶𝑠𝑛(�̇�𝑠 − �̇�𝑢𝑠)                                              (8)                                                                            

𝐾𝑠 = 𝐾𝑠𝑜 + 𝐾𝑠𝑛(𝑍𝑠 − 𝑍𝑢𝑠)                                                  (9) 

 

The passive suspension system non-linear models of a 

quarter car are obtained by substituting Eq.(8) and (9) to 

Eq.( 6) and (7). 

 

𝑀𝑠�̈�𝑠 = − (𝐶𝑠𝑜 + 𝐶𝑠𝑛(�̇�𝑠 − �̇�𝑢𝑠)) (�̇�𝑠 − �̇�𝑢𝑠) − 

                 (𝐾𝑠𝑜 +  𝐾𝑠𝑛(𝑍𝑠 − 𝑍𝑢𝑠))(𝑍𝑠 − 𝑍𝑢𝑠)          (10) 

 

𝑀𝑢𝑠�̈�𝑢𝑠 = (𝐶𝑠𝑜 + 𝐶𝑠𝑛(�̇�𝑠 − �̇�𝑢𝑠)) (�̇�𝑠 − �̇�𝑢𝑠) +

                    (𝐾𝑠𝑜 +  𝐾𝑠𝑛(𝑍𝑠 − 𝑍𝑢𝑠))(𝑍𝑠 − 𝑍𝑢𝑠)        

                     −𝐶𝑢𝑠(�̇�𝑢𝑠 − �̇�𝑜) − 𝐾𝑢𝑠(𝑍𝑢𝑠 − 𝑍𝑜)             (11) 

 

In this case the suspension deflection is assumed to be 

as follows 

 

𝑌 = 𝑍𝑠 − 𝑍𝑢𝑠                                                                 (12) 

   

Where 𝑍𝑠 and 𝑍𝑢𝑠 are given by Eq.(13) and (14).   

 

𝑀𝑠�̈�𝑠 = − (𝐶𝑠𝑜 + 𝐶𝑠𝑛(�̇�𝑠 − �̇�𝑢𝑠)) (�̇�𝑠 − �̇�𝑢𝑠) − (𝐾𝑠𝑜 +

 𝐾𝑠𝑛(𝑍𝑠 − 𝑍𝑢𝑠))(𝑍𝑠 − 𝑍𝑢𝑠)        

𝑀𝑠�̈�𝑠 = −𝐾𝑠𝑜𝑍𝑠 + 𝐾𝑠𝑜𝑍𝑢𝑠 − 𝐶𝑠𝑜(�̇�𝑠 − �̇�𝑢𝑠) − 𝐾𝑠𝑛(𝑍𝑠 −

𝑍𝑢𝑠)2 − 𝐶𝑠𝑛(�̇�𝑠 − �̇�𝑢𝑠)
2
  

𝑀𝑠�̈�𝑠 = −𝐾𝑠𝑜𝑍𝑠 + 𝐾𝑠𝑜𝑍𝑢𝑠 − 𝐶𝑠𝑜(�̇�) − 𝐶𝑠𝑛(�̇�)
2

+

𝐾𝑠𝑛(𝑌)2  
 

𝑍𝑠 = −
𝑀𝑠

𝐾𝑠𝑜
�̈�𝑠 + 𝑍𝑢𝑠 −

𝐶𝑠𝑜

𝐾𝑠𝑜
(�̇�) −

𝐶𝑠𝑛

𝐾𝑠𝑜
(�̇�)

2
+

𝐾𝑠𝑛

𝐾𝑠𝑜
(𝑌)2  (13)                                 

 

𝑀𝑢𝑠�̈�𝑢𝑠 = (𝐶𝑠𝑜 + 𝐶𝑠𝑛(�̇�𝑠 − �̇�𝑢𝑠)) (�̇�𝑠 − �̇�𝑢𝑠) +

                    (𝐾𝑠𝑜 +  𝐾𝑠𝑛(𝑍𝑠 − 𝑍𝑢𝑠))(𝑍𝑠 − 𝑍𝑢𝑠)             

                    −𝐶𝑢𝑠(�̇�𝑢𝑠 − �̇�𝑜) − 𝐾𝑢𝑠(𝑍𝑢𝑠 − 𝑍𝑜)    

𝑀𝑢𝑠�̈�𝑢𝑠 = 𝐶𝑠𝑜(�̇�𝑠 − �̇�𝑢𝑠) + 𝐶𝑠𝑛(�̇�𝑠 − �̇�𝑢𝑠)
2

+

                    𝐾𝑠𝑜(𝑍𝑠 − 𝑍𝑢𝑠) +  𝐾𝑠𝑛(𝑍𝑠 − 𝑍𝑢𝑠)2    
                    −𝐶𝑢𝑠�̇�𝑢𝑠 + 𝐶𝑢𝑠�̇�𝑜 − 𝐾𝑢𝑠𝑍𝑢𝑠 + 𝐾𝑢𝑠𝑍𝑜  
 

𝑍𝑢𝑠 = −
𝑀𝑢𝑠

𝐾𝑢𝑠
�̈�𝑢𝑠 −

𝐶𝑢𝑠

𝐾𝑢𝑠
�̇�𝑢𝑠 −

𝐶𝑢𝑜

𝐾𝑢𝑠
(�̇�) +

𝐶𝑠𝑛

𝐾𝑢𝑠
(�̇�)

2
+

                
𝐾𝑠𝑜

𝐾𝑢𝑠
(𝑌) +

𝐾𝑠𝑛

𝐾𝑢𝑠
(𝑌)2 +  

𝐶𝑢𝑠

𝐾𝑢𝑠
�̇�𝑜 + 𝑍𝑜                       (14) 

 

Function 𝑓 is a sigmoidal function, a well known and 

most commonly used as a neuron activation in neural 

network application and also applied in this work. 

 

𝑓(𝑛𝑒𝑡) =
1

1+𝑒−𝑛𝑒𝑡                                                             (15) 

 

and  

 

𝑛𝑒𝑡1 = 𝑤11�̈�𝑠 + 𝑤12𝑍𝑢𝑠 + 𝑤13�̇� + 𝑤14�̇�2 + 𝑤15𝑌2    (16) 

 

𝑛𝑒𝑡2 = �̈�𝑢𝑠 + 𝑤22�̇�𝑢𝑠 + 𝑤23�̇� + 𝑤24�̇�2 + 𝑤25𝑌 +
               𝑤26𝑌2   + 𝑤27�̇�𝑜 + 𝑤28𝑍𝑜                                      (17) 

  

𝑛𝑒𝑡𝑦 = 𝑤𝑦1𝑍𝑠 + 𝑤𝑦2𝑍𝑢𝑠                                                           (18) 

Then the position of sprung mass, unsprung mass and 

deflection of the suspension of a quarter car passive 

suspension system neuro models [13] are shown by 

Eq.(19), (20) and (21) respectively. 

 

𝑍𝑠(𝑛𝑒𝑡1) = 𝑓(𝑛𝑒𝑡1)                                                           (19) 

 

𝑍𝑢𝑠(𝑛𝑒𝑡2) = 𝑓(𝑛𝑒𝑡2)                                                                 (20) 

 

𝑌(𝑛𝑒𝑡𝑦) = 𝑓(𝑛𝑒𝑡𝑦)                                                        (21) 

 

Based on previous mathematical models a network 

can be formed as shown by Fig.5. 

 

3. Algorithm of Unitwise Iterative Weighted 

Least Squares 

The Fisher information associated to the weights of 

the input layer to the hidden layer is as below [7]: 

 

𝐹𝑤𝑗
= ∑ 𝑥𝑝𝑙𝛿𝑝𝑘(1 − 2𝑦𝑝𝑘)𝜒𝑝𝑚𝑗𝜗𝑝𝑗

𝑃
𝑝=1 𝜗𝑝𝑚𝑥𝑝𝑖 −  

            ∑ 𝑥𝑝𝑙Ω𝑝𝑘(1 − 2𝑦𝑝𝑘)𝜒𝑝𝑚𝑗𝜗𝑝𝑗
𝑃
𝑝=1 𝜗𝑝𝑚𝑥𝑝𝑖  =

             𝑋𝑇𝑄𝑤𝑗
𝑋                                                                      (22) 

 

Where, 

𝑄𝑤𝑗
= 𝑑𝑖𝑎𝑔((𝛿𝑝𝑘(1 − 2𝑦𝑝𝑘) − 𝜔𝑝𝑘 𝛺𝑝𝑘)𝜗𝑝𝑗𝜒𝑝𝑖𝑗𝜗𝑝𝑗  and 

𝑗 is the number of hidden neuron. This equation is an input 

vectors weighted covariance matrix. The weighted least 

squares estimation normal equation for obtaining the 

current estimates of the weights 𝑊𝑤𝑗
∗  is as the following 

 

𝑋𝑇𝑄𝑤𝑗
𝑋𝑊𝑤𝑗

∗ = 𝑋𝑇𝑄𝑤𝑗
(𝜍𝑗 + 𝑄𝑤𝑗

−1𝛿𝑤𝑗
)                                  (23) 

 

Where, 

𝛿𝑤𝑗
= (∑ 𝜔1𝑘 

𝐾
𝑘=1 𝛿1𝑗 𝜐1𝑗 , ⋯ , ∑ 𝜔𝑃𝑘 

𝐾
𝑘=1 𝛿𝑃𝑗 𝜐𝑃𝑗 )         (24) 

 

𝜍𝑗 = (𝜍𝑗1, ⋯ , 𝜍𝑗𝑃)
𝑇
                                                          (25) 

 

Likeness, Fisher’s information for output layer weights 

and related to normal equation are formulated as: 

 

𝐹𝑣𝑘
= (𝑍𝑝𝑚𝛿𝑃𝑘 (1 − 2𝑦𝑝𝑘)𝜔𝑃𝑘 𝑍𝑝𝑗) = 𝑍𝑇𝑄𝑣𝑘

𝑍            (26) 

 

and  

 

𝑍𝑇𝑄𝑣𝑘
𝑍𝑉𝑣𝑘

∗ = 𝑍𝑇𝑄𝑣𝑘
(𝜂𝑘 + 𝑄𝑣𝑘

−1𝛿𝑣𝑘
)                                (27)   

     

Where, 

 

𝑍𝑇 = (𝑍1, 𝑍2, ⋯ , 𝑍𝑃)                                                               (28)   

 

𝑄𝑣𝑘
= 𝑑𝑖𝑎𝑔((𝛿𝑝𝑘(1 − 2𝑦𝑝𝑘)𝜔𝑝𝑘                                  (29) 
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𝜂𝑘 = (𝜂1𝑘, ⋯ , 𝜂𝑃𝑘)                                                                      (30)   

                   

𝛿𝑣𝑘
= (𝛿1𝑘

𝜔1𝑘, ⋯ , 𝛿𝑃𝑘
𝜔𝑃𝑘)

𝑇
                                         (31) 

The estimates {𝑊𝑤𝑗
|𝑗 = 1,2, ⋯ , 𝐽}  and 

{𝑉𝑣𝑘
|𝑘 = 1,2, ⋯ , 𝐾} are frequently renew through solving 

normal equation. This method is named is Unitwise 

Fisher’s scoring method [13]. Each neuron weights as a 

unit of the networks is estimated through iterative 

weighted least squares algorithm. After that, these normal 

equations will solve using weighted least squares recursive 

formulas. This shows the relationship between the 

Unitwise Fisher Scoring algorithm and the 

backpropagation learning algorithm. 

The optimal parameter values related to the previous 

learning sample set and the new learning sample are given 

as below 

 

𝑊𝑤𝑗
𝑁 = 𝑊𝑤𝑗

𝑁−1 + 𝑅𝑤𝑗
𝑁 𝑥𝑁𝜔𝑁𝜎𝑁𝑗𝜐𝑁𝑗                                   (32) 

 

 

X

X

X

 
Fig.5. Neuro model of a quarter car. 

 

Where, the matrix 𝑅𝑤𝑗
𝑁  is the inverse of the weighted 

covariance matrix 𝑋𝑇𝑄𝑤𝑗
𝑋  with its recursive formula 

is given by 

        

𝑅𝑤𝑗
𝑁 = 𝑅𝑤𝑗

𝑁−1 −
(𝛿𝑁(1−2𝑦𝑁)−𝜔𝑁 𝛺𝑁)𝜐𝑁𝑗𝜒𝑁𝑗𝜐𝑁𝑗𝑅𝑤𝑗

𝑁−1𝑋𝑁𝑋𝑁
𝑇𝑅𝑤𝑗

𝑁−1

1+(𝛿𝑁(1−2𝑦𝑁)−𝜔𝑁 𝛺𝑁)𝜐𝑁𝑗𝜒𝑁𝑗𝜐𝑁𝑗𝑋𝑁𝑅𝑤𝑗
𝑁−1𝑋𝑁

𝑇

                                                                         (33)  

    

In the same manner, the recursive formula for 𝜈𝜈𝑘
 is 

given by 
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𝜈𝜈𝑘
𝑁 = 𝜈𝜈𝑘

𝑁−1 + 𝑅𝜈𝑘
𝑁 𝑥𝑍𝑁𝛿𝑁𝑘𝜔𝑁𝑘                                        (34) 

 

𝑅𝑣𝑘
𝑁 = 𝑅𝑣𝑘

𝑁−1 −  
𝛿𝑁(1−2𝑦𝑝𝑘)𝜔𝑁𝑘 𝑅𝑣𝑘

𝑁−1𝑍𝑁𝑍𝑁
𝑇𝑅𝑣𝑘

𝑁−1

1+𝛿𝑁(1−2𝑦𝑝𝑘)𝜔𝑁𝑘 𝑍𝑁
𝑇𝑅𝑣𝑘

𝑁−1𝑍𝑁
                (35) 

 

4. Data Collection 
The accuracy and the representation of experimental 

data depend on data acquisition hardware, sensor, and 

experimental procedure [6,7,13]. In this research, Arduino 

mega is used as data acquisition hardware. Because it has 

several advantages, among others it has additional I / O and 

serial ports and abundant code space, so it can be used as 

data acquisition hardware. Besides its price is cheap and 

also easy to get compared to usual data acquisition 

hardware. The purpose of the data acquisition system is to 

serve the data logging and data analysis of the 

measurement results. Therefore, the data acquisition 

system is an instrument that it has the capability for 

measuring some parameters. This system is generally 

electronics based and it is a combination of hardware and 

software. The hardware parts consist of sensors, cables and 

electronic components. Meanwhile, the software parts 

consist of the analysis software and other utilities that can 

be used to configure the logic or to transfer data from data 

acquisition to laptop or desktop computer. In this research, 

data logging is carried out by the data acquisition, it is used 

to measure the displacement and the acceleration of the car 

body.  

But before any mathematical model estimation are 

derived, it is necessary to design the experimental 

procedure carefully. Also in order to minimize 

measurement noise, it is essential to choose wisely the data 

acquisition hardware and software, and the sensor system. 

The input of the system must be able to completely explore 

the system dynamics.  

In order to produce a high fidelity of a quarter car 

passive suspension mathematical model, we need several 

requirements as below [13]: 

 Data are collect in an experimental way. 

 Input variable is an artificial road surface with 

known parameters to imitate a real road surface. 

 Sprung mass and unsprung mass vertical 

acceleration data are measured using 

accelerometer sensor. 

 Data are acquired by driving a test car on the 

artificial road surface. 

 

Sensor Installation 

The assumptions used in a quarter car model, where its 

dynamics are same for the four sides. So to analyze its 

dynamics can be done on one side only. In this work is 

taken is the left front side, because it is easy for getting data 

acquisition power source and installing process. Besides, 

there is also enough space to facilitate the sensors 

installation.  

Three data required in this study, they are the vertical 

acceleration of the car body, the vertical acceleration of the 

axle and the suspension displacement. The car’s body and 

axle acceleration data are measured using acceleration 

sensor, while the suspension displacement is measured 

using LVDT sensor. 

The car’s body vertical acceleration is measured by 

mounted an accelerometer sensor on the car body at top of 

suspension as shows in Fig. 6(a). The axle or the unsprung 

mass vertical acceleration is measured by mounted an 

accelerometer sensor on the lower arm at the bottom of the 

suspension of the test car as illustrate in Fig. 6(b). One 

LVDT sensor is used to measure the car suspension 

displacement and installed between the top and bottom of 

the suspension as illustrated in Fig. 6(c). 

 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig.6: The accelerometers sensors and the displacement 

sensor installation. 

 

Artificial Road Surface  

Input and output data of a car suspension system are 

collected by driving a test car on artificial road surface to 

investigate the vehicle suspension dynamic [13-14]. The 

road surface types are designed using plywood and the 

beam is made from wood in which is called an artificial 

road surface. The artificial road surfaces have known 

parameters therefore it is easy to convert into a signal form. 

The artificial road surface is a known parameters road 

surface imitation as shown in Fig. 7. The parameters 

consist of width and height of beam, distance between one 

beam into another and total length of road surface. 
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Fig. 7: The artificial road surface and experimental 

enviroment. 

 

A light passenger car is choosen as an object in this 

research. A light passenger car means a passenger car with 

five maximum number of passengers. Sometimes also 

categories as cars with engine capacity of less than 2.5 

liters.The test car specification is elaborated in Table 1. 

 

Table 1. Specification of the test car 

Mark Myvi 1.3 Manual 

Year 2012 

Front suspension type MacPherson Strut & Coil 

Spring 

Rear suspension type Multilink & Coil Spring 

Weight (+2 passenger 

and DAS) 

980 kg + 120 kg + 3kg 

Front tire pressure 22 psi 

Rear tire pressure 20 psi 

Car speed 10 km/h and 20 km/h 

 

5. Experimental Results and Analysis 

 In this experimental the input variables are an 

artificial road surface with known parameters [13]. By 

considering the time sampling, the artificial road surface 

as in Fig. 7 is converted into the signal form. The amplitude 

of the road surface is in meter (m) and the length of the 

time conducted the experiment in second (s). Fig. 8 shows 

the signal form of the road surface imitation or artificial 

road surface.  

 

 
Fig. 8: Artificial road surface signal. 

For input output data collection, three sensors are used 

in this experimental work. There are deflection sensor to 

measure suspension deflection and two acceleration 

sensors for measuring car body (sprung mass) vertical 

accelaration and axle (unsprung mass) vertical acceleration 

respectively. The output signals are as below:  

 

 
Fig. 9. Suspension deflection signal. 

 

 
Fig. 10. Sprung mass vertical acceleration signal. 

 

 
Fig. 11. Vertical acceleration signal of unsprung 

mass. 

 

Using previous data, the neuro model for passive 

suspension system dynamic of a quarter car is identified. 

The comparison between the system response and the 

identified model response is represented by Fig. 12. 

 

 
Fig.12. Comparison between the system response 

and neuro model response. 

 

The best neuro model is given by the MSE values, the 

residual autocorrelation and the residual cross correlation 

graphs as below:   
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Fig. 13. Mean Square Error. 

 

 
Fig. 14. Residual autocorrelation. 

 

 
Fig. 15. Residual cross correlation. 

 

The best neuro model for passive suspension system 

dynamic of a quarter car has achieved as represented by 

Eq.(36) till Eq.(42). 

 

𝑛𝑒𝑡1 = 0.0033�̇�𝑠  − 0.0027�̈�𝑠 − 0.0291𝑍𝑠 −

              0.0296�̇�𝑢𝑠 − 0.1250�̈�𝑢𝑠 −               0.1216𝑍𝑢𝑠 −
              0.1186 �̇� − 0.0301�̈� − 0.0301�̇�2 − 0.0301�̈�2    
                                                                                      (36) 

 

𝑛𝑒𝑡2 = −0.0914�̇�𝑢𝑠 − 0.1216�̈�𝑢𝑠 − 0.1206�̇� −

               0.1197�̈� − 0.0918�̇�20.0918�̈�2 −  0.0918�̇�𝑜 −
               0.1027�̈�𝑜                                                                            (37) 

 

𝑛𝑒𝑡𝑦 = −5.8687𝑍𝑠 − 1.7692𝑍𝑢𝑠                                          (38) 

 

𝑍𝑠(𝑛𝑒𝑡1) = 𝑓(𝑛𝑒𝑡1)                                                                       (39) 

 

𝑍𝑢𝑠(𝑛𝑒𝑡2) = 𝑓(𝑛𝑒𝑡2)                                                                  (40) 

𝑌(𝑛𝑒𝑡𝑦) = 𝑓(𝑛𝑒𝑡𝑦)                                                                       (41) 

 

𝑓(𝑛𝑒𝑡) =
𝑒𝑐∗𝑛𝑒𝑡

1+𝑒𝑐∗𝑛𝑒𝑡 − 0.5                                                              (42) 

 

This model has almost identical trend with the system 

response. Autocorrelation and cross correlation between 

residual and input are rested in confident limit as described 

in Fig. 14 and 15 respectively.  

 

6. Summary 

The best neuro model for passive suspension system 

dynamic of a quarter car from system identification has 

sprung mass variable, unsprung mass variable, deflection 

of the suspension (output) variable, road surface (input) 

variable orde, and road surface variable delay time  powers 

are 3, 3, 2, 1 and 2 respectively.  This model has similar 

trend with the system response. Autocorrelation and cross 

correlation between residual and input are laid in confident 

limit respectively. Beside that, this model also gives 

minimum MSE =  4.9682e-006, lowest value Final 

prediction error criterion (FPE) = 1.0007e-016 and 

loss_function = 5.1072e-006. Its statistical autocorrelation 

residual (𝑟𝑒𝑒)  = 6.0868 and statistical cross correlation 

between residual and input (𝑟𝑒𝑢) = 4.0437 are fulfilled the 

criteria for limit interval 20 with 99% confident limit, 𝑟𝑒𝑒  

and 𝑟𝑒𝑢 must less than 37.6. 
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