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1. Introduction 

Non-destructive testing provides reliable information 

of the material under investigation to be perceived as safe, 

reliable, and usable [1]. Many of the interdisciplinary field 

of non-destructive testing, non-destructive testing and 

evaluation based on electromagnetic approaches are 

gaining worldwide attention since it was introduced due to 

simplicity, fast response, convenience, and low cost. A 

particular electromagnetic approach of interest is the non-

destructive testing or inspections based on the inductive 

and capacitive or electromagnetic effects. Such devices or 

sensors can be seen in the industrial areas [2], agriculture 

[3], and engineering/scientific application (e.g. land mine 

detection) [4], health and food monitoring [5], 

manufacturing [6, 7], automation [8], structure inspection 

[9] etc.  

The sensing or/and exciting elements of a planar 

electromagnetic device usually have flatten structures and 

separated by substrates e.g FR4, alumina etc. Several 

examples of planar electromagnetic systems are discussed 

in this section. Inductive planar electromagnetic devices 

have been reported in [10-19] and extension used as 

sensors for testing (nondestructive testing) the integrity of 

materials (conductive and magnetic material) in [20-29]. 

Inductive planar sensors are also used as proximity and 

displacement sensors [17, 30]. A method for inspecting the 

integrity of different coins, which can successfully discern 

different types of coins using meander planar sensors has 

been demonstrated [31]. Capacitive planar electromagnetic 

sensors or commonly known as coplanar interdigital 

sensors have been used for many applications, some of the 

examples are moisture measurement in pulp [32], 

monitoring the impedance change caused by the growth of 

immobilized bacteria [33], human health confirmation 

based on the content of water in human skin [34], humidity 

sensors [35], food inspection for human safety, non-

invasive monitoring of industrial and medical applications 

[36-39], and estimation of material dielectric properties 

such as food and saxophone reeds [40-44]. A sensing 

system based on the interdigital sensor has been developed 

for determining the looseness in sheep skins. A good 

correlation was observed between the sensor output 

voltage and looseness values for both before and after 

tanning process. The formula for calculating of looseness 

was developed, and on comparison with the actual 

looseness values, they were quite proximate [45]. 

Therefore, the application and structure of mender and 

interdigital sensor will be further elaborate in the later 

section. This paper is divided into 5 sections. Section 1 

presents the basic concept of electromagnetic approach for 

non-destructive testing. The basic structure and application 
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of planar electromagnetic sensor are discussed. 

Meanwhile, Section 2 highlights the drawbacks of 

previous development of electromagnetic sensor as well as 

its applications. Section 3 discusses the architecture and 

measurement concept of planar electromagnetic sensor for 

nitrate and sulphate detection. Besides, section 4 discusses 

on Artificial Neural Network (ANN). The classification 

process of contaminants is done through experimental and 

detail explanation is also discussed. Lastly, section 5 

concludes the feasibility of ANN to estimate nitrate and 

sulphate in water. 

 

2. Application of Non-Destructive Sensor for 

Environmental Monitoring 

For the past ten years, the research of environmental 

monitoring based on planar meander and interdigital 

elements has followed several avenues. The early work 

(since 2001) involved a serially closed circuit inductor-

capacitor (LC) element, (Titanium Dioxide) TiO2 coating, 

and flexible parallel plate capacitor which forms a passive 

sensor. The sensor operates on wireless and remote query 

basis has been applied for environmental parameters 

monitoring based on complex permittivity of a 

surrounding medium, temperature monitoring, and 

pressure [46]. Later on, this work evolved into other 

application such as bacteria growth monitoring [47, 48],  

monitoring of electrical properties of biological cell 

solutions [49], quantifying packaged food quality [50], and 

real-time monitoring of water content in civil engineering 

materials [51, 52]. Despite of offering a good performance, 

this system is quite complex, considering the material 

properties estimation was achieved from impedance 

spectrum of the sensor measured using a remotely located 

antenna. The material properties (e.g. complex 

permittivity) are calculated from the impedance spectrum 

at the resonant frequency with the inductance and 

capacitance of the sensor values based on calculation of an 

analytical model. Moreover, looking at the current 

technologies, the potential of this system to be a portable 

or home appliance is hindered, as it requires either an 

expensive impedance analyzer or lock-in amplifier. 

Having a resemblance sensor design, Stanley et al. 

[53] and Woodard [54] employed open-circuited self-

resonating planar spiralling pattern of electrically 

conductance material coated with active material. The 

results reflected that the sensors are suitable to be used in 

harsh condition. Nevertheless, the material used to make 

the sensor i.e. Silicon Nitride (Si3N4) is relatively 

expensive and only affordable by programs funded for 

space exploration. Dickey et al. [55] and Oommon et al. 

[56] have investigated the effect of different size of pore 

and uniformity of the substrate (Metal Oxide) which was 

made as a platform base for interdigital sensor on the 

sensitivity and accuracy of NH3 and relative humidity. 

Metal Oxide materials (SnO2, Al2O3, and TiO2) are 

relatively low cost and well-known for their manipulatable 

structure for gas-sensing enhancement. However, the 

fabrication of the sensor is laborious that requires an access 

to expensive facilities and considerably skilled personnel. 

Several researchers [57, 58] have address the 

application of Inductor and Capacitor (LC) wireless sensor 

with Elecrolyte-Nitrate-Oxide-Silicon (ENOS) structure 

as an electrochemical potential-to-capacitance transductor 

fabricated using CMOS technology for pH measurement 

of liquid material such as water. These studies have made 

improvement of shorter response time and linear response. 

The main drawback is the operating frequency had to be 

adjusted to a proper value to minimize the unwanted 

response of the sensor to the sample (material under test) 

conductivity. In this study, our attention and interest have 

been drawn into to develop an electromagnetic sensor 

consisting both inductive and capacitive element which 

can be integrated as a low cost, convenient, and suitable 

for in-situ measurement system for water quality 

monitoring which will contribute to environmental 

monitoring. Detection of pollutants especially in drinking 

water is crucial in order to avoid negative impact on human 

health. 

 

3. Planar Electromagnetic Sensor as a Near 

Field Sensor 

Every material has different electrical properties. By 

taking advantage of this fact, planar electromagnetic 

sensors have been widely utilized for inspection of near-

to-the-surface properties such as dielectric, permeability 

and permittivity [67, 68], food safety and fat content in 

milk and bacterial content [36-39] are common 

applications that use planar electromagnetic sensors as a 

detection device. 

 

3.1 Planar meander and interdigital sensors 

The application of meander type sensor is widely found 

in dairy product industry [69] and PCB board production 

[70]. The meander type sensor consists of an exciting 

circuit and a sensing circuit that is placed close to each 

other as illustrated in Fig. 1 [71, 72]. A high frequency 

alternating current is supplied to the exciting current to 

induce eddy current on the circuit. 

Meanwhile, the sensing circuit absorbs or picks up the 

variation of magnetic field. This sensing circuit 

compliments the Faraday’s law which stated that a voltage 

will be generated when placed in a moving 

electromagnetic field [73]. 

There is an extensive research involving areas such as 

photosensitive detectors, surface acoustic waves, humidity 

 

 
Fig. 1 A basic meander type sensor [11] 
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sensors and sensors for chemicals and gasses which used 

the interdigital electrode [36]. As reported in [74-76], the 

estimation of dielectric properties of leather, seafood and 

platelet using interdigital sensors to determine its 

characteristics such as quality, contaminant and 

concentration was successful. Fig. 2 shows the interdigital 

type sensor. The operational principle of interdigital sensor 

is similar to the parallel plate capacitor where one side is 

connected to the AC voltage source and another side is 

grounded. The interlocking arrays of positive and negative 

electrodes structure is applied to gain enough capacitive 

value to provide sufficient electric field in order to 

penetrate the medium under test [77].  

The main advantage of planar electromagnetic sensor 

is the fabrication process can be completed on a printed-on 

circuit board (PCB) thus incurred minimum fabrication 

cost. Fig. 3 illustrates the planar electromagnetic sensor 

that has been fabricated on PCB with two layers [78]. 

 

3.2 Planar Electromagnetic Sensor for 

Nitrate and Sulphate Detection 

Planar electromagnetic sensor could be developed by 

combining the meander and interdigital type sensor. The 

combination of these two sensors would produce an 

electromagnetic field where the magnetic field is produced 

by the meander type sensor and the electric field is being 

generated by the interdigital type sensor. As reported in 

[29], the combination of the meander and interdigital type 

give the best sensitivity. 

The meander structure in an electromagnetic sensor 

consists of five loops with an overall dimension of 20 × 20 

mm. The gap between each loop and the width of each loop 

is set to be 0.5mm. On the other hand, the interdigital 

structure in an electromagnetic sensor consists of five 

positive electrodes and four negative electrodes. The width 

of a positive electrode and a negative electrode is 0.5 mm 

and 1.0 mm respectively. Fig. 4 illustrates the meander and 

interdigital type sensor that is connected in series to form 

an electromagnetic sensor. 

The wider negative electrode of interdigital type sensor 

is recommended by Yunus et al. [79, 80] for a better 

response. Apart from that, a wider and bigger ground 

backplane with a dimension of 10 mm × 8 mm as shown 

by the red color in Fig. 4(b) is needed to reduce 

interference. The output strength of an interdigital sensor 

could be increased by manipulating the distance between 

each electrode [81]. In order to operate the sensor, a source 

of alternating 10 Volt peak to peak sinusoidal waveform is 

supplied from a function generator. The magnetic field 

generated by meander type sensor is combined with the 

electric field generated by interdigital type sensor to form 

an electromagnetic field. This electromagnetic field 

interacted with the medium or material under test. The 

dielectric properties of the material will alter the 

electromagnetic field of the sensor and consequently, 

change the impedance of the sensor that is being measured 

across the terminal. However, the previous model of planar 

electromagnetic sensor could only take one reading per 

time due to the single structure of the sensor [79]. The data 

collection need to be taken several times before being 

analysed. As such the single detection method consumed a 

lot of time before analysis could be done. Hence, the planar 

electromagnetic sensors array is introduced. 

This paper used the star array planar electromagnetic 

sensors as developed in [82, 83], for nitrate and sulphate 

detection in water. The design for the star array 

configuration is illustrated in Fig. 5, where the difference 

between each array is the placement of sensors S1, S2 and 

S3. Based on Fig. 5, sensor S2 is located 10mm away from 

sensor S1 before being rotated at 45o clockwise as this 

configuration provides higher sensitivity. On the other 

hand, sensor S3 is also located 10 mm away from sensor S1 

and is rotated at 45o anti clockwise. Fig. 5(a) shows the top 

configuration that is filled with blue color. At the same 

time, this blue color indicated the series connection of 

meander and interdigital type sensor. All of these three 

 

Fig. 2 The interdigital type sensor [17] 

 

 

 

(a) Top layers (b) bottom layers 

 

Fig. 3 planar electromagnetic sensor illustration [78] 

 

 

 

  

(a) Top view (b) Bottom view 

  

Fig. 4 The planar electromagnetic sensor design [29] 
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sensors are connected to the same function generator at the 

same node. Fig. 5 (b) shows the bottom view where the 

connection is colored with red. This red color represents 

the ground backplane structure of a star array 

configuration. 

An electrical equivalent circuit of the star sensor array 

is shown in Fig. 6. According to Fig. 6, the sensor is 

connected to a function generator where Rg is the output 

resistance with a nominal value of 50 Ω. R1 denotes the 

series surface mount resistor connected to sensor 1 (S1). 

Hence, current I3-1 can be calculated from 

 
 

(1) 

 

where I3-1 and V3-1 are the rms value of current through the 

sensor and voltage across R1 respectively. The absolute 

total impedance for sensor S1, Z1 is given by 

 
 

(2) 

 
 

(3) 

 

The same method of calculation can be used to calculate 

the impedance for both sensors S2 and S3 by using 

Equations (2) to (3).  

In [83] the measurement for nitrate and sulphate is 

then carried out for data acquisition. The experimental 

setup is shown in Fig. 7 where the setup has a frequency 

waveform generator which generated standard sinusoidal 

waveform with 10 Volts peak-to-peak value and was set as 

the input signal for the sensors. A retort stand was used to 

hold the star sensor array. The star sensor array was 

partially immersed into the water sample. A signal 

oscilloscope was interfaced to a PC where the output 

signals and the sensor’s impedance was calculated using 

LabVIEW software. The measurements were done at 

frequency range between 1 kHz and 10 MHz. Before the 

experiment, Wattyl Killrust Incralac is sprayed to the 

sensors in order to form an acrylic resin-based protective 

coating. The effect of the samples on the sensor’s 

impedance was recorded. The measurement data is then 

analyzed by the artificial neural network (ANN) for 

contaminants classification. 

 

4. Planar Electromagnetic Sensor For Nitrate 

& Sulphate Detections using ANN 

In this section, how ANN can be used to classify nitrate 

and sulphate contaminations using star array configuration 

is discussed in details. A complex, nonlinear relationship 

between inputs and outputs with many adjustable 

parameters such as weights and biases was demonstrated 

by ANN. The ANN needs to undergo three different stages 

known as training, validation and testing. During the 

training session, the adjustable parameters that are used 

could be optimized. For example, in the situation in which 

the input is unknown or “unseen” but, if the data set is 

sufficiently provided and meet the training procedure of 

ANN, the output still can be recognized by the ANN [84]. 

013111  IVZ 

1311  IVZ

11313 RVI  

 

(a) Top view 

 

(b) Bottom view 

Fig. 5 Star array configuration of planar 

electromagnetic sensor 

 

 

Fig. 6 Equivalent circuit for star sensor array 

 

 

Fig. 7 Experimental setup for determination of nitrate 

and sulphate 
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Basically, the traditional ANN comprises of three 

layers: input data where the data is introduced into the 

system, the hidden layer (layers) and the output layer [85]. 

Every single layer consists of many different elements 

called neurons. A neuron can be specified as a nonlinear 

function and has a parameterized boundary value. Besides, 

each neuron has its own activation function that connected 

each other with a variable weighting value.   

Different types of neural network can be varied by the 

neural interconnection (architecture), methods of adjusting 

the weight and the different activation functions. The 

neural network can be categorized as supervised neural 

network and unsupervised neural network. Feed forward 

neural network (FFNN) is a short term for supervised 

neural network, which consists of an input layer, a hidden 

layer(s) and output layer. Multilayer perceptron (MLP) is 

another branch of FFNN in which the neuron in each layer 

is only connected to the adjacent layer. Each layer contains 

a predetermined number of neuron and activation function. 

 

4.1 Hidden Layers and Nodes of ANN 

The number of hidden layers and the number of 

neurons in each layer is determined by the degree of 

difficulty of a problem and can be obtained by a trial and 

error method. The error of the network would increase if 

the number of neurons is not enough. Usually, the number 

of neurons increased in a highly non-linear problem and 

decreased in a simple problem. According to Gybelco [86], 

finding the number of neurons is still a challenge even 

though a three layer perceptron involved an arbitrary 

nonlinear, continuous, and multidimensional function. 

Selection of appropriate neurons number is a must where 

the large number of neuron caused over fitting of the neural 

network. On the other hand, inadequate neurons number 

caused the network function to be impaired. Hence, a trial 

and error method is used in this case to find an appropriate 

neurons number for three layers MLP neural network. 

 

4.2 Weight Initialization for ANN 

Weight is one of the crucial part in ANN. The wrong 

selection of weight and biases could lead to a local minima 

problem. Therefore, these two parameters need to be 

initialized first before being trained by the Back 

Propogation (BP) algorithm. These values are normally 

initialized by selecting a random non-zero value between 

interval of [-1, 1] and yet, it still cannot guarantee that these 

values are the local minima of the network. In order to 

overcome this problem, it has to start again from a 

selection of different values and go through the similar 

training process to reach the global minima. 

 

4.3 ANN Back Propagation Learning 

Algorithm 

The network is ready for training after the weight and 

biases of MLP neural network are initialized. The most 

common and popular algorithm for MLP training is Back 

Propagation (BP). BP algorithm was introduced by 

Rumelhert et. al in 1986 [82]. In the BP training process, a 

set of data vectors known as inputs and target outputs is 

required.  The main objective of BP is to reduce the 

backward propagated error. During the BP training, the 

neurons already organized themselves to send the signals 

forward and then the last output of the last layer is 

compared with the real output data sets. After that, the 

errors are propagated back to the input data in the network. 

This process continued until the stopping criteria is 

satisfied.  

Conventional BP used a gradient descent algorithm 

which could gradually reduce the Mean Square Error 

(MSE) of output data during the epochs. The MSE for 

network can be shown as: 
 

(4) 

where, O is network output, T is target output and N is the 

number of samples.  

The network weights and biases is updated with a 

simple gradient descent algorithm in the direction where 

the performance function decrease rapidly by adding the 

negative of the gradient to the current parameters as 

shown: 

        tgtwtw 1  
(5) 

where, t is the time, α is the rate of learning, g is the 

gradient vector and wt is the current weight matrix. 

 

4.4 Stopping criteria 

During the training session, the train set data is used 

to update the weights while the validation data set is 

applied to avoid over-fitting. The learning session is 

continued until the stopping criteria is achieved. The 

stopping criteria can be chosen either an exact number of 

iteration (epochs), an arbitrary level of low error (error 

level due to the problem dependent) or an epochs that 

increased the validation error. 

 

4.5 Input Variables and data processing 

The data set comprises of signals from different water 

contamination levels that is being measured by three planar 

electromagnetic sensors under different frequencies 

ranging from 1 kHz to 10 MHz. The large number of raw 

signals caused it to be unsuitable to feed neural networks. 

Hence, the dimension of these input signals for neural 

network must be reduced to an acceptable numbers where 

the procedures is known as feature extraction. Due to the 

non-stationary behaviour of these input signals, a Wavelet 

Transform (WT) can be used for decomposition and 

feature extraction. 

 

4.5.1 Input Variables and data processing 

A basis function called small wavelets with a limited 

duration is used by the Wavelet Transform (WT) to 

represent other functions based on the following formula: 

 

   N
i iOiT

N
E 1

2
)(

1



M.A.M. Yunus et al., Int. J. Of Integrated Engineering – Special Issue on Electrical Electronic Engineering Vol. 9 No. 4 (2017) p. 64-75 

 

 

 69 

        

 

(6) 

where, F is known as the Continuous Wavelet Transform 

(CWT) of f(t) with scale a and translation b and ѱ is called 

as the mother wavelet. The main position of the signal is 

determined by the translation factor while the scaled factor 

of wavelets allowed the signal with different scale value to 

be analysed. Equation (6) is an extended version of 

Wavelet. However, for a discrete signals, a Discrete 

Wavelet Transform (DWT) is needed for analysis and 

synthesis on the original signals.  

In order to decompose the signals in different scales, 

the DWT used a series of low pass and high pass filters 

with different cut-off frequencies. These filters separated 

the original signal into two parts known as coarse 

approximation and detail information. Firstly, the original 

signal is passed through a high pass filter and a low pass 

filter. As a result, half of the samples were eliminated due 

to the output response of the filters that was down sampled 

by two. This procedure continued using the result of high 

pass filter until a pre-determined level is achieved. Fig. 8 

illustrates the whole procedure for the two levels of signals 

decomposition. 

4.5.2 Feature extraction 

Feature extraction plays an important role in 

classification problems where this stage involved the 

dimension reduction. So far, there is no direct method that 

have been reported for finding the proper features. Besides, 

it should be done by trial and error method. Therefore, in 

this research, two features were extracted known as energy 

and mean. These two features are determined by the 

following formulas: 

 

         

(7) 

 

         

(8) 

 

where, N is the number of samples and x is the sample. 

Hence, these features are used as an input for neural 

network. 

 

4.6 Classes of Water Samples 

The classes of water samples comprise of three 

groups of contamination which are Potassium Nitrate 

(KNO3), Potassium Sulphate (K2SO4) and a combination 

of Potassium Nitrate and Potassium Sulphate (KNO3 + 

K2SO4). These solutions are prepared at different 

concentration levels from 5 part per million to 115 part per 

million (ppm). From these three groups of contamination, 

each group comprises of different classes based on 

different amounts of concentration. In total, there are 19 

classes altogether, in which there are 36 sets of samples in 

each class.  

The advantage of planar electromagnetic sensors 

with the star array configuration is proved where only 12 

measurements at a time is needed to obtain 36 sets of 

sample instead of 36 measurements. This advantage is due 

to the increase in the number of sensors in each 

measurement. Table 1 summarizes the different water 

contamination levels that represent the classes in each 

group for the reference sets. 

 

4.7 Derivation of Impedance Sensitivity 

The signals that are going to be feed or used by the 

ANN are based on the sensitivity of each sensor. The 

sensitivity is calculated based on the impedance of each 

sensor where the impedance is measured across the series 

resistor as governed by the following equation: 

         

(9) 

where, %Z is the impedance sensitivity, Zsample is the 

impedance of the sensor when the sensor is immersed in 

the respective water sample, and ZDistilled Water is the 

impedance of the sensor in distilled water. The impedance 

sensitivity of each sensor have almost a similar magnitude 

at the respective frequency. Hence, it is not suitable to 

directly apply the signal from impedance sensitivity as it is 

difficult to differentiate each signal which has the same 

concentration of contamination type and level. Therefore, 

the normalized second derivative is applied to overcome 

this problem. In addition, the unwanted baseline level can 

be eliminated together based on the following equation: 

 

         
(10) 

where, %Z” is the normalized second derivative of 

impedance sensitivity of sensor and %Z is the impedance 

sensitivity of sensor. Figs. 9 and  

Fig.s 10 show the normalized second derivative of 

impedance sensitivity for three different classes of nitrate 

and sulphate, respectively. 
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Fig. 8 Two levels of decomposition via Wavelet 

Transform 
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4.8 Implementation of Wavelet Transform 

There are different types of mother wavelets such as 

Haar, Daubichies, Coinflet and Symmlet that could be 

found in literatures. In this research, the Haar wavelet 

which is amongst the most popular wavelet is going to be 

used to decompose signals in 4 levels as illustrated in 

 Figs. 11. 

Figs. 11 (b) to (c) show that, the active parts of the 

decomposed signals are available at low frequency and 

high frequency for low level decomposition and high level 

decomposition, respectively. This shows a strong evidence 

that the details at each level of signals decomposition 

contain a different information extracted from the original 

signal. 

 

4.9 Input Space for Neural Network 

The main objective of water contamination 

classification is to demonstrate the effectiveness of energy 

and mean features for the normalized second derivative of 

%Z’’. In order to accomplish this objective, the feature 

vectors in each class as shown in Table 2 are set as the 

input for the neural network. 

Based on Table 1, there are 19 contamination classes 

based on potassium nitrate, KNO3, potassium sulphate, 

K2SO4 and a combination of both types of contaminant. 

As mentioned earlier, only 12 measurements were 

performed for each class and the output of the three sensors 

was gathered for analysis. When 12 measurements for each 

sensor are made, there will be 36 data sets for each class. 

The energy and mean of approximation in level 4 and also 

the energy of details in all levels were calculated.  

Fig. 12 illustrates the typical three dimensional inputs 

of class 1 for the ANN. Based on Fig. 12, the feature of the 

inputs are shown in three dimensions to represent their 

graphical state before these input vectors are classified. 

From Fig. 12, the three classes located inside the blue 

circle is clearly placed separately in different locations 

 

 

 

Table 1 Classes of water sample in each group 
 

 Potassium Nitrate, 

KNO3 (ppm) 

Potassium Sulphate, K2SO4 

(ppm) 

Class 1 5.0 - 

Class 2 10.0 - 
Class 3 15.3 - 

Class 4 21.2 - 

Class 5 60.3 - 
Class 6 113.5 - 

Class 7 - 5.5 

Class 8 - 10.6 
Class 9 - 15.0 

Class 10 - 20.6 

Class 11 - 60.5 
Class 12 - 110.0 

Class 13 5.0 5.0 
Class 14 10.2 10.1 

Class 15 15.4 15.3 

Class 16 40.3 40.0 
Class 17 60.3 60.5 

Class 18 80.2 80.4 

Class 19 100.4 100.2 

 

 

Fig. 9 Second derivative for three potassium nitrate 

signals 

 

 

Fig. 10 Second derivative for three potassium sulphate 

signals 

 
 

 

a) Original signal of class 1 

 

(b) graphs at level 1 

 

(c) graphs at level 2 

 

Fig. 11 Signal decomposition by Haar wavelet 
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Fig. 12 The three dimensional inputs data of Energy A3, 

Energy A4 and Mean A4 of class 1 

 

The total size of data is 6×684 where 6 represent the 

dimension of features while 684 represent the total number 

of all samples in 19 classes. Each class comprises of 36 

samples that have been categorized into three data sets 

known as train, validation, and test. From a total of 36 

samples, 70 % is used for train, 10 % for validation, and 

20 % for test. 

 

4.10  Multilayer Perceptron (MLP) 

Architecture in Neural Network 

A typical three layers of MLP as shown in Fig. 13 

which consists of inputs, outputs and activation layer. The 

trial and error method is used to obtain the optimum 

architecture of three layers MLP. Firstly, a network with 

six neurons located in hidden layer is used as an initial 

guess. Sigmoid function and linear function are applied in 

the hidden layer and the output layer, respectively. 

 

4.11  Input Space for Neural Network 

The optimum parameter has to be obtained in order to 

optimize the performance of the neural network. To 

achieve the optimal parameter of the neural network, the 

square mean error of both training and validation sets 

based on Equation (4) is determined. The trial and error 

approach is used to determine the number of neuron in the 

hidden layer. Hence, Fig. 14 shows the plot of error for 

training the data as the number of neurons in hidden layer 

changed. 

Based on Fig. 14, the error of the training data 

decreases as the number of neurons in a hidden layer 

increases in which the number of neurons exceeds 20. 

Furthermore, when the number of neurons in the hidden 

layer is more than 20, the error is slightly decreasing. 

However, the additional neurons in hidden layer caused the 

compl exity of the network, which caused an increase in 

the computational time. Therefore, a compromise between 

network complexity and error reduction is achieved by 

selecting 25 neurons to be constructed in the hidden layer. 

Apart from that, Fig. 14 also illustrates the local 

minima problem of neural network where the error of 

training data fluctuated. The local minima caused the 

system to be looped at a certain point on the data set which 

lead to a loss of another important data. This error occurred 

at several points where the number of neurons selected 

were 14, 16, 25, and 34. The three layers MLP was trained 

in the local minima (LM) mode where the learning mode 

is set to be 0.001.The training for the MLP used the mean 

square error as the objective function where the mean 

square error was also based on Equation (4). Fig. 15 

illustrates the error was reduced during three stages of 

process, namely, training, validation and testing. 

Fig. 15 also shows the best error plot for 61 epochs. 

Based on that, the iteration at which the validation 

performance reached minimum was 55 and then the 

training process continued for another six iterations before 

the training stopped. From Fig. 15, it also shows that none 

 

 

Fig. 13 Structure of Multilayer Perceptron (MLP) 

 

 

Fig. 14 The error of training data as the number of 

hidden layer is manipulated 

 

 

Fig. 15 The error for each stage of training procedure 

 

Table 2: The characteristic performance of the 

classification method with and without ANN 

Descriptions 
Result 

of ANN 

Multilayer Perceptron (MLP) 2-25-19 

Incorrect training and validation samples 

(out of 551 samples) 

7 

Incorrect test samples (out of 133 

samples) 

2 

RMSE for all data sets (%) 0.0132 
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of the training data is over-fitting. This is due to the test 

and validation data sets that follow the training error. 

The optimum performance of three layer MLP is 

shown in Table 2. As clearly stated in Table 2, the root 

mean square error (RMSE) for all data sets is 0.0132. 

Besides, it could be seen that the number of errors for the 

incorrect samples was as low as 9 out of 684. This means 

that, the error is very low and this feature extraction 

method that consists of mean and energy is suitable for the 

input layers of the MLP neural network structure. 

 

5. Conclusion 

This paper has shown that the innovation from the 

concept of novel sensor based on the combination of planar 

meander and interdigital sensors can be used to detect 

nitrate and sulphate in water sources.  Based on the results 

obtained from the sensor array, the impedance response is 

directly related with the level of concentration of nitrate 

and sulphate solutions. The contrasts between the signals 

obtained from the sensor array can be clearly seen after the 

signals converted into its respective second derivatives. 

Before the ANN can be used as a classification tool, a 

few criterion such as the proper types and forms of inputs 

for the ANN, multilayer perceptron parameters of the 

ANN, and limitations of the ANN need to be considered in 

constructing the structures of ANN.  Hence, the input 

signals for the ANN need to be reduced using 

Discontinuous Wavelet Transform (DWT) and Haar 

wavelet. Then, the approximation and details of mean and 

energy of the signals are extracted to form the MLP inputs.  

A three layers MLP that consists of an input layer, 

hidden layer, and output layer is trained, validated, and 

tested in successive steps to classify 19 classes of the 

nitrate and sulphate water samples. The optimal number of 

25 hidden neurons in the network is gained during the 

training and validation process. The number of hidden 

neurons is determined based on the calculated minimum 

square error. Based on the results obtained, the ANN 

method could estimate the level of nitrate and sulphate 

concentration with the relative mean square error (RMSE) 

of 0.0132. 

 

Acknowledgement 

The authors would like to acknowledge the financial 

support from the Science fund grant from the Ministry of 

Science, Technology and Innovation (MOSTI) Malaysia 

(Vote No. 03-01-06-SF1216). 

References 

[1] B. Hull and V. John, Non-destructive testing: 

Springer-Verlag New York Inc.,New York, NY, 

1988. 

[2] M. B. Mesina, T. P. R. De Jong, and W. L. Dalmijn, 

"Automatic  sorting of scrap metals with a combined 

electromagnetic and dual energy X-ray transmission 

sensor," International Journal of Mineral 

Processing, vol. 82, pp. 222-232, Jun 2007. 

[3] A. Srinivasan, Handbook of Precision Agriculture. 

New York: The  Haworth Press, 2006. 

[4] D. Schlicker, A. Washabaugh, I. Shay, and N. 

Goldfine,  "Inductive and capacitive array imaging 

of buried objects," Insight, vol. 48, pp. 302-306, May 

2006. 

[5] A. R. Mohd Syaifudin, K. P. Jayasundera, and S. C. 

Mukhopadhyay, "A low cost novel sensing system 

for detection of dangerous marine biotoxins in 

seafood," Sensors and Actuators B: Chemical, vol. 

137, pp. 67-75, 2009. 

[6] A. V. Mamishev, K. Sundara-Rajan, F. Yang, Y. Q. 

Du, and M. Zahn, "Interdigital sensors and 

transducers," Proceedings of the 2006 IEEE Sensors 

Applications Symposium, vol. 92, pp. 808-845, May 

2004. 

[7] A. Guadarrama-Santana and A. Garcia-Valenzuela, 

"Principles and Methodology for the Simultaneous 

Determination of Thickness and Dielectric Constant 

of Coatings with Capacitance Measurements," IEEE 

Transactions on Instrumentation and Measurement, 

vol. 56, pp.  107-112, 2007. 

[8] B. George, H. Zangl, T. Bretterklieber, and G. 

Brasuer, "A Combined Inductive-Capacitive 

Proximity Sensor and Its Application to Seat 

Occupancy Sensing," presented at the I2MTC-

International Instrumentation and Measurement, 

Singapore, 2009. 

[9] N. Kirchner, D. Hordern, D. K. Liu, and G. 

Dissanayake, "Capacitive sensor for object ranging 

and material type identification," Sensors and 

Actuators a-Physical, vol. 148, pp.  96-104, Nov 

4 2008. 

[10] H. M. Greenhou, "Design of Planar Rectangular 

Microelectronic Inductors," IEEE Transactions on 

Parts Hybrids and Packaging, vol. 10, pp. 101-109, 

1974. 

[11] H. Y. Hwang, S. W. Yun, and I. S. Chang, "A design 

of planar elliptic bandpass filter using SMD type 

partially metallized rectangular  dielectric 

resonators," 2001 IEEE Mtt-S International 

Microwave Symposium Digest, vol. 3, pp. 1483-1486, 

2001. 

[12] K. Um and B. An, "Design of rectangular printed 

planar antenna via  input impedance for supporting 

mobile wireless communications," Proceeedings of 

IEEE 55th Vehicular Technology Conference, Vtc 

Spring 2002, vol. 2, pp. 948-951, 2002. 

[13] J. Yunas, N. A. Rahman, L. T. Chai, and B. Y. Majlis, 

"Study of  coreless planar inductor at high 

operating frequency," Proceedings of 2004 IEEE 

International Conference on Semiconductor 

Electronics, pp. 606-610, 2004. 

[14] J. Fava and M. Ruch, "Design, construction and 

characterisation of ECT sensors with rectangular 

planar coils," Insight, vol. 46, pp. 268-274, May 

2004. 

[15] J. L. Quirarte, M. J. M. Silva, and M. S. R. Palacios, 

"Software for analysis and design of rectangular 

planar arrays," 2004 1st International Conference on 



M.A.M. Yunus et al., Int. J. Of Integrated Engineering – Special Issue on Electrical Electronic Engineering Vol. 9 No. 4 (2017) p. 64-75 

 

 

 73 

Electrical and Electronics Engineering (ICEEE), pp. 

90-95, 2004. 

[16] D. Valderas, J. Melendez, and I. Sancho, "Some 

design criteria for UWB planar monopole antennas: 

Application to a slotted rectangular monopole," 

Microwave and Optical Technology Letters, vol. 46, 

pp. 6-11, Jul 5 2005. 

[17] L. W. Li, Y. N. Li, and J. R. Mosig, "Design of a 

novel rectangular patch antenna with planar 

metamaterial patterned substrate," 2008 IEEE 

International Workshop on Antenna Technology: 

Small Antennas and Novel Metamaterials - 

Conference Proceedings, pp. 119-122, 2008. 

[18] H. Oraizi and M. T. Noghani, "Design and 

Optimization of Linear and Planar slot Arrays on 

Rectangular Waveguides," in 38th European 

Microwave Conference, 2008. EuMC 2008, 

Amsterdam, 2008, pp. 1468-1471. 

[19] J. O. Fava, L. Lanzani, and M. C. Ruch, "Multilayer 

planar rectangular coils for eddy current testing: 

Design considerations," Ndt & E International, vol. 

42, pp. 713-720, Dec 2009. 

[20] N. J. Goldfine, "Magnetometers for Improved 

Materials Characterization in Aerospace 

Applications," Materials Evaluation, vol. 51, pp. 

396-405, Mar 1993. 

[21] N. J. Goldfine and D. Clark, "Near-surface material 

property profiling for determination of SCC 

susceptibility," presented at the in 4th EPRI Balance-

of-Plant Heat Exchanger NDE Symp, 1996. 

[22] S. Yamada, H. Fujiki, M. Iwahara, S. C. 

Mukhopadhyay, and F. P. Dawson, "Investigation of 

printed wiring board testing by using planar coil type 

ECT probe," IEEE Transactions on Magnetics, vol. 

33, pp. 3376-3378, Sep 1997. 

[23] S. C. Mukhopadhyay, S. Yamada, and M. Iwahara, 

"Experimental determination of optimum coil pitch 

for a planar mesh-type micromagnetic sensor," IEEE 

Transactions on Magnetics, vol. 38, pp. 3380-3382, 

Sep 2002. 

[24] S. C. Mukhopadhyay, "Quality inspection of 

electroplated materials using planar type micro-

magnetic sensors with post-processing from neural 

network model," IEEE Proceedings-Science 

Measurement and Technology, vol. 149, pp. 165-171, 

Jul 2002. 

[25] S.C.Mukhopadhyay,"A novel planar mesh-type 

microelectromagnetic sensor - Part II: Estimation of 

system properties," IEEE Sensors Journal, vol. 4, pp. 

308-312, Jun 2004. 

[26] S.C.Mukhopadhyay,"High Performance Planar 

Electromagnetic Sensors-A Review of Few 

Applications," in New Zealand National Conference 

on Non-Destructive Testing, 2004, pp. 33-41. 

[27] S.C.Mukhopadhyay, "Novel planar electromagnetic 

sensors: Modeling and performance evaluation," 

Sensors, vol. 5, pp. 546-579, Dec 2005. 

[28] Y. Sheiretov, D. Grundy, V. Zilberstein, N. Goldfine, 

and S. Maley, "MWM-Array Sensors for In Situ 

Monitoring of High-Temperature Components in 

Power Plants," IEEE Sensors Journal, vol. 9, pp. 

1527-1536, Nov 2009. 

[29] M. A. M. Yunus and S. C. Mukhopadhyay, "Novel 

Planar Electromagnetic Sensors for Detection of 

Nitrates and Contamination in Natural Water 

Sources," IEEE Sensors Journal, vol. 11, pp. 1440-

1447, 2011. 

[30] K. D. AnimAppiah and S. M. Riad, "Analysis and 

design of ferrite cores for eddy-current-killed 

oscillator inductive proximity sensors," IEEE 

Transactions on Magnetics, vol. 33, pp. 2274-2281, 

May 1997. 

[31] D. Karunanayaka, Gooneratne, C. P.,  

Mukhopadhyay, S. C.,  and Sen Gupta G. , "A Planar 

Electromagnetic Sensors Aided Non-destructive 

Testing of Currency Coins," NDT.net vol. 11, pp. 1-

12, Sept 2006. 

[32] K. Sundara-Rajan, L. Byrd, and A. V. Mamishev, 

"Moisture content estimation in paper pulp using 

fringing field impedance Spectroscopy," IEEE 

Sensors Journal, vol. 4, pp. 378-383, Jun 2004. 

[33] S. M. Radke and E. C. Alocilja, "Design and 

fabrication of a microimpedance biosensor for 

bacterial detection," IEEE Sensors Journal, vol. 4, 

pp. 434-440, Aug 2004. 

[34] N. Sekiguchi, T. Komeda, H. Funakubo, R. 

Chabicovsky, J. Nicolics, and G. Stangl, 

"Microsensor for the measurement of water content 

in the human skin," Sensors and Actuators B-

Chemical, vol. 78, pp. 326-330, Aug 30 2001. 

[35] P. Furjes, A. Kovacs, C. Ducso, M. Adam, B. Muller, 

and U. Mescheder, "Porous silicon-based humidity 

sensor with interdigital electrodes and internal 

heaters," Sensors and Actuators B-Chemical, vol. 95, 

pp. 140-144, Oct 15 2003. 

[36] A. Mohd Syaifudin, S. Mukhopadhyay, and P. Yu, 

"Modelling and fabrication of optimum structure of 

novel interdigital sensors for food inspection," 

International Journal of Numerical Modelling: 

Electronic Networks, Devices and Fields, vol. 25, pp. 

64-81, 2012. 

[37] S. M. Radke and E. C. Alocilja, "A microfabricated 

biosensor for detecting foodborne bioterrorism 

agents," IEEE Sensors Journal, vol. 5, pp. 744-750, 

2005. 

[38] A. R. M. Syaifudin, K. P. Jayasundera, and S. C. 

Mukhopadhyay, "A low cost novel sensing system 

for detection of dangerous marine biotoxins in 

seafood," Sensors and Actuators B-Chemical, vol. 

137, pp. 67-75, Mar 28 2009. 

[39] A. R. M. Syaifudin, M. A. Yunus, S. C. 

Mukhopadhyay, and K. P.Jayasundera, "A novel 

planar interdigital sensor for environmental 

monitoring," in Sensors, 2009 IEEE, Christchurch, 

New Zealand, 2009,  pp. 105-110. 

[40] S. C. Mukhopadhyay, C. P. Gooneratne, S. 

Demidenko, and G. S. Gupta, "Low Cost Sensing 

System for Dairy Products Quality Monitoring," 

Proceedings of the IEEE Instrumentation and 



M.A.M. Yunus et al., Int. J. Of Integrated Engineering – Special Issue on Electrical Electronic Engineering Vol. 9 No. 4 (2017) p. 64-75 

 

 

 74 

Measurement Technology Conference, 2005. IMTC 

2005. , vol. 1, pp. 244-249, May 2005. 

[41] S. C. Mukhopadhyay, G. Sen Gupta, J. D. Woolley, 

and S. N. Demidenko, "Saxophone reed inspection 

employing planar electromagnetic sensors," IEEE 

Transactions on Instrumentation and Measurement, 

vol. 56, pp. 2492-2503, Dec 2007. 

[42] S. C. Mukhopadhyay and C. P. Gooneratne, "A novel 

planar-type biosensor for noninvasive meat 

inspection," IEEE Sensors Journal, vol. 7, pp. 1340-

1346, Sep-Oct 2007. 

[43] S. C. Mukhopadhyay, S. D. Choudhury, T. Allsop, V. 

Kasturi, and G. E. Norris, "Assessment of pelt quality 

in leather making using a novel  non-invasive 

sensing approach," Journal of Biochemical and 

Biophysical Methods, vol. 70, pp. 809-815, 2008. 

[44] A. I. Zia, A. R. M. Syaifudin, S. C. Mukhopadhyay, 

I. H. AlBahadly, P. L. Yu, C. P. Gooneratne, et al., 

"MEMS based impedimetric sensing of phthalates," 

in 2013 IEEE International Instrumentation and 

 Measurement Technology Conference (I2MTC), 

2013, pp. 855-860. 

[45] M. A. M. Yunus, V. Kasturi, S. C. Mukhopadhyay, 

and G. Sen Gupta, "Sheep skin property estimation 

using a low-cost planar sensor," in IEEE 

Instrumentation and Measurement Technology 

Conference  2009,  I2MTC '09, Singapore, 2009, pp. 

482-486. 

[46] K. G. Ong, C. A. Grimes, C. L. Robbins, and R. S. 

Singh, "Design and application of a wireless, passive, 

resonant-circuit environmental monitoring sensor," 

Sensors and Actuators a-Physical, vol. 93, pp. 33-43, 

Aug 25 2001. 

[47] K. G. Ong, J. Wang, R. S. Singh, L. G. Bachas, and 

C. A. Grimes, "Monitoring of bacteria growth using 

a wireless, remote query resonant-circuit sensor: 

application to environmental sensing,"  Biosensors 

& Bioelectronics, vol. 16, pp. 305-312, Jun 2001. 

[48] K. G. Ong, J. S. Bitler, C. A. Grimes, L. G. Puckett, 

and L. G. Bachas,"Remote query resonant-circuit 

sensors for monitoring of bacteria growth: 

Application to food quality control," Sensors, vol. 2, 

pp. 219-232, Jun 2002. 

[49] M. C. Hofmann, F. Kensy, J. Buchs, W. Mokwa, and 

U. Schnakenberg, "Transponder-based sensor for 

monitoring electrical properties of biological cell 

solutions," Journal of Bioscience and 

Bioengineering, vol. 100, pp. 172-177, Aug 2005. 

[50] E. L. Tan, W. N. Ng, R. Shao, B. D. Pereles, and K. 

G. Ong, "A wireless, passive sensor for quantifying 

packaged food quality," Sensors, vol. 7, pp. 1747-

1756, Sep 2007. 

[51] J. B. Ong, Z. P. You, J. Mills-Beale, E. L. Tan, B. D. 

Pereles, and K. G. Ong, "A Wireless, Passive 

Embedded Sensor for Real-Time Monitoring of 

Water Content in Civil Engineering Materials," IEEE 

Sensors Journal, vol. 8, pp. 2053-2058, Nov-Dec 

2008. 

[52] B. Sharavanan, P. Jung-Rae, M. Tarisha, A. Niwat, 

A. Alkim, R. Tenneti, et al., "Conformal Passive 

Sensors for Wireless Structural Health Monitoring," 

in Material and devices for smart systems III, Boston, 

2009, pp. 341-348. 

[53] E. W. Stanley and et al., "Wireless temperature 

sensing using temperature-sensitive dielectrics 

within responding electric fields of open-circuit 

sensors having no electrical connections," 

Measurement Science and Technology, vol. 21, p. 

075201, 2010. 

[54] S. E. Woodard, "SansEC sensing technology - A new 

tool for designing space systems and components," in 

Aerospace Conference, 2011 IEEE, 2011, pp. 1-11. 

[55] E. Dickey, O. Varghese, K. Ong, D. Gong, M. 

Paulose, and C. Grimes, "Room Temperature 

Ammonia and Humidity Sensing Using Highly 

Ordered Nanoporous Alumina Films," Sensors, vol. 

2, pp. 91-110, 2002. 

[56] K. V. Oomman and A. G. Craig, "Metal Oxide 

Nanoarchitectures for Environmental Sensing," 

Journal of Nanoscience and Nanotechnology, vol. 3, 

pp. 277-293, 2003. 

[57] J. Garcia-Canton, A. Merlos, and A. Baldi, "High-

Quality Factor Electrolyte Insulator Silicon Capacitor 

for Wireless Chemical Sensing," Electron Device 

Letters, IEEE, vol. 28, pp. 27-29, 2007. 

[58] J. García-Cantón, A. Merlos, and A. Baldi, "A 

wireless LC chemical sensor based on a high quality 

factor EIS capacitor," Sensors and Actuators B: 

Chemical, vol. 126, pp. 648-654, 2007. 

[59] A. G. Heath, Water pollution and fish physiology: 

CRC press, 1995. 

[60] R. J. Woodman and G. F. Watts, "Measurement and 

application of arterial stiffness in clinical research: 

focus on new methodologies and diabetes mellitus," 

Medical science monitor: international medical 

journal of experimental and clinical research, vol. 9, 

pp. RA81-RA89, 2003. 

[61] T. E. Ingram, A. G. Pinder, D. M. Bailey, A. G. 

Fraser, and P. E. James, "Low-dose sodium nitrite 

vasodilates hypoxic human pulmonary vasculature 

by a means that is not dependent on a simultaneous 

elevation in plasma nitrite," American Journal of 

Physiology-Heart and Circulatory Physiology, vol. 

298, p. H331, 2010. 

[62] V. E. Nossaman, B. D. Nossaman, and P. J. 

Kadowitz, "Nitrates and nitrites in the treatment of 

ischemic cardiac disease," Cardiology in 

 review, vol. 18, p. 190, 2010. 

[63] L. Knobeloch, B. Salna, A. Hogan, J. Postle, and H. 

Anderson, "Blue babies and nitrate-contaminated 

well water," Environmental Health Perspectives, vol. 

108, p. 675, 2000. 

[64] T. Tamme, M. Reinik, and M. Roasto, "Nitrates and 

nitrites in vegetables: occurrence and health risks," 

Bioactive foods in promoting health: fruits and 

vegetables, pp. 307-321, 2009. 

[65] Ö. Özdestan and A. Üren, "Nitrate and Nitrite 

Contents of Baby Foods," Academic Food 

Journal/Akademik GIDA, vol. 10, 2012. 



M.A.M. Yunus et al., Int. J. Of Integrated Engineering – Special Issue on Electrical Electronic Engineering Vol. 9 No. 4 (2017) p. 64-75 

 

 

 75 

[66] D. B. D. Elias, L. B. d. S. Rocha, M. B. Cavalcante, 

A. M. Pedrosa, I. C. B. Justino, and R. P. Gonçalves, 

"Correlation of low levels of nitrite and high levels of 

fetal hemoglobin in patients with sickle cell disease 

at baseline," Revista brasileira de hematologia e 

hemoterapia, vol. 34, pp. 265-269, 2012. 

[67] Y. Sheiretov, D. Grundy, V. Zilberstein, N. Goldfine, 

and S. Maley, "MWM-array sensors for in situ 

monitoring of high-temperature components in 

power plants," Sensors Journal, IEEE, vol. 9, pp. 

1527-1536, 2009. 

[68] N. Goldfine, "Near surface material property 

profiling for determination of SCC susceptibility," in 

4th EPRI Balance-of-Plant Heat Exchanger NDE 

Symposium, WY, June 10-12, 1996, 1996. 

[69] P. Barge, P. Gay, V. Merlino, and C. Tortia, "Item-

level Radio-Frequency IDentification for the 

traceability of food products: Application on a dairy 

product," Journal of Food Engineering, vol. 125, pp. 

119-130, 2014. 

[70] J. Vanfleteren, M. Gonzalez, F. Bossuyt, Y.-Y. Hsu, 

T. Vervust, I. De Wolf, et al., "Printed circuit board 

technology inspired stretchable circuits," MRS 

bulletin, vol. 37, pp. 254-260, 2012. 

[71] M. Norhisam, A. Norrimah, R. Wagiran, R. Sidek, N. 

Mariun, and H. Wakiwaka, "Consideration of 

theoretical equation for output voltage of linear 

displacement sensor using meander coil and pattern 

guide,"  Sensors and Actuators A: Physical, vol. 

147, pp. 470-473, 2008. 

[72] H. Wakiwaka, H. Nishizawa, S. Yanase, and O. 

Maehara, "Analysis of impedance characteristics of 

meander coil," Magnetics, IEEE Transactions on, 

vol. 32, pp. 4332-4334, 1996. 

[73] H. A. Radi and J. O. Rasmussen, "Faraday’s Law, 

Alternating Current, and Maxwell’s Equations," in 

Principles of Physics, ed: Springer, 2013, pp. 933-

959. 

[74] S. Mukhopadhyay, S. D. Choudhury, T. Allsop, V. 

Kasturi, and G. Norris, "Assessment of pelt quality in 

leather making using a novel non-invasive sensing 

approach," Journal of biochemical and biophysical 

methods, vol. 70, pp. 809-815, 2008. 

[75] A. I. Zia, M. S. A. Rahman, S. C. Mukhopadhyay, P.-

L. Yu, I. Al-Bahadly, C. P. Gooneratne, et al., 

"Technique for rapid detection of phthalates in water 

and beverages," Journal of Food Engineering, vol. 

116, pp. 515-523, 2013. 

[76] L. Y. Zhao, "Novel Sensor Design and Application 

for Detection of Dangerous Contaminated Marine 

Biotoxins," Applied Mechanics and Materials, vol. 

416, pp. 980-984, 2013. 

[77] S. C. Mukhopadhyay, Intelligent Sensing, 

Instrumentation and  Measurements vol. 5: Springer, 

2013. 

[78] M. A. M. Yunus and S. C. Mukhopadhyay, 

"Development of planar electromagnetic sensors for 

measurement and monitoring of environmental 

parameters," Measurement Science and Technology, 

vol. 22, p. 025107, 2011. 

[79] M. A. M. Yunus, S. C. Mukhopadhyay, and S. 

Ibrahim, "Planar electromagnetic sensor based 

estimation of nitrate contamination in water sources 

using independent component analysis," Sensors 

Journal, IEEE, vol. 12, pp. 2024-2034, 2012. 

[80] M. A. M. Yunus and S. Mukhopadhyay, "Planar 

electromagnetic sensor for the detection of nitrate and 

contamination in natural water sources using 

electrochemical impedance spectroscopy approach," 

in New Developments and Applications in Sensing 

Technology, ed: Springer, 2011, pp. 39-63. 

[81] M. A. M. Yunus, S. C. Mukhopadhyay, M. S. A. 

Rahman, N. S. Zahidin, and S. Ibrahim, "The 

Selection of Novel Planar Electromagnetic Sensors 

for the Application of Nitrate Contamination 

Detection," in Smart Sensors for Real-Time Water 

Quality Monitoring, ed: Springer, 2013, pp. 171-195. 

[82] M. A. M. Yunus, S. H. Mohamad, A. M. Nor, M. H. 

Izran, and S. Ibrahim, "Water Content Estimation in 

Soils Using Novel Planar Electromagnetic Sensor 

Arrays," Jurnal Teknologi, vol. 64, 2013. 

[83] A. S. M. Nor, M. A. M. Yunus, S. W. Nawawi, S. 

Ibrahim, and M. F. Rahmat, "Development of planar 

electromagnetic sensor array for nitrate and sulphate 

detection in natural water sources," Sensor Review, 

vol. 35, pp. 106-115, 2015. 

[84] M. Faramarzi, M. A. M. Yunus, A. S. M. Nor, and S. 

Ibrahim, "The application of the Radial Basis 

Function Neural Network in estimation of nitrate 

contamination in Manawatu river," in 2014 

International Conference on Computational Science 

and Technology (ICCST), Kota Kinabalu, 2014, pp. 

1-5. 

[85] M. J. Diamantopoulou, D. M. Papamichail, and V. Z. 

Antonopoulos, "The use of a Neural Network 

technique for the prediction of water quality 

parameters," Operational Research, vol. 5, pp. 115-

125, 2005. 

[86]  G. Cybenko, "Approximation by superpositions of a 

sigmoidal function," Mathematics of control, signals 

and systems, vol. 2, pp. 303-314, 1989  
 


