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1. Introduction
Satellite-based remote sensing (RS) techniques can

play important role to water resources management, such 
as investigation on surface water, groundwater, snow and 
ice, dynamic monitoring of ecology, estimation of water 
amount necessary for keeping and recovering ecological 
environment, etc. [1]. A research has incorporated 
remotely sensed data to forecast streamflow and reservoir 
storage in the Snake River basin, United States [2]. Also a 
study integrated RS data using a simple vegetation 
parameter aggregation method applicable to a distributed 
rainfall-runoff model [3]. The proposed method provided 
a reasonably realistic description of area-averaged 
vegetation nature and characteristics. As well, the root-
zone soil moisture (RZSM) was estimated using RS and 
soil moisture analytical relationship (SMAR) model. 
Results obtained from remotely sensed data coupled with 
the SMAR model indicated a good description of RZSM 
dynamics [4]. Snow as a core component of hydrological 
cycle is extremely important in runoff generation, soil 
moisture replenishment, flood risk, etc. Particularly in 
arid and semi-arid areas, the hydrologic response of the 
water basins is strongly dependent on the snow 
conditions. Hence, knowledge of snow conditions can 
provide crucial information for more sustainable and 
integrated water resources policies. In this regard, remote 
sensing technology has been considered as a powerful 
tool for monitoring snow properties including snow-
covered areas (SCA), snow depth (SD), snow water 
equivalent (SWE), and so on. In the past, snow 
parameters were monitored using observations made at 

scattered points in or around the watersheds. Advances in 
RS based techniques make it possible to estimate most of 
snow parameters at both regional and global scales.  A 
research coupled satellite imagery with a distributed 
snowmelt model for monitoring snow-cover depletion in 
Quebec, Canada [5]. In this research, a real-time 
simulation was carried out that resulted in a significant 
improvement of the timing of flood peak forecast. A 
research has studied the snow cover variability in a forest 
ecotone of the United States via moderate resolution 
imaging spectroradiometer (MODIS) Terra products [6]. 
Also researchers have utilized RS datasets in order to 
differentiate among rain, snow, and glacier contributions 
to river discharge in the western Himalaya [7]. Space 
borne passive microwave (PM) data are commonly 
utilized in order to retrieve useful snow parameters [8]. 
PM radiometer data are promising tools for global 
monitoring with high temporal repetition rate, because of 
the potential to observe the earth surface through clouds 
as well as provide information on the internal properties 
of the snowpack [9]. Researchers estimated SD from PM 
data in forest regions of northeast China [10]. In this 
study, an optimal iteration method was used to retrieve 
the forest transmissivities at 18 and 36 GHz based on the 
snow and forest microwave radiative transfer models and 
the snow properties measured in field experiments.  

Brightness temperature (TB) of a snowpack is 
measured using PM radiometer [11]. A study has 
improved SD retrieval by integrating microwave TB and 
visible/infrared reflectance through support vector 
machine (SVM) regression [12]. The results 

Abstract: Space-borne passive microwave (PM) radiometers have provided an opportunity to estimate Snow water 
equivalent (SWE) and Snow depth (SD) at both regional and global scales. This study attempts to employ 
empirical algorithms and multivariate regressions (MRs) using Special Sensor Microwave Imager (SSM/I) 
brightness temperature (TB) in order to achieve an accurate assessment of SD and SWE which well suited for the 
interest study area. The SSM/I data consist of Pathfinder Daily EASE-Grid TB supplied by the National Snow and 
Ice Data Centre (NSIDC). For the present study, satellite-based data were gathered from 1992 through 2015 in two 
versions (v1: 09 July 1987 to 29 April 2009; v2: 14 December 2006 up to now). The results indicated that a 
stepwise multivariate nonlinear regression (MNLR) outperformed (r = 0.41, and 0.344 for SD and SWE, 
respectively) other methods. However, a fairly unsatisfactory correlation between ground-based and satellite 
derived data has been confirmed due to the sparse ground-based data and not considering other parameters (snow 
density, moisture, etc.) 
Keywords: Passive microwave, brightness temperature, special sensor microwave imager, multivariate regression 



A. Zaerpour et al., Int. J. Of Integrated Engineering Vol. 10 No. 1 (2018) p. 23-29 
 

 

 24

demonstrated that the combination of visible/infrared 
surface reflectance and microwave TB via SVM 
regression can provide a more accurate retrieval of SD. 
There is no single snow algorithm to produce accurate 
global estimates of SD and SWE [13]. Several 
Algorithms for SD and SWE estimations, such as [14, 
15], they modified method of [13] for forest areas are 
discussed in the literature. In this regard, empirical 
formulas are usually easy to use. However, these 
relationships are closely related to the local conditions of 
the study area [16]. Statistical methods such as regression 
analysis, multivariate analysis, and least square 
approximation models have been deployed in various 
scientific areas [17]. These methods outperform for 
extremely small size, and also when a theory indicates a 
relationship between dependent and independent 
variables [18]. Scientists compared nonlinear regression 
(NLR) with a neural network (NN) [19]. Both models 
provided a comparably good prediction. Further studies 
have been also conducted by [20, 21] in order to evaluate 
and predict snow parameters using multivariate 
regressions, and computational intelligence methods. 
Their results revealed that NNs outperformed multivariate 
regression models.  

This study aims to compare the empirical formulas 
for retrieval of SD and SWE proposed by [14, 15], 
Multivariate linear, and NLR using TB extracted from 
Multi-frequency Special Sensor Microwave Imager 
(SSM/I). At last, an appropriate relationship will be 
developed to monitor the SD and SWE in the study area.    
 
2. Materials and methods 
 
2.1 Brightness Temperature (TB) 

Theoretically, TB is an effective temperature of a 
blackbody radiating the same amount of energy per unit 
area at the similar wavelengths as the observed body. 
Empirically, TB is the apparent radiant temperature of a 
non-blackbody determined by measurement with an 
optical pyrometer or radiometer. TB at a given 

wavelength    is the product of the physical 

temperature  pT  and the emissivity    at a given 

wavelength of the surface viewed by the radiometer 
which can be determined by using equation (1). 

    pTTB                            (1) 

Equation (1) is the Rayleigh-Jean approximation of 
Plank's law for the PM region of the electromagnetic 
spectrum. It is an approximation and does not take into 
account the atmosphere effects on the microwave 
radiation [22]. 
 
2.2 SSM/I and Field data  

The (SSM/I), flying on board of the Defense 
Meteorological Satellite Program (DMSP) series satellites 
is a satellite PM radiometer with the preference over 
optical and infrared sensors that it can observe large 
portions of the earth's surface both night and day, through 

clouds. The SSM/I system measures TB at seven 
channels, five frequencies (19, 22, 37, 85, and 91 GHz). 
All channels operate in both horizontal (H) and vertical 
(V) polarizations, except for 22GHz fixed at V 
polarization [16]. In the following text, the channels are 
abbreviated as 19 H, 19 V, etc.  
The SSM/I data include Pathfinder Daily EASE-Grid TB 
supplied by [22]. For the present study, they were 
gathered from 1992 through 2015 in two versions (v1: 09 
July 1987 to 29 April 2009; v2: 14 December 2006 up to 
now). The temporal resolution is daily and the spatial one 
is 25km for all channels (19, 22, 37, and 85 GHz), plus 
12.5 km for 85 and 91 GHz. The 85 GHz is not available 
after 29 April of 2009; as well, the 91GHz is only 
available from the beginning of 2010 [22]. As indicated 
in Fig. 1, 30 snow stations are located within the study 
area in which SD and SWE are measured. To increase the 
reliability of the analysis only pixels with at least one 
gauge in them were used. In some of the pixels up to 
three gauges measurements were combined to derive the 
averaged SD to match EASE-Grid SSM/I spatial 
resolution. In most basins of Iran, only one or two (even 
no) snow measurements are recorded at each station 
during the snowy months in every year. In this study, 
only 161observation data have been provided for 24 years 
period (1992-2015).  

 
2.3 Study area  

The Upper Karoon River Basin is located in the 
southwest of Iran extended from 49°-30’ to 52°-15’ 
longitudes and 30°-23’ to 32°-45’ latitudes with an area 
of about 14000 km2 (Fig. 1). The elevation ranges from 
2030 m to 4300 m above sea level (asl). Mean annual 
temperature and precipitation are 8C and 540 mm. The 
majority of the precipitation occurs in winter, mostly 
from October until May. The main part of this basin is 
covered with snow for up to five months a year. The 
highest SD in the study area is 244 cm. 
 
2.4 Empirical algorithms 

Researchers proposed an empirical algorithm based 
on the combination of TB at 18 H and 36 H in order to 
retrieve the SD and SWE [15]. In this study, the original 
The Chang et al. (1987) method is applied by replacing 
18 H and 36 H with the 19 H and 37 H SSM/I channels, 
respectively. A revised algorithm was also developed for 
considering forest cover fraction [13].  As well, a fixed 
value of density (0.3 g/cm3) was applied to calculate the 
SWE from SD (equation (2)): 

 HHC TTRSWESD 3718,                             (2)                           

Where, SD and SWE are snow depth (cm) and snow 

water equivalent (cm), respectively;  CR  is a constant 

which set to 1.59 cm/K for SD and 4.8 mm/K for SWE 

(assuming fixed snow density of 0.3 g/cm3). HT18 and 

HT37  are TB (Kelvin) at horizontal polarizations of 18 

and 37 GHz, respectively. 
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Fig. 1 Study area with snow stations 

 
The Spectral and Polarization Difference (SPD) 

algorithm was proposed by Aschbacher (1989) for the 
retrieval of SD and SWE when no information on the 
land cover is available. The algorithm is based on a 
combination of SSM/I channels (equations (3) to (5)):  

   HVVV TbTbTbTbSPD 19193719          (3)                                                                                                                            

Where: )/( VHXXTb  is TB (Kelvin) at 

horizontal/vertical polarization for corresponding 
frequency. 

Equation (3) is used to estimate SD and SWE: 

10 ASPDASD                                                        (4)                                                                                                                                                            

 101.0 BSPDBSWE                                       (5)                                                                                                                 

Where: 0A  = 0.68, 1A  = - 0.67 and 0B  = 2.20, 1B  

= - 7.11 for all data and 0A = 0.72,  1A  = - 1.24 and 0B  

= 2.02,  1B  = - 7.42 if maxT  is lower than Co0 . 

 
2.5 Multivariate Regression model 

Multivariate linear regression (MLR) is the most 
common analysis form to explain the relationship 
between one dependent variable and  independent 

variables/predictors, )...,,1( niX i  . More specifically, 

the MLR fits a line through a multi-dimensional cloud of 
data points. In fact, MLR estimates the coefficients of a 
linear equation (equation (6)). 

nn XaXaXaaY  ...22110                    (6)                                                                                        

Where:  Y  is an estimated value and ia  are the 

regression coefficients. 
Multivariate Nonlinear regression (MNLR) is a 

method of finding a nonlinear relationship between the 

dependent variable and a set of independent 
variables/predictors. Unlike traditional linear regression 
restricted to estimating linear models, nonlinear 
regression is able to evaluate models with arbitrary 
relationships between independent and dependent 
variables. 
 
2.6 Methodology 

 
In the study area, ground-based data for SD and SWE 

should be provided based on measurements conducted in 
snow stations. As mentioned before, 161 independent 
measured data are available during 1992-2015. 
Afterward, the corresponding DMSP SSM/I Pathfinder 
Daily EASE-Grid TB should be provided for the interest 
pixels of the study area. Daily TB data in seven channels 
(19 H, 19V, etc.) have been driven in a flat binary format 
with 0.1 K precision. TB data values are scaled by 10 
which should be divided by 10 to get real Kelvins. The 
values range from 550 (representing 55.0 K) to 3200 
(representing 320.0 K) [22]. For analytic purposes of the 
present study, the SSM/I seven channels are going to be 
considered as independent variables. However, the 
literature has demonstrated that SSM/I high- frequency 
channels such as 85 and 91GHz do not affect the SD and 
SWE estimations [13 to 15]. As well, there is a gap in 
SSM/I data monitoring for 85 and 91 GHz during the 
study period. Therefore, five channels including (19 H, 
19 V, 22 V, 37 H, and 37 V) have been considered as 
independent/ predictor variables (Table 1). 

The pair wise comparisons have been conducted 
using the Chang et al. (1987) and SPD algorithms. 
Meanwhile, multivariate analysis of data is performed via 
the Statistical Package for the Social Science (SPSS) 
Software for Windows. NR models can be found in [23, 
24]. in this regard, we have prepared the following 
MNLR model (equation (7)): 

   


5

1

5

1

5

10 k l ilikklijj ji XXbXaaY         (7)                                   

Where: iY  is an estimated value of the i th observed 

data;  ja  and klb  are the regression coefficients. 

 
Table 1 Selection of the independent variables 

 
Variable Description 

X1 Tb19 H 

X2 Tb19 V 

X3 Tb22 V 

X4 Tb37 H 

X5 Tb37 V 

 
The empirical relationships and Multivariate 

regressions have been evaluated with different standard 
statistical criteria comprising correlation coefficient (r) 
(equation (7)), root mean square error (RMSE) (equation 
(8)), and the ratio between averaged observed and 
estimated values (equation (9)): 
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Where: iX  and iY  are the observed and estimated 

values, respectively; X  and Y are the averages of iX  

and iY ; n is the whole number of data. (r and R must 

close to one and RMSE must close to zero).  
 
3. Results and Discussion 

SD and SWE have been estimated using the proposed 
methods. Fig. 2 shows the estimated versus observed 
values of SD for four different methods (the Chang et al. 
(1987), SPD, MLR and MNLR methods). 

 
The correlation coefficient, RMSE, and R are also 

indicated for each method in Table 2. 
 
Table 2 Correlation coefficient, RMSE, and R for 
different methods in estimating of SD  

SD The Chang et al. 
(1987) 

SPD MLR MNLR 

r 0.34 0.3 0.382 0.41
RMSE 
(cm) 

59.63 59.14 48.07 48.83 

R 3.98 3.2 1.00 1.31
 
As indicated in Fig.2, there is not a satisfactory 

correlation between satellite-derived and ground-based 
data through different methods, especially for deeper 
snow depth. This is because that SD exceeds a saturation 
value that makes the signal emitted from the underlying 
soil masked. So, deeper SD than saturation depth will not 
able to be evaluated from PM radiometry leading to 
underestimation of SD assessments. Moreover, high data 
shortage for a relatively long period of time (1992-2015) 
may be another reason for the weak accuracy of results. 
However, as indicated in Table 2, the highest correlation 
coefficient belongs to the MNLR method with r = 0.41 
 (p-value < 0.05) and SPD method has the least value of r  
(r = 0.3). But, In the case of R, MLR method has the best 
performance (R= 1.00) while the Chang et al. (1987) 
method shows the worst value of R (R= 3.98). By 
observation of RMSE, MLR method has the best 
performance (RMSE= 48.07 cm) while the Chang et al. 
(1987) method shows the worst value of RMSE (RMSE= 
59.63 cm). By evaluation of three performance criteria, it 
can conclude that MLR method is the best method in 
estimating of SD and the Chang et al. (1987) method is 
the weakest method.      

 
Fig. 2 Observed vs. estimated SD for different methods a) 

the Chang et al. (1987) b) SPD c) MLR d) MNLR 
methods 

 
The relatively better correlation coefficient (0.41) for 

MNLR may be due to the nonlinear nature of the 
relationship between SSM/I TB and SD that linear 
methods cannot represent that. The final MNLR model 
for SD is obtained using a stepwise regression procedure 
through SPSS. In this process, some variables were 
thrown due to the lack of significant contributions to SD 
(equation (11)): 
SD=563.726+4.032X1-0.035 X3+41.017 X4-49.789 X5-
0.01 X1

2+0.011 X2
2-0.081 X4

2+0.09 X5
2                      (11) 

It should be noted that several nonlinear models 
could be integrated to achieve a function that accurately 



A. Zaerpour et al., Int. J. Of Integrated Engineering Vol. 10 No. 1 (2018) p. 23-29 

 27

describes the correlation between multi-channel 
frequencies and ground-based SD. Additionally, the 
choice of suitable starting values is very important. Even 
if the correct functional form of the model has been 
specified, poor starting values may fail to converge or get 
a locally optimal solution rather than one that is globally 
optimal. Final MLR function is also obtained as follows 
(equation (12)): 
SD=-296.815-0.302X1+4.77 X2-0.386 X3+2.098 X4-4.905 
X5                                                                                  (12) 

Fig. 3 shows the estimated versus observed values of 
SWE for different methods. Similar to the SD, there is not 
a good agreement between observed versus measured 
SWE values. The low performance of the models in 
accurate evaluating of SWE may be due to the sensitivity 
decreasing of the radiometer measurements under deep 
snow conditions. Moreover, a constant snow density (0.3 
g/cm3) affects the SWE estimates for different real snow 
conditions. 

The correlation coefficient, RMSE, and R are also 
indicated for each method in Table 3 
 
Table 3 Correlation coefficient, RMSE, and R for 
different methods in estimating of SWE 

SWE The Chang et al. 
(1987) 

SPD MLR MNLR 

r 0.28 0.24 0.31 0.344
RMSE 
(cm) 

23.93 23.37 20.04 30.36 

R 4.7 3.16 0.99 0.41
 

 
 
As indicated in Table 3, the highest correlation 

coefficient belongs to the MNLR with 
 r = 0.344 (p-value < 0.05) and SPD has the least value of 
r (r =0.24). However, In the case of R, MLR has the best 
performance (R= 0.99) while The Chang et al. (1987) 
method has the worst value of R (R = 4.7). By 
observation of RMSE, MLR method has the best 
performance (RMSE= 20.04 cm) while the MNLR 
method shows the worst value of RMSE (RMSE= 30.36 
cm). By evaluation of three performance criteria, it can 
conclude that MLR method is the best method in 
estimating of SWE.      

Meanwhile, based on a stepwise MNLR, we have: 
SWE=-1421.131+16.033X1+0.377 X3+13.557 X4-18.436 
X5-0.034 X1

2+0.004 X2
2-0.026 X4

2+0.033 X5
2             (13) 

And, the LRM is obtained as follows: 
SWE=-65.266-0.241X1+1.299 X2+0.156 X3+0.947 X4-
1.858 X5                                                                        (14)                                                                           

The relatively low performance of the equations for 
both SD and SWE may be due to several reasons. Grain 
size variation is a significant source of uncertainty [25]. 
After snow deposits, the constituent crystals 
metamorphose in exposing to the vapor gradients within 
the snowpack or freeze/thaw cycles which is not 
considered in the present study.  

 
Fig. 3 Observed vs. estimated SWE for different methods 

a) the Chang et al. (1987) b) SPD c) MLR d) MNLR 
methods 

 
The presence of multiple features at the same pixel, 

such as forest attenuates the radiation emitted from 
snowpack which is not considered in this research. In 
addition, the water content in a snowpack completely 
alters the observed microwave radiometer. This will 
cause a sharp increase in TB emitted from the snow 
layers. This is a major source of error, because that the 
SWE and thus SD cannot be determined adequately using 
TB when the snowpack is wet because the water absorbs 
microwave radiation and emits it in higher TB rate, again. 
Topography is also a source of uncertainty due to either 
the SD spatial variability or different observation angles 
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within the sensor footprint because of the complex 
topography.  
 
4. Conclusion 

Several algorithms have been compared to find an 
appropriate relationship between TB derived from SSM/I 
and ground-based SD/SWE within the interest study area.  
Empirical approaches have the advantage of being 
computationally inexpensive and well suited for large-
scale applications. On the other hand, they suffer from the 
local nature of the coefficients relating SD and SWE to 
the measured TB. It has been confirmed that TB is not 
sufficient to accurately evaluate SD and SWE. Other 
parameters such as snow characteristics (grain size, 
density, moisture, snow temperature), forest coverage, 
Topology, etc. should be taken into account to achieve a 
more realistic estimation of SD/SWE. The results 
obtained were not fairly satisfactory due to the sparse 
snow measurements in the study area. Meanwhile, MLR 
and MNLR models have been developed for the study 
area which outperforms empirical algorithms. Using of 
artificial neural network (ANN) and optimization 
methods as genetic algorithm (GA) can be recognized for 
overcoming on the problems of inherent nonlinearity 
relationship between SSM/I data and SD/SWE values.  
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